

Scalar and gravitational horizon hair as observable imprints of extremal black holes

Som Dev Bishoyi

Extremal Black Holes and Black Hole Thermodynamics

Jan 8, 2025

Outline

Part-1 : Axisymmetric scalar perturbations in ERN

1. Motivation and setup
2. Horizon Hair
3. Signatures from radiation field
4. Numerical results

Part-2: Non-Axisymmetric gravitational perturbations in EK

1. Motivation and setup
2. The Beetle-Burko scalar
3. Ori's late time expansion
4. Numerical results

Motivation

- Can we find **distinguishing** features of the dynamics of perturbations of black holes?
- Eg. are there **signatures** that can help identify extremal from sub-extremal Black holes.
- If yes, can such signatures be observed at **null infinity**?

Setup of Physical problem

- We investigate the solution to

$$\square_g \psi = 0$$

on (extremal)Reissner-Nordstrom.

- Radiation field $\Psi(\tau, \vartheta)$ is defined as

$$\Psi(\tau, \vartheta) = \lim_{r \rightarrow \infty} (r\psi)(\tau, r, \vartheta)$$

- For numerics we often use the mode decomposition

$$\psi(\tau, r, \vartheta) = \sum_{\ell=0}^{\infty} \psi_{\ell}(\tau, r) Y_{\ell 0}(\vartheta)$$

Setup

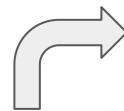
- We investigate the solution to

$$\square_g \psi = 0$$

on (extremal)Reissner-Nordstrom.

- Radiation field $\Psi(\tau, \vartheta)$ is defined as

$$\Psi(\tau, \vartheta) = \lim_{r \rightarrow \infty} (r\psi)(\tau, r, \vartheta)$$



- τ : the *retarded time* (on \mathcal{I}^+) or *advanced time* (on \mathcal{H}^+),
- $\vartheta = (\theta^1, \theta^2)$: the *angle* which represents the direction of any given ideal observer along \mathcal{I}^+ .

- For numerics we often use the mode decomposition

$$\psi(\tau, r, \vartheta) = \sum_{\ell=0}^{\infty} \psi_{\ell}(\tau, r) Y_{\ell 0}(\vartheta)$$

Horizon Hair

- For generic initial data intersecting the future event horizon \mathcal{H}^+ , transverse derivatives of the field don't decay on \mathcal{H}^+ [1].
- For mode $\ell = 0$, at \mathcal{H}^+

$$H_0[\psi] \equiv \frac{1}{M} [\partial_r(r\psi_0)]_{r=M}$$

- The field does decay at late times, then

$$(\partial_r\psi_0)_{r=M} \rightarrow H_0 \quad \text{as} \quad v \rightarrow \infty$$

[1]. Aretakis, S. Horizon instability of extremal black holes

Signatures from radiation field

- The asymptotic tail behavior of the radiation field is:

$$\Psi(\tau, \vartheta) = C_1(\vartheta) \frac{1}{\tau^2} + C_2(\vartheta) \frac{\log \tau}{\tau^3} + O\left(\frac{1}{\tau^3}\right)$$

- For the sub-extremal case [1]

$$C_1(\vartheta) = -2I^{(1)}[\psi], \quad C_2(\vartheta) = 8MI^{(1)}[\psi]$$

- For the extremal case[2]

$$C_1(\vartheta) = 4MH[\psi] - 2I^{(1)}[\psi], \quad C_2(\vartheta) = -32M^2H[\psi] + 8MI^{(1)}[\psi]$$

Signatures from radiation field

- The asymptotic expansion for the radiation field is:

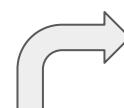
$$\Psi(\tau, \vartheta) = C_1(\vartheta) \frac{1}{\tau^2} + C_2(\vartheta) \frac{\log \tau}{\tau^3} + O\left(\frac{1}{\tau^3}\right)$$

- For the sub-extremal case [1]

$$C_1(\vartheta) = -2I^{(1)}[\psi], \quad C_2(\vartheta) = 8MI^{(1)}[\psi]$$

- For the extremal case[2]

$$C_1(\vartheta) = 4MH[\psi] - 2I^{(1)}[\psi], \quad C_2(\vartheta) = -32M^2H[\psi] + 8MI^{(1)}[\psi]$$



Ansatz from numerics

Signatures from radiation field

- From previous relations,

$$H[\psi] = -\frac{1}{16M^2}(C_2(\vartheta) + 4MC_1(\vartheta))$$

- This motivates a **signature**,

$$s_{\mathcal{I}^+}(\vartheta) = -\frac{1}{16M^2}(C_2(\vartheta) + 4MC_1(\vartheta))$$

- Knowledge of the radiation field along a fixed angle allows us to compute the horizon charge.

