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I. Aperiodic tilings: some references

C. Radin, Miles of Tiles, AMS Student Math. Library, vol. I, 1999.

L. Sadun, Topology of Tiling Spaces, AMS University Lecture Series,
vol. 46, 2008.

M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical
Invitation, Cambridge, 2013.

E. Harriss and D. Frettlöh, Tilings Encyclopedia,
http://tilings.math.uni-bielefeld.de
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I. Aperiodic tilings

A tiling (or tesselation) of Rd is a collection of sets, called tiles, which
have nonempty disjoint interiors and whose union is the entire Rd .

Aperiodic set of tiles can tile the space, but only non-periodically.

Origins in Logic: Hao Wang (1960’s) asked if it is decidable whether a
given set of tiles (square tiles with marked edges) can tile the plane?

R. Berger (1966) proved undecidability, and in the process constructed
an aperiodic set of 20,426 Wang tiles.

R. Robinson (1971) found an aperiodic set of 6 tiles (up to isometries).
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I. Penrose tilings

One of the most interesting aperiodic sets is the set of Penrose tiles,
discovered by Roger Penrose (1974). Penrose tilings play a central role
in the theory because they can be generated by any of the three main
methods:

1 local matching rules (“jigsaw puzzle”);

2 tiling substitutions;

3 projection method (projecting a “slab” of a periodic structure in a
higher-dimensional space to the plane).

Boris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 5 / 45



I. Penrose and his tiles

Figure: Sir Roger Penrose

Figure: Penrose rhombi
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I. Penrose tiling

Figure: A patch of the Penrose tiling
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I. Penrose tiling (kites and darts)
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I. Penrose tiling: basic properties

Non-periodic: no translational symmetries.

Hierarchical structure, “self-similarity,” or “composition”; can be
obtained by a simple “inflate-and-subdivide” process. This is how one
can show that the tiling of the entire plane exists.

“Repetitivity” and uniform pattern frequency: every pattern that
appears somewhere in the tiling appears throughout the plane, in a
relatively dense set of locations, even with uniform frequency.

5-fold (even 10-fold) rotational symmetry: every pattern that appears
somewhere in the tiling also appears rotated by 36 degrees, and with
the same frequency (impossible for a periodic tiling).
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I. Quasicrystals

Figure: Dani Schechtman (2011 Chemistry Nobel Prize); quasicrystal diffraction
pattern (below)

Figure: quasicrystal diffraction patternBoris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 10 / 45



I. Quasicrystals (aperiodic crystals)

Quasicrystals were discovered by D. Schechtman (1982). A
quasicrystal is a solid (usually, metallic alloy) which, like a crystal, has a
sharp X-ray diffraction pattern, but unlike a crystal, has an aperiodic
atomic structure. Aperiodicity was inferred from a “forbidden” 10-fold
symmetry of the diffraction picture.

Other types of quasicrystals have been discovered by T. Ishimasa, H. U.
Nissen, Y. Fukano (1985) and others (Al-Mn alloy, 10-fold symmetry,
Ni-Cr alloy, 12-fold symmetry; V-Ni-Si alloy, 8-fold symmetry)
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I. Other quasicrystal diffraction patterns

Figure: From the web site of Uwe Grimm
(http://mcs.open.ac.uk/ugg2/quasi.shtml)
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I. Substitutions

Symbolic substitutions have been studied in Dynamics (coding of
geodesics), Number Theory, Automata Theory, and Combinatorics of
Words for a long time.

Symbolic substitution is a map ζ from a finite “alphabet”
{0, . . . ,m − 1} into the set of “words” in this alphabet.

Thue-Morse: ζ(0) = 01, ζ(1) = 10. Iterate (by concatenation) :

0→ 01→ 0110→ 01101001→ . . .

u = u0u1u2 . . . = lim
n→∞

ζn(0) ∈ {0, 1}N, u = ζ(u)

Fibonacci: ζ(0) = 01, ζ(1) = 0. Iterate (by concatenation) :

0→ 01→ 010→ 01001→ . . . u = 0100101001001010010100100 . . .
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I. Tile-substitutions in Rd

Symbolic substitutions have been generalized to higher dimensions.

One can just consider higher-dimensional symbolic arrays, e.g.

0 → 0 0

0 1
, 1 → 1 1

1 0

More interestingly, one can consider “geometric” substitutions, with the
symbols replaced by tiles. Penrose tilings can be obtained in such a way.
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I. Example: chair tiling
Examples are taken from ”Tiling Encyclopedia”, see http://tilings.math.uni-bielefeld.de/

Figure: tile-substitution, real expansion constant λ = 2
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I. Example: chair tiling

Figure: patch of the tiling
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I. Example: Ammann-Beenker rhomb-triangle tiling

Figure: tile-substitution, real expansion constant λ = 1 +
√

2
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I. Example: Ammann-Beenker rhomb-triangle tiling

Figure: patch of the tiling
Boris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 18 / 45



I. Substitution tilings in Rd

One can even consider tilings with fractal boundary.

