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Motivation

e Can we find distinguishing features of the dynamics of perturbations of

black holes?

e Eg. are there signatures that can help identify extremal from sub-extremal

Black holes.

e Ifyes, can such signatures be observed at null infinity?



Setup of Physical problem

e We investigate the solution to

Lgp =0
on (extremal)Reissner-Nordstrom.

e Radiation field W(7,4) is defined as

V(r,d) = lim (ry)(7, r,9)

r—oo

e For numerics we often use the mode decomposition

¢(Ta r, Q9) — Z wﬁ(ﬂ r) YEO(ﬁ)
{=0



Setup

e We investigate the solution to

Ugyp =0
on (extremal)Reissner-Nordstrom.

e Radiation field W(7,)is defined as g:>

o 7: the retarded time (on %) or advanced
time (on H™),

2

o ¥ = (6*,6°): the angle which represents the
V(r,d) = lim (ryp)(7, r,9) dlroctlon of any given ideal observer along

r—oo

e For numerics we often use the mode decomposition

P(r,r, ) = (7, 1) Yeo(9)

¢=0



Horizon Hair

e For generic initial data intersecting the future event horizon J#T,
transverse derivatives of the field don’t decay on 7T [1].

e Formodeell =0, at 57+

1
Hol[)] = 710 (ripo)lr=m
e The field does decay at late times, then

[1]. Aretakis, S. Horizon instability of extremal black holes



Signatures from radiation field

e The asymptotic tail behavior of the radiation field is:

1 1 1
\IJ(T,19) = Cl(ﬁ)ﬁ G i CQ(T.?) L + 0 (—3)

-8
e For the sub-extremal case [1]

G(9) = —21Vy],  G(9) = 8MIMV[y]

e For the extremal case[2]

Ci(0) = 4MH[y] - 21D[g], (1) = —32M2H[] + 8MIW [y

[Angelopolous, Aretakis, Gajic, 2019, 2020 ]



Signatures from radiation field

e The asymptotic expansion for the radiation field is:

8

U(r,9) = cl(ﬂ)g +Co(9) 8T 40 (i)

e For the sub-extremal case [1]

G(9) = —21V[],  G(¥) = 8MIMV[y]

e For the extremal case|2] g::> [Ansatz from numerics }

C(0) = 4MH[y] - 21D[g], (1) = —32M2H[] + 8MIW [y



Signatures from radiation field

e From previous relations,

1

HIY) = — 5 (Go(9) + AMGi(9))
e This motivates a signature,
1
ST+ (19) = — 16M2 (Cg(ﬁ) + 4M01 (’19))

e Knowledge of the radiation field along a fixed angle allows us to
compute the horizon charge.



Numerical Methodology

e Solve the scalar wave equation in RN and ERN with I=m=0
e Use compactified hyperboloidal coordinates (7, p, 0, ¢) to access null
infinity on the numerical domain.

p
Q:1—§ UEt—FT*—’F:T—FL— — 4M log Q(p)

Q(p)

e We use a fifth-order WENO finite-difference scheme with a spectral
discontinuous Galerkin solver in development.

e We solve a 1+1D system with S = 19 and horizon at 0.95. ID are Gaussian
pulses with centers : (1.0,1.1,1.2) and widths (0.16,0.22, 0.32)



Vanishing signature on sub-extremal RN

e Signature is computed from i T e T S
radiation field extracted at null %
infinity. )
7
e All simulations use compactly
supported initial data with 2N
support on the horizon.
o
e For sub-extremal BHs the |
signature vanishes. 3

/M

Aretakis, Khanna, Sabharwal, 2025



Non—vanishing signature on extremal RN

For the extremal case, we plot the
signature vs horizon charge.

Each data point is labeled by the
initial data i.e. the location and
width of the Gaussian pulse.

This enables us to compute H from
the signature.

Extracting C1 and C2 accurately is
challenging.
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Key Takeaways

e There are signatures that can distinguish between extremal and sub-extremal

black holes.

e In the extremal case, these signatures equal the horizon charge and can be
computed at null infinity.

e Can similar signatures be obtained for the astrophysically relevant
gravitational perturbations?

e Implementation using a pseudo-spectral DG scheme under construction to
get higher accuracy.
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Motivation

e Does the notion of horizon charge extend to non-axisymmetric gravitational
perturbations.

e Ifyes, can this be calculated in black hole’s exterior?... away from horizon?

e Non-axisymmetric, radiative, gravitational field perturbations are precisely
what LVK, LISA are designed to detect.

e We provide numerical evidence for such a quantity at late times.



Search for a “Smoking gun”

h, component of a quasicircular inspiral
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Inspiration for the Beetle-Burko Scalar

e The perturbed Weyl Scalars satisfy

T_Q\Ugl) =0
W) =0

where the differential operators depend on the spin-weight s.

e Kretschmann scalar can be written in terms of the Weyl scalars as

K =8(VoW, + 3W3 — 4 W3) + c.c



The Beetle-Burko scalar

e Late-time power law decay rates for (2,2) mode in extremal Kerr. Predicted

By Casals-Gralla-Zimerman “18.
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The Beetle-Burko scalar

® The Beetle-Burko scalar is the
combination

§= VoV,

e Retains scalar behavior and
invariance under coordinate and
tetrad transformations.

logyg |0t

logyg (:7)

Figure 1. Plots of the Beetle-Burko scalar [£; 2| as function
of advanced time v on .# 7. |£ 2| decays with an inverse
power of v. We show this for various initial conditions that
are labeled by the centers of the respective Gaussians.