Numerical Methodology

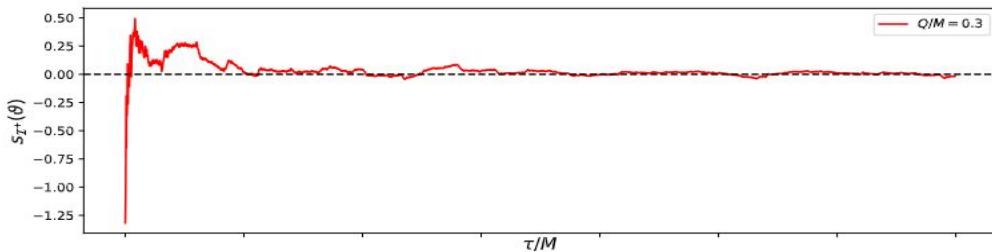
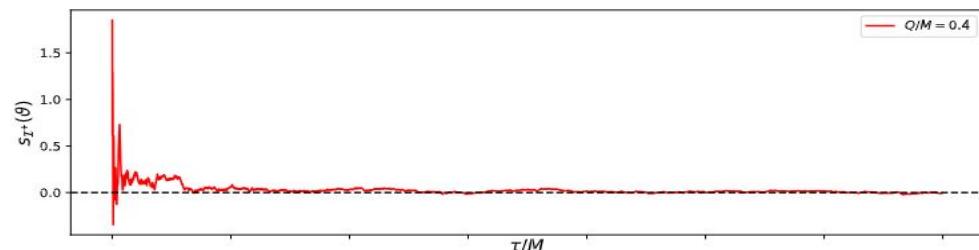
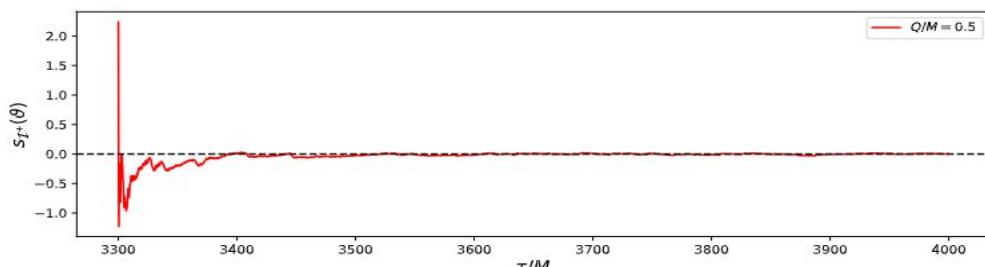
- Solve the scalar wave equation in RN and ERN with $l=m=0$
- Use **compactified hyperboloidal coordinates** $(\tau, \rho, \theta, \phi)$ to access null infinity on the numerical domain.

$$\begin{aligned}\Omega &= 1 - \frac{\rho}{S} & v \equiv t + r_* - r &= \tau + \frac{\rho}{\Omega(\rho)} - \rho - 4M \log \Omega(\rho) \\ r &= \frac{\rho}{\Omega(\rho)}\end{aligned}$$

- We use a **fifth-order WENO** finite-difference scheme with a spectral **discontinuous Galerkin solver** in development.
- We solve a 1+1D system with $S = 19$ and horizon at 0.95. ID are Gaussian pulses with centers : (1.0, 1.1, 1.2) and widths (0.16, 0.22, 0.32)

Vanishing signature on sub-extremal RN

- Signature is computed from radiation field extracted at null infinity.
- All simulations use **compactly supported** initial data with support on the horizon.
- For sub-extremal BHs the signature **vanishes**.



Non-vanishing signature on extremal RN

- For the extremal case, we plot the signature vs horizon charge.
- Each data point is labeled by the initial data i.e. the **location and width** of the Gaussian pulse.
- This enables us to compute H from the signature.
- Extracting $C1$ and $C2$ accurately is challenging.



Key Takeaways

- There are signatures that can distinguish between extremal and sub-extremal black holes.
- In the extremal case, these signatures equal the horizon charge and can be computed at null infinity.
- Can similar signatures be obtained for the astrophysically relevant gravitational perturbations?
- Implementation using a **pseudo-spectral DG** scheme under construction to get higher accuracy.