In fact, such tilings arise naturally in connection with

Markov partitions for hyperbolic toral automorphisms in dimensions 3
and larger

Numeration systems with a complex base.

Rauzy tiling is a famous example.
let λ be the complex root of 1− z − z2 − z3 = 0 with positive imaginary
part, z ≈ −0.771845 + 1.11514i . Then (Lebesgue) almost every ζ ∈ C has
a unique representation

ζ =
∞∑

n=−N
anλ
−n,

where an ∈ {0, 1}, anan+1an+2 = 0 for all n.
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Rauzy tiles
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Gerard Rauzy

Figure: Gerard Rauzy (1938-2010)
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II. Tiling definitions

Prototile set: A = {A1, . . . ,AN}, compact sets in Rd , which are
closures of its interior; interior is connected. (May have “colors” or
“labels”.)

Remark. Often prototiles are assumed to be polyhedral, or at least
topological balls.

A tiling of Rd with the prototile set A: collection of tiles whose
union is Rd and interiors are disjoint. All tiles are isometric copies of
the prototiles.

A patch is a finite set of tiles. A+ denotes the set of patches with
tiles from A.
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Finite local complexity

Several options: identify tiles (patches) up to (a) translation; (b)
orientation-preserving isometry (Euclidean motion); (c) isometry.
Let G be the relevant group of transformations.

Definition. A tiling T is said to have finite local complexity (FLC) with
respect to the group G if for any R > 0 there are finitely many T -patches
of diameter ≤ R, up to the action of G .
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II. Tile-substitutions in Rd

Let φ : Rd → Rd be an expanding linear map, that is, all its eigenvalues
are greater than 1 in modulus. (Often φ is assumed to be a similitude or
even a pure dilation φ(x) = λx .)

Definition. Let {A1, . . . ,Am} be a finite prototile set. A tile-substitution
with expansion φ is a map ω : A → A+, where each ω(Ai ) is a patch
{g(Aj)}g∈Dij

, where Dij is a finite subset of G , such that

supp(ω(Ai )) = φ(Ai ), i ≤ m.

The substitution is extended to patches and tilings in a natural way.

Substitution matrix counts the number of tiles of each type in the
substitution of prototiles: M = (Mij)i ,j≤m, where Mij = #Dij = # tiles of
type i in ω(Aj).
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II. Substitution tiling space

Definition. Given a tiling substitution ω on the prototile set A, the
substitution tiling space Xω is the set of all tilings whose every patch
appears as a “subpatch” of ωk(A), for some A ∈ A and k ∈ N.

Tile-substitution is primitive if the substitution matrix is primitive,
that is, some power of M has only positive entries (equivalently,
∃ k ∈ N, ∀ i ≤ m, the patch ωk(Ai ) contains tiles of all types). For a
primitive tile-substitution, Xω 6= ∅ (in fact, there exists an ω-periodic
tiling in Xω; that is, ω`(T ) = T for some `).

The tile-substitution ω and the space Xω are said to have finite local
complexity (FLC) with respect to the group G if for any R > 0 there
are finitely many patches of diameter ≤ R in tilings of Xω, up to the
action of G .
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II. Example: Kenyon’s non-FLC tiling space

Figure: non-FLC tiling
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II. Example: Kenyon’s non-FLC substitution tiling space

Figure: non-FLC self-similar tiling
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Conway-Radin pinwheel tiling

The prototiles appear in infinitely many orientations; the tiling is FLC with
G = Euclidean group.
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Work on non-FLC tilings

Non-FLC substitution tilings with a translationally-finite prototile set
have been studied by L. Danzer, R. Kenyon, N. P. Frank-E. A.
Robinson, Jr., N. P. Frank-L. Sadun, and others.

Pinwheel-like tilings have been studied by C. Radin, L. Sadun, N.
Ormes, and others.
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II. Tiling spaces (not just substitutions)

Tiling metric in the G -finite setting: two tilings are close if after a
transformation by small g ∈ G they agree on a large ball around the origin.

More precisely (in the translationally-finite setting):

%̃(T1, T2) := inf{r ∈ (0, 2−1/2) : ∃ g ∈ Br (0) :

T1 − g and T2 agree on B1/r (0)}.

Then %(T1, T2) := min{2−1/2, %(T1, T2)} is a metric.