The Beetle-Burko scalar

The Beetle-Burko scalar is the
combination

§ =WV,

Retains scalar behavior and
invariance under coordinate and
tetrad transformations.

Numerically we compute
§£,m(t, I’) - WZ,E,m(ta r)w—Q,f,m(ty I’)

as the dominant multipole.

logyy [%0t4]

Figure 1. Plots of the Beetle-Burko scalar [£; 2| as function
of advanced time v on .#". |£ 2| decays with an inverse
power of v. We show this for various initial conditions that
are labeled by the centers of the respective Gaussians.



Non—axisymmetric hair

e The proposed hair is the transverse
derivative of the Beetle-Burko scalar.

e This is only conserved at late times.

Figure 2. Plots of the proposed non-axisymmetric charge |£5 5|
on " as function of advanced time v. While |&; 5| decays
with an inverse power of v, the proposed quadrupolar charge
|€5 2| is a constant at late times.



Non—axisymmetric hair

e The proposed hair is the transverse
derivative of the Beetle-Burko scalar.

e This is only conserved at late times.

e The proposed quantity is only the first

term for a potential conserved charge in

an inverse-time expansion.

Figure 2. Plots of the proposed non-axisymmetric charge |£5 5|
on " as function of advanced time v. While |&; 5| decays
with an inverse power of v, the proposed quadrupolar charge
|€5 2| is a constant at late times.



Ori late-time expansion

e The late time expansion of a field ¥ in a black hole space-time can be
written as

Ws.om(t; r) = €so,mr™ ¥bm(r — M)~ Pstam g™ lsitym

e O(t_ns,é,m_ks,f,m)

where €s ¢ m are the Ori-coefficients.



Ori late-time expansion

e The late time expansion of a field ¥ in a black hole space-time can be

written as
Ws.om(t; r) = €so,mr™ ¥bm(r — M)~ Pstam g™ lsitym
+ O(t_ns,e,m—ks,g’m)
where €s ¢ m are the Ori-coefficients.

e This is expected to be valid for t >> r,

e We compare the Ori-coefficient with the charge like quantity on s+



Requires ingoing
kerr coordinates

Numerical Methodology

e Remove azimuthal dependence

to reduce to 2+1D form
M(r* —a
A
1|
S (AS“&\D) + ——0y (sin A0y V) +

sin @

2 B - |
[ 1 _a_}awqw_%[a(r M)_|_zcos@]a¢qj:

2
—25 [7“ - ) + 1a cos 9} o,V
e Define auxiliary variables to

convert into a 1+1D system

e Challenging since onset of tails eyl N A ey,

requires long simulations B (52 a2l — s) i = i (r2 P .. 0) T

e Quad precision required to

resolve mode-coupling. A=7r2_—9Mr+q?



A GPU-accelerated mixed-precision WENO method
for extremal black hole and gravitational wave physics
computations

Numerical Methodology

Scott E. Field - Sigal Gottlieb - Zachary J.
Grant - Leah F. Isherwood - Gaurav Khanna
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Estimates Of CXPOIlCIltS

e To get the Ori-coefficients, we use the expression

20t )] = egyor*22(r — M) P2t~z 4 O(t a2 022)

e We construct the time series data for &m(t,r) by using solutions of the
Teukolsky equation.



Estimates of exponents

e By fitting the time series data for &mlt,r) , we get:

|£2’2(t’ r)l —= e€2,2r_q52,2(r _ M)—p52’2 t_n§2’2 _I_ O(t—n€2’2—k£2,2)

£ £ £ / £
ID q: 2 Pz | Ty o |€2,2] €3 2

1.0]-1.072(0.9016|1.981|17.3263|0.0359
1.11-1.072{0.9013(2.019(37.3826 | 0.0785
1.2]-1.071(0.9010|2.052|44.9732|0.0958
1.3|-1.071{0.9006(2.101|29.9314|0.0652
1.41-1.070(0.8997(2.102{12.3420(0.0273

Table I: The parameters used in the expansion (5), and

the values of |£; ,| and eg’z for multiple initial data con-
figurations. The table depicts values of those quanti-
ties for which the initial Gaussian’s center is at p/M =
{1.0,1.1,1.2,1.3,1.4}.



Behavior of Ori-coefficients vs hair

e We plot the Ori-coefficients vs

0.1
the charge for different ID.
0.09
e Data is well described by a ol
linear relationship.
0.07
5, = olehal + 5
29 = Q522
0.05
e Demonstration that the charge 0.041
can be Complrted through 0.03f1.4 slope = 0.00211 £ 0.00002
quantities in the exterior. 56

10 15 20 25 30 35 40 45



Key Takeaways

Attempt to extend the notion of horizon hair to non-axisymmetric
gravitational perturbations for extremal Kerr.

So called only conserved at late-times, so it should interpreted as the first
term in the inverse-time expansion of a conjectured conserved charge.

Can we expect such relationship to hold for higher modes?

Would the linear trend continue for initial data farther away?



Key Takeaways

e Attempt to extend the notion of horizon hair to non-axisymmetric

gravitational perturbations for extremal Kerr.

e So called only conserved at late-times, so it should interpreted as the first
term in the inverse-time expansion of a conjectured conserved charge.

e Can we expect such relationship to hold for higher modes?

e Would the linear trend continue for initial data farther away?

Thank You!
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