Outline

Part-1 : Axisymmetric scalar perturbations

1. Motivation and setup
2. Horizon Hair
3. Signatures from radiation field
4. Numerical results

Part-2: Non-Axisymmetric gravitational perturbations

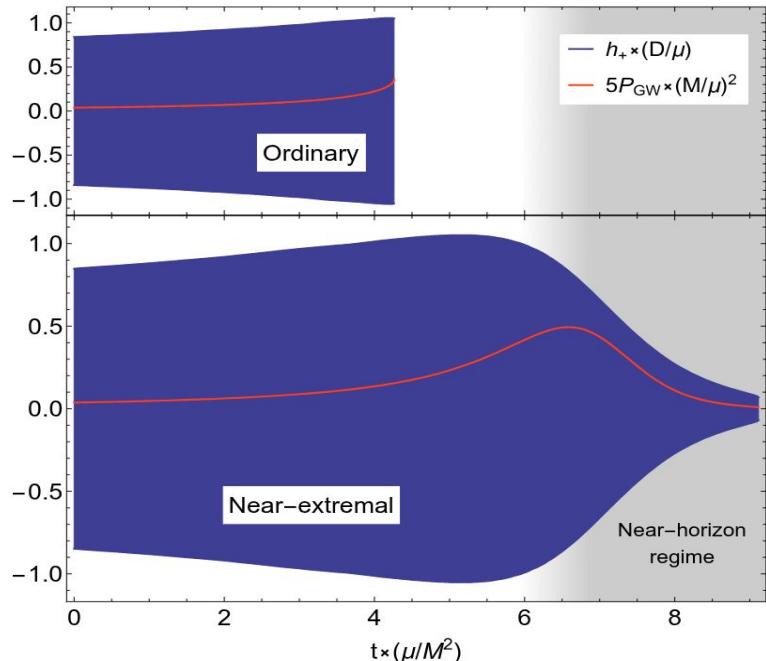
1. Motivation and setup
2. The Beetle-Burko scalar
3. Ori's late time expansion
4. Numerical results

Motivation

- Does the notion of horizon charge extend to **non-axisymmetric** gravitational perturbations.
- If yes, can this be calculated in black hole's exterior?... away from horizon?
- Non-axisymmetric, radiative, gravitational field perturbations are precisely what **LVK, LISA** are designed to detect.
- We provide numerical evidence for such a quantity at late times.

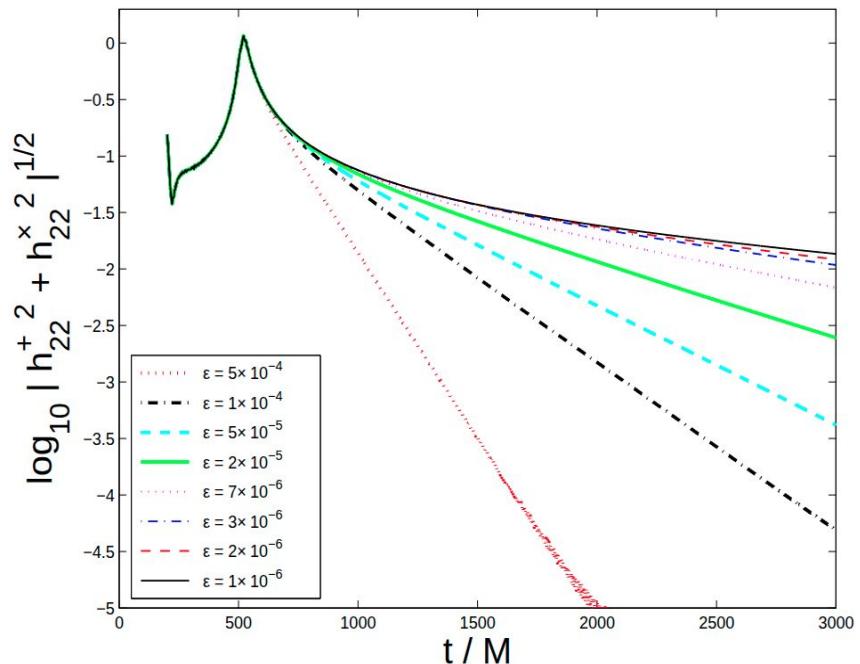
Search for a “Smoking gun”

h_+ component of a quasicircular inspiral



Gralla, Hughes, Warburton, 2016

amplitude of strain h_{22} vs time t



Burko, Khanna, 2016

Inspiration for the Beetle-Burko Scalar

- The perturbed Weyl Scalars satisfy

$$\mathcal{T}_{-2}\Psi_4^{(1)} = 0$$

$$\mathcal{T}_2\Psi_0^{(1)} = 0$$

where the differential operators depend on the spin-weight s .