Tiling space: a set of tilings which is (i) closed under the translation
ction and
(ii) complete in the tiling metric. The hull of T , denoted by XT , is the
closure of the Rd -orbit {T − x : x ∈ Rd} in the tiling metric.
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II. Local topology of the tiling space

Unless stated otherwise, we will assume that the tilings are
translationally finite and G = Rd

Assume that T is non-periodic, that is, T − t 6= T for t 6= 0. Then a
small neighborhood in XT is homeomorphic to Rd × Γ, where Γ (the
“transversal”) is a Cantor set.

There is a lot of interesting work on the algebraic topology of tiling
spaces: e.g.
[J. Anderson and I. Putnam ’98], [F. Gähler ’02], [A. Forrest, J.
Hunton, J. Kellendonk ’02], [J. Kellendonk ’03], [L. Sadun ’03,’07,
AMS Lecture Series ’08], [L. Sadun and R. Williams ’03], [M. Barge
and B. Diamond ’08],. . .
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II. Tiling dynamical system

Important properties of a tiling are reflected in the properties of the tiling
space and the associated dynamical system:

Theorem. T has finite local complexity (FLC) ⇐⇒ XT is compact.

Rd acts by translations: T t(S) = S − t. Topological dynamical system
(action of Rd by homeomorphisms):

(XT ,T
t)t∈Rd = (XT ,Rd)

Definition. A topological dynamical system is minimal if every orbit is
dense (equivalently, if it has no nontrivial closed invariant subsets).

Theorem. T is repetitive ⇐⇒ (XT ,Rd) is minimal.
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II. Substitution action and non-periodicity

Recall that the substitution ω extends to tilings, so we get a map

ω : XT → XT ,

which is always surjective.

Theorem [B. Mossé ’92], [B. Sol. ’98] The map ω : XT → XT is
invertible iff T is non-periodic.

Useful analogy:

substitution Z-action by ω ∼ geodesic flow

translation Rd -action ∼ horocycle flow
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II. Uniform patch frequencies

For a patch P ⊂ T consider

NP(T ,A) := #{t ∈ Rd : −t + P is a patch of T contained in A},

the number of T -patches equivalent to P that are contained in A.

Definition. A tiling T has uniform patch frequencies (UPF) if for any
non-empty patch P, the limit

freq(P, T ) := lim
R→∞

NP(T , t + QR)

Rd
≥ 0

exists uniformly in t ∈ Rd . Here QR = [−R
2 ,

R
2 ]d .
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II. Unique ergodicity for tiling systems

Theorem. Let T be a tiling with FLC. Then the dynamical system
(XT ,Rd) is uniquely ergodic, i.e. has a unique invariant probability
measure, if and only if T has UPF.

Theorem. Let T be a self-affine tiling, for a primitive FLC
tile-substitution. Then the dynamical system (XT ,Rd) is uniquely ergodic.

Denote by µ the unique invariant measure.
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II. Local matching rules

Constructions of substitution tilings (and cut-and-project tilings) are
non-local...

Let S be a set of prototiles, together with the rules how two tiles can fit
together (can usually be implemented by ”bumps” and ”dents”). Let XS

be the set of all tilings of Rd which satisfy the rules.

Note: if XS is nonempty, but every tiling in XS is non-periodic, we say
that S is an aperiodic set.

S. Mozes (1989): for any primitive aperiodic substitution ω in R2, with
square tiles, there exists a set S and a factor map Φ : XS → Xω which is
1-to-1 outside a set of measure zero (for all translation-invariant
measures).

This was extended by C. Radin (1994) to the pinwheel tiling, and by C.
Goodman-Strauss (1998) to all substitution tilings.
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III. Diffraction spectrum of a tiling

Pick a point in each prototile. This yields a discrete point set (separated
net, or Delone set) Λ, which models a configuration of atoms.

For simplicity, assume that all atoms are modeled by δ-functions:

δΛ :=
∑
x∈Λ

δx .

For self-affine tilings, the autocorrelation measure is well-defined and
equals

γ =
∑

z∈Λ−Λ

ν(z)δz ,

where ν(z) is the frequency of the cluster {x , x + z} in Λ.
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III. Diffraction spectrum and dynamical spectrum

The autocorrelation γ is positive-definite, and its Fourier transform γ̂ is a
measure which gives the diffraction pattern, or diffraction spectrum, of the
tiling, see [A. Hof ’95].

Dynamical spectrum of the tiling T is the spectral measure of the tiling
dynamical system, or equivalently, of the group of unitary operators
{Ut}t∈Rd , where Utf (S) = f (S − t) for S ∈ XT and f ∈ L2(XT , µ).