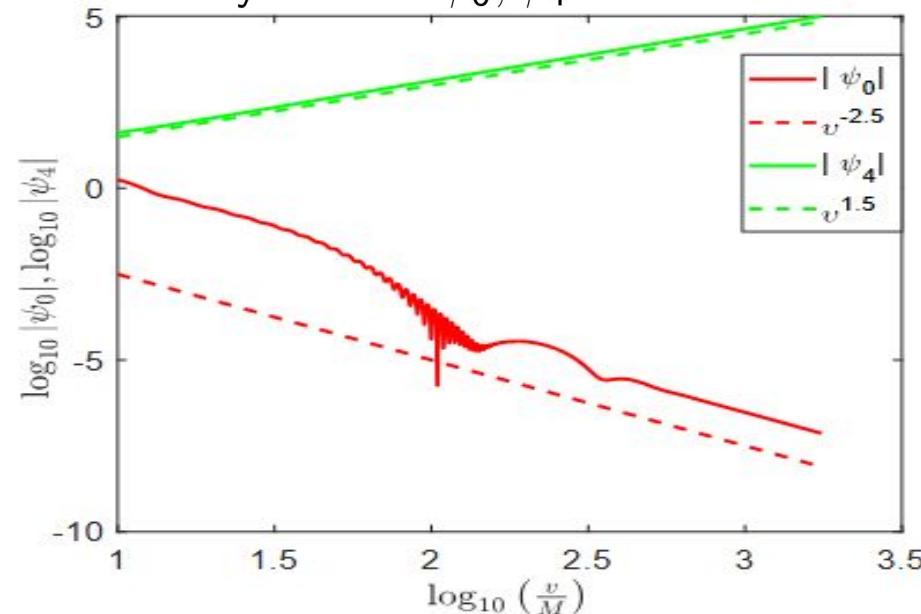
- Kretschmann scalar can be written in terms of the Weyl scalars as

$$K = 8(\Psi_0\Psi_4 + 3\Psi_2^2 - 4\Psi_1\Psi_3) + c.c$$

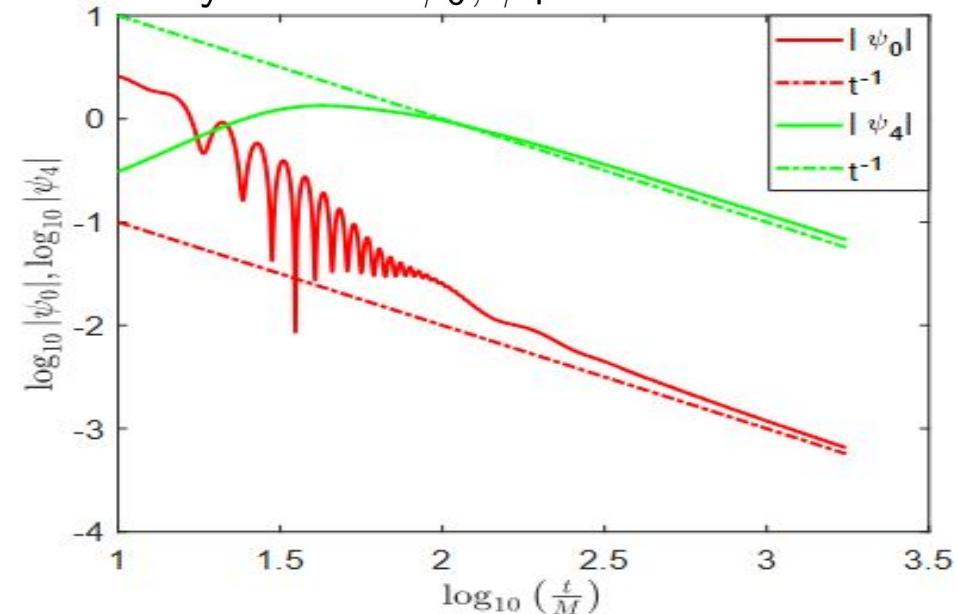
The Beetle-Burko scalar

- Late-time power law decay rates for (2,2) mode in extremal Kerr. Predicted By [Casals-Gralla-Zimerman '18](#).

Weyl scalars ψ_0, ψ_4 vs v at \mathcal{H}^+



Weyl scalars ψ_0, ψ_4 vs t at $r = \text{const}$



The Beetle-Burko scalar

- The Beetle-Burko scalar is the combination

$$\xi = \psi_0 \psi_4$$

- Retains scalar behavior and invariance under coordinate and tetrad transformations.

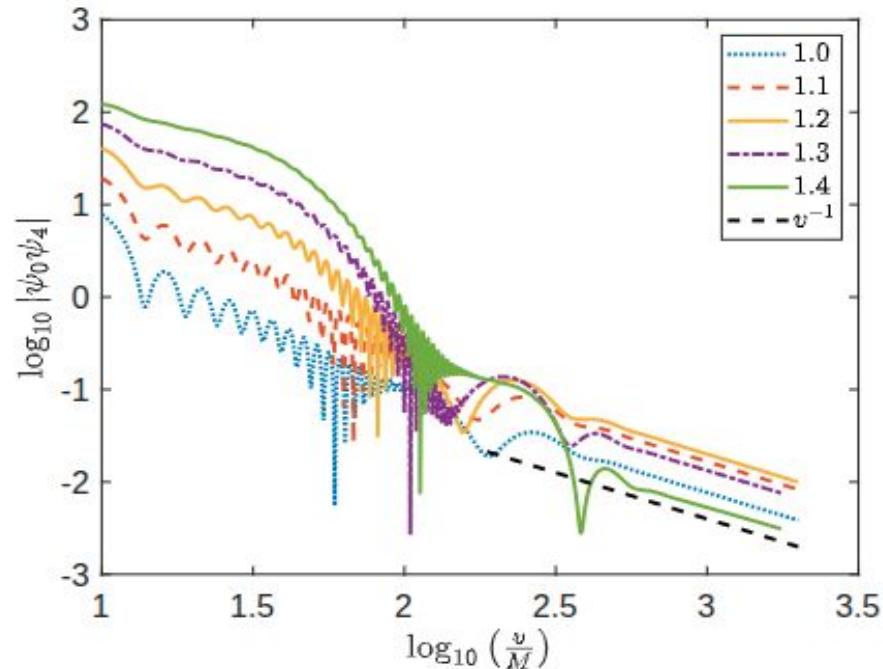


Figure 1. Plots of the Beetle-Burko scalar $|\xi_{2,2}|$ as function of advanced time v on \mathcal{H}^+ . $|\xi_{2,2}|$ decays with an inverse power of v . We show this for various initial conditions that are labeled by the centers of the respective Gaussians.

The Beetle-Burko scalar

- The Beetle-Burko scalar is the combination
- Retains scalar behavior and invariance under coordinate and tetrad transformations.
- Numerically we compute

$$\xi_{\ell,m}(t, r) = \Psi_{2,\ell,m}(t, r)\Psi_{-2,\ell,m}(t, r)$$

as the dominant multipole.

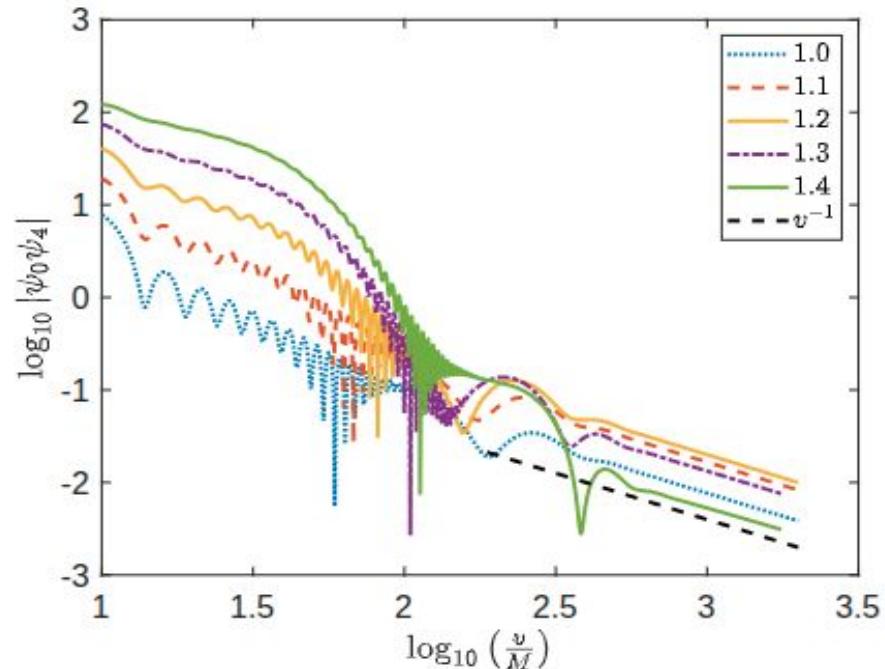


Figure 1. Plots of the Beetle-Burko scalar $|\xi_{2,2}|$ as function of advanced time v on \mathcal{H}^+ . $|\xi_{2,2}|$ decays with an inverse power of v . We show this for various initial conditions that are labeled by the centers of the respective Gaussians.

Non-axisymmetric hair

- The proposed hair is the transverse derivative of the Beetle-Burko scalar.
- This is only conserved at late times.