Remarkably, there is a connection! [S. Dworkin ’93]: the diffraction is
(essentially) a “part” of the dynamical spectrum.

Theorem [J.-Y. Lee, R. V. Moody, B. S. ’02] The diffraction is pure point
if and only if the dynamical spectrum is pure discrete, i.e. there is a basis
for L2(XT , µ) consisting of eigenfunctions.
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III. Eigenvalues and Eigenfunctions

Definition. α ∈ Rd is an eigenvalue for the measure-preserving Rd -action
(X ,T t, µ)t∈Rd if ∃ eigenfunction fα ∈ L2(X , µ), i.e., fα is not 0 in L2 and
for µ-a.e. x ∈ X

fα(T tx) = e2πi〈t,α〉fα(x), t ∈ Rd .

Here 〈·, ·〉 is the scalar product in Rd .

Warning: eigenvalue is a vector! (like wave vector in physics)
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III. Characterization of eigenvalues

Return vectors for the tiling:

Z(T ) := {z ∈ Rd : ∃T ,T ′ ∈ T , T ′ = T + z}.

Theorem [S. 1997] Let T be a non-periodic self-affine tiling with
expansion map φ. Then the following are equivalent for α ∈ Rd :
(i) α is an eigenvalue for the measure-preserving system (XT ,Rd , µ);
(ii) α satisfies the condition:

lim
n→∞
〈φnz , α〉 (mod 1) = 0 for all z ∈ Z(T ).
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III. When is there a discrete component of the spectrum?

Theorem [S.’07] Let T be a self-similar tiling of Rd with a pure dilation
expansion map t 7→ λt. Then the associated tiling dynamical system has
non-trivial eigenvalues (equivalently, is not weakly mixing) iff λ is a Pisot
number. Moreover, in this case the set of eigenvalues is relatively dense in
Rd .

Definition An algebraic integer λ > 1 is a Pisot number if all of its
algebraic conjugates lie inside the unit circle.

The role of Pisot numbers in the study of “mathematical quasicrystals”
was already pointed out by [E. Bombieri and J. Taylor ’87].

[F. Gähler and R. Klitzing ’97] have a result similar to the theorem above,
in the framework of diffraction spectrum.
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III. Necessity of the Pisot condition

The necessity of the Pisot condition for existence of non-trivial
eigenvalues, when the expansion is pure dilation by λ, follows from the
characterization of eigenvalues and the classical theorem of Pisot:

〈φnz , α〉 = λn〈z , α〉 → 0 (mod 1), as n→∞,

and we can always find a return vector z such that 〈z , α〉 6= 0 if α 6= 0.
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III. When is there a large discrete component of the
spectrum?

Theorem Let T be self-affine with a diagonalizable over C expansion map
φ. Suppose that all the eigenvalues of φ are algebraic conjugates with the
same multiplicity. Then the following are equivalent:
(i) the set of eigenvalues of the tiling dynamical system associated with T
is relatively dense in Rd ;
(ii) the spectrum of φ is a Pisot family: for every eigenvalue λ of φ and its
conjugate γ, either |γ| < 1, or γ is also an eigenvalue of φ.

(i) ⇒ (ii) was proved by [E. A. Robinson ’04], using the criterion for
eigenvalues in [S. ’97].

(ii) ⇒ (i), the more technically difficult part, is proved in [J.-Y. Lee & S.
’12].
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III. Pure discrete spectrum

Question: when is the spectrum of a tiling (diffraction or dynamical) pure
discrete?

This is very interesting, and actively studied, but for lack of time, I just
mention the

Pisot discrete spectrum conjecture: A primitive irreducible symbolic
substitution Z-action (or R-action) of Pisot type has pure discrete
spectrum.

Settled only in the 2-symbol case: [M. Barge and B. Diamond ’02] with
some contribution by [M. Hollander, Thesis ’96], [M. Hollander and
B. Solomyak ’03].
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III. More on diffraction spectrum
This slide was not presented at the workshop, but should have been!

Those interested in the topic should read

[J. Lagarias, Mathematical quasicrystals and the problem of
diffraction] in “Directions in Mathematical quasicrystals”, CRM
monograph series, Volume 13, Amer. Math. Soc., 2000.

This is a comprehensive account of the knowledge up to 2000, with a large
bibliography and many open questions. Some of the open questions have
been resolved in

[J.-Y. Lee and B. Solomyak, Pure point diffractive Delone sets have
the Meyer property], Discrete Comput. Geom. (2008), and

[N. Lev and A. Olevskii, Quasicrystals and Poisson’s summation
formula], math. arXiv:1312.6884
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