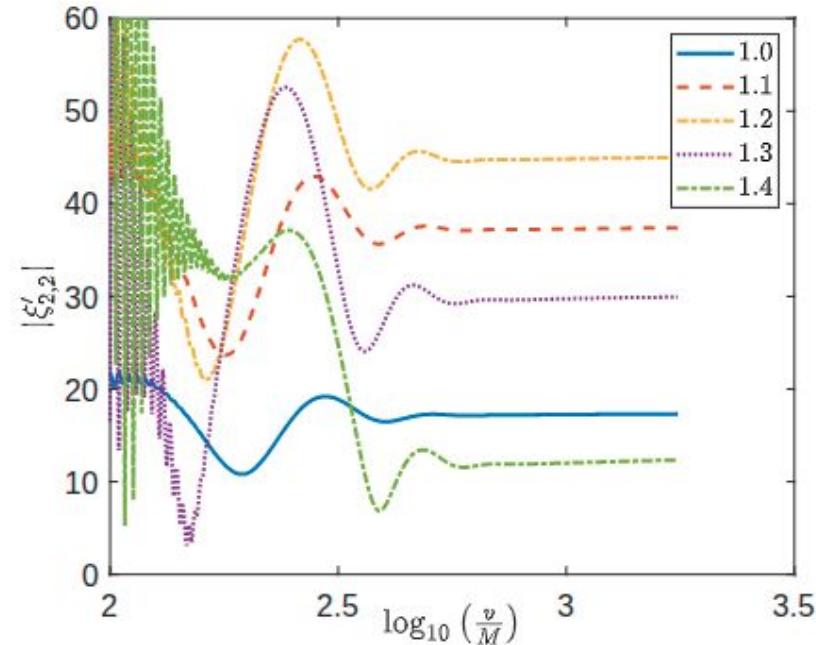


Figure 2. Plots of the proposed non-axisymmetric charge $|\xi'_{2,2}|$ on \mathcal{H}^+ as function of advanced time v . While $|\xi_{2,2}|$ decays with an inverse power of v , the proposed quadrupolar charge $|\xi'_{2,2}|$ is a constant at late times.

Non-axisymmetric hair

- The proposed hair is the transverse derivative of the Beetle-Burko scalar.
- This is only conserved at late times.
- The proposed quantity is only the **first term** for a potential conserved charge in an inverse-time expansion.

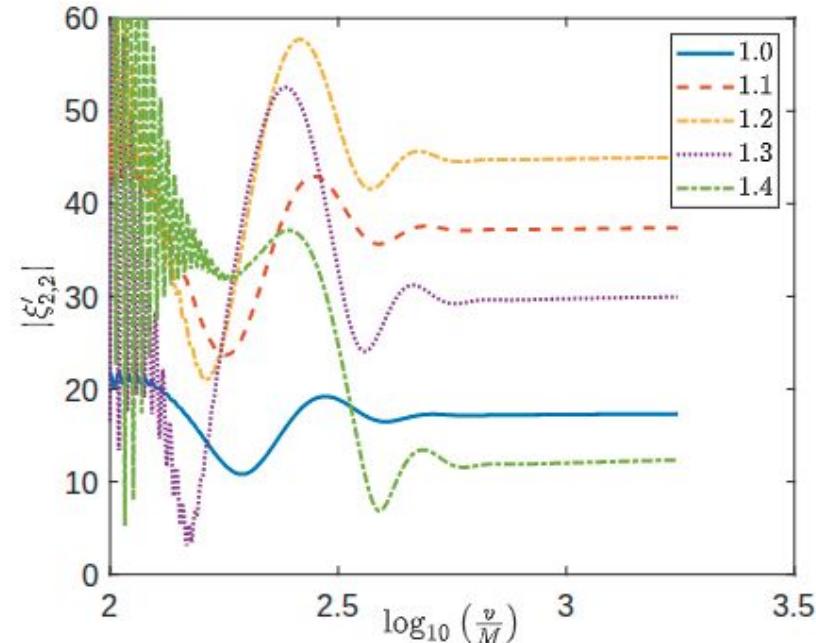


Figure 2. Plots of the proposed non-axisymmetric charge $|\xi'_{2,2}|$ on \mathcal{H}^+ as function of advanced time v . While $|\xi_{2,2}|$ decays with an inverse power of v , the proposed quadrupolar charge $|\xi'_{2,2}|$ is a constant at late times.

Ori late-time expansion

- The late time expansion of a field Ψ in a black hole space-time can be written as

$$\begin{aligned}\Psi_{s,\ell,m}(t, r) = & e_{s,\ell,m} r^{-q_{s,\ell,m}} (r - M)^{-p_{s,\ell,m}} t^{-n_{s,\ell,m}} \\ & + \mathcal{O}(t^{-n_{s,\ell,m} - k_{s,\ell,m}})\end{aligned}$$

where $e_{s,\ell,m}$ are the Ori-coefficients.

Ori late-time expansion

- The late time expansion of a field Ψ in a black hole space-time can be written as

$$\begin{aligned}\Psi_{s,\ell,m}(t, r) = & e_{s,\ell,m} r^{-q_{s,\ell,m}} (r - M)^{-p_{s,\ell,m}} t^{-n_{s,\ell,m}} \\ & + \mathcal{O}(t^{-n_{s,\ell,m} - k_{s,\ell,m}})\end{aligned}$$

where $e_{s,\ell,m}$ are the **Ori-coefficients**.

- This is expected to be valid for $t \gg r_*$
- We compare the Ori-coefficient with the charge like quantity on \mathcal{H}^+

Numerical Methodology

- Remove azimuthal dependence to reduce to 2+1D form
- Define **auxiliary variables** to convert into a 1+1D system
- Challenging since onset of tails requires long simulations
- Quad precision required to resolve **mode-coupling**.

Requires ingoing
kerr coordinates

$$\begin{aligned} & - \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \partial_{tt} \Psi - \frac{4Mr}{\Delta} \partial_{t\phi} \Psi \\ & - 2s \left[r - \frac{M(r^2 - a^2)}{\Delta} + ia \cos \theta \right] \partial_t \Psi \\ & + \Delta^{-s} \partial_r (\Delta^{s+1} \partial_r \Psi) + \frac{1}{\sin \theta} \partial_\theta (\sin \theta \partial_\theta \Psi) + \\ & \left[\frac{1}{\sin^2 \theta} - \frac{a^2}{\Delta} \right] \partial_{\phi\phi} \Psi + 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \partial_\phi \Psi \\ & - (s^2 \cot^2 \theta - s) \Psi = -4\pi (r^2 + a^2 \cos^2 \theta) T, \end{aligned}$$

$$\Delta = r^2 - 2Mr + a^2$$

Numerical Methodology

$$\begin{aligned}
 & - \left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2 \theta \right] \partial_{tt} \Psi - \frac{4Mr}{\Delta} \partial_{t\phi} \Psi \\
 & - 2s \left[r - \frac{M(r^2 - a^2)}{\Delta} + ia \cos \theta \right] \partial_t \Psi \\
 & + \Delta^{-s} \partial_r \left(\Delta^{s+1} \partial_r \Psi \right) + \frac{1}{\sin \theta} \partial_\theta \left(\sin \theta \partial_\theta \Psi \right) + \\
 & \left[\frac{1}{\sin^2 \theta} - \frac{a^2}{\Delta} \right] \partial_{\phi\phi} \Psi + 2s \left[\frac{a(r - M)}{\Delta} + \frac{i \cos \theta}{\sin^2 \theta} \right] \partial_\phi \Psi \\
 & - (s^2 \cot^2 \theta - s) \Psi = -4\pi (r^2 + a^2 \cos^2 \theta) T,
 \end{aligned}$$

$$\Delta = r^2 - 2Mr + a^2$$

Scott E. Field · Sigal Gottlieb · Zachary J. Grant · Leah F. Isherwood · Gaurav Khanna

$$\begin{aligned}
 A^{\tau\tau} \partial_\tau^2 \Psi + A^{\tau\rho} \partial_\tau \partial_\rho \Psi + A^{\rho\rho} \partial_\rho^2 \Psi + A^{\theta\theta} \partial_\theta^2 \Psi \\
 + B^\tau \partial_\tau \Psi + B^\rho \partial_\rho \Psi + B^\theta \partial_\theta \Psi + C\Psi = 0
 \end{aligned}$$

$$\pi \equiv \partial_\tau \Psi + b \partial_\rho \Psi ,$$

$$b \equiv -(\tilde{A}^{\tau\rho} + \sqrt{(\tilde{A}^{\tau\rho})^2 + 4\tilde{A}^{\rho\rho}})/2$$

$$\partial_\tau \mathbf{u} + \mathbf{M} \partial_\rho \mathbf{u} + \mathbf{L} \mathbf{u} + \mathbf{A} \mathbf{u} = 0$$

Estimates of exponents

- To get the Ori-coefficients, we use the expression

$$|\xi_{2,2}(t, r)| = e_{\xi_{2,2}} r^{-q_{\xi_{2,2}}} (r - M)^{-p_{\xi_{2,2}}} t^{-n_{\xi_{2,2}}} + O(t^{-n_{\xi_{2,2}} - k_{\xi_{2,2}}})$$

- We construct the time series data for $\xi_{\ell m}(t, r)$ by using solutions of the Teukolsky equation.

Estimates of exponents

- By fitting the time series data for $\xi_{\ell m}(t, r)$, we get:

$$|\xi_{2,2}(t, r)| = e_{\xi_{2,2}} r^{-q_{\xi_{2,2}}} (r - M)^{-p_{\xi_{2,2}}} t^{-n_{\xi_{2,2}}} + O(t^{-n_{\xi_{2,2}} - k_{\xi_{2,2}}})$$

ID	$q_{2,2}^{\xi}$	$p_{2,2}^{\xi}$	$n_{2,2}^{\xi}$	$ \xi'_{2,2} $	$e_{2,2}^{\xi}$
1.0	-1.072	0.9016	1.981	17.3263	0.0359
1.1	-1.072	0.9013	2.019	37.3826	0.0785
1.2	-1.071	0.9010	2.052	44.9732	0.0958
1.3	-1.071	0.9006	2.101	29.9314	0.0652
1.4	-1.070	0.8997	2.102	12.3420	0.0273

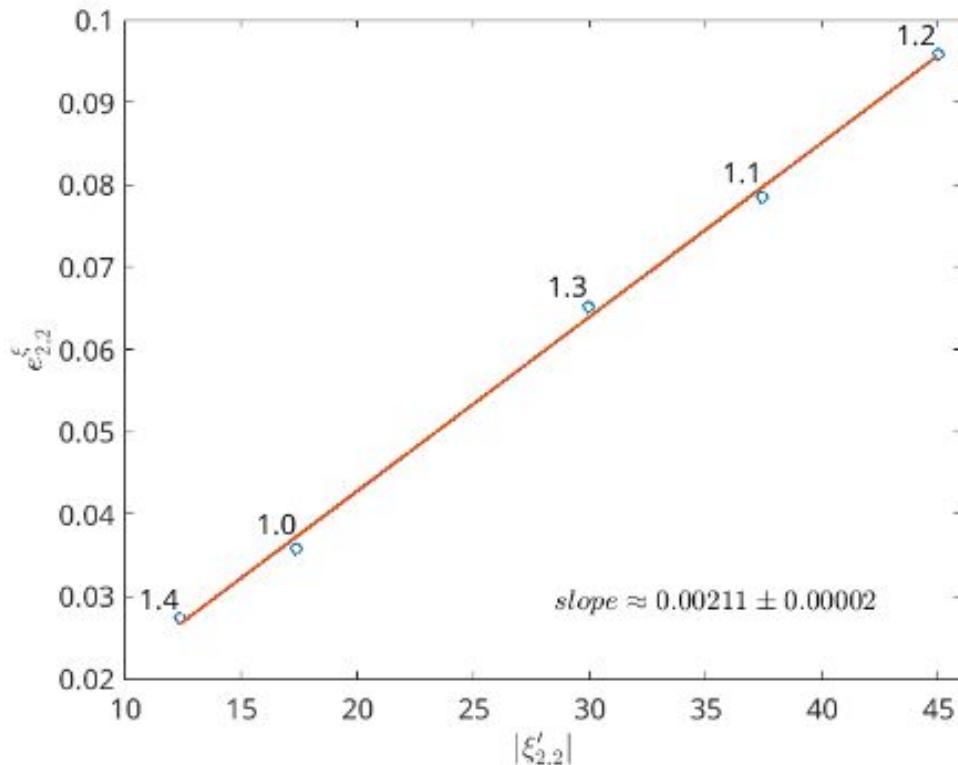
Table I: The parameters used in the expansion (5), and the values of $|\xi'_{2,2}|$ and $e_{2,2}^{\xi}$ for multiple initial data configurations. The table depicts values of those quantities for which the initial Gaussian's center is at $\rho/M = \{1.0, 1.1, 1.2, 1.3, 1.4\}$.

Behavior of Ori-coefficients vs hair

- We plot the Ori-coefficients vs the charge for different ID.
- Data is well described by a linear relationship.

$$e_{2,2}^\xi = \alpha |\xi'_{2,2}| + \beta$$

- Demonstration that the charge can be computed through quantities in the exterior.



Key Takeaways

- Attempt to extend the notion of horizon hair to non-axisymmetric gravitational perturbations for extremal Kerr.
- So called only conserved at late-times, so it should interpreted as the first term in the inverse-time expansion of a conjectured conserved charge.
- Can we expect such relationship to hold for higher modes?
- Would the linear trend continue for initial data farther away?

Key Takeaways

- Attempt to extend the notion of horizon hair to non-axisymmetric gravitational perturbations for extremal Kerr.
- So called only conserved at late-times, so it should interpreted as the first term in the inverse-time expansion of a conjectured conserved charge.
- Can we expect such relationship to hold for higher modes?
- Would the linear trend continue for initial data farther away?

Thank You!

Kerr Plots

