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_ A nuinerical-relativity simulation comparable'to GW150914



Movie and simulation courtesy SXS collaboration, CSUF
undergrad Nick Demos

Binary black holes
e LIGO + Virgo

 Hundreds of binary black holes so far,
loudest signal-to-noise ratio (SNRs) ~

80 (GW250114)
. S Credit: LIGO
 Cosmic Explorer & Einstein Telescope & ? £ =

« SNRs > 1000,
probe strongest gravity

* Frequent detections, potential to
observe rare black holes

e Need accurate waveform models

* Requires numerical relativity
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LIGO-Virgo-KAGRA | Aaron Geller | Northwestern Ferguson's talk Friday



Simulating binary black holes

* (Goal: modeling binary
black holes and
emitted gravitational
waves

 Need numerical
relativity: solve
Einstein's equations
on computers

 Near time of
merger, all analytic
approximations fail

Model emitted
gravitational
waveforms
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Abbott+ Phys. Rev. Lett.
116, 061102 (2016)
— LIGO GW150914
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Solving Einstein's equations in vacuum

Goal: solve (+,,, — 0 for spacetime metric ¢, t + 2At
— - ;
. . . t + At
e Split spacetime into space + time s —
 Constraint equations (/ 0 G 0 /Jn
nj — nn — . {
— el

e Solve to create initial data
» Evolution equations Gij — ()

e Constraints must
stay satisfied

e Step 1: Step forward in time
o Step 2: Repeat step 1 (a lot)
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3+1 Spllt 7/jk spatial metric  geometry
extrinsic

ds” = —o”dt” K] curvature — 1/2(alan)y
+V i (dz* + (' dt) ; . slice
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t+ A A )
R (' =an' + f
A

Initial data equations

‘Time”

& [
- Goal: solve constraint equations for y;;, K, a, /' /— w

» Strategy: conformal decomposition ‘Space’

« Choose some things (like conformal metric ;7jk) .
«Solve G, = (),an — ( for the rest J k J k

* Make sure solution really is two black holes
with the masses, spins you wanted

* Almost all numerical relativity calculations choose
conformally flat 7, = 0,

- i, = 0 has analytic solutions in terms of

black-hole linear and angular momenta
Bowen and York, Jr. (1980)

G,=0- Vy+ - =0 3



T T - = 4 f+ A I{jk(t + At) vt + At)
Initial data equations 2|
What if y,; # 6,2

K (1) Yir(1)

* One strategy: extended conformal thin

sandwich + quaiequilibrium L -

14 b
York (1999), York & Pfeiffer (20023), Cook Space .
(2002), Cook & Pfeiffer (2004)
» Boundary conditions }/jk — Y }/jk

» EXcision surface: is (or is slightly

inside) marginally trapped surface  (; — () — Vz 4 =0
(i.e. horizon); adjust black-hole spin i 'd

ry: asymptotically flat  &,,; = 0 — V..LpY' '+ - =0

//;;7:*}-—"‘ — ‘%‘.% \/ ///

'y one of G;; =0 — V*(ay) + - =0

Image courtesy SXS Collaboration 9



Einstein evolution equations G;; = 0

An analogy
0°g B 0°g
02 0x2

0
= -4
ot
0
O = °°
0x

g
=
oll ~ od
ot ox
00  Jll
o ox

Evolution equations

Constraint equation
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Lindblom+ Class. Quant. Grav. 23, S447 (2006)

Generalized harmonic formulation
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Current-generation numerical relativity

Initial data Puncture data Quasiequilibrium with excision
Pseudospectral Pseudospectral
(Usually) solve 1 elliptic eq. Solve 4 or 5 elliptic egs.

Evolution BSSN/CCZ4 evolution egs. Generalized harmonic evolution egs.
High-order finite-difference Pseudospectral
Moving puncture Excision

Codes BAM, Hahndol, LazEv, Lean, Llama,

MayaKranc, UIUC, Einstein Toolkit,...

f’(wi) N f(%’ﬂ) — f(fl?z'—l)

Li+1 — Lj—1

Advantages Robust, open-source Efficient

Review: e.g. Pfeiffer (2012) Image courtesy SXS Collaboration 12



Zdziarski+ ApdL 967 L9 (2024):
‘Standard”

Do black holes spin?  cygnusx1 7 ggs000

—0.004

. Extremal if y = S/ M? =1 Fit inclination, color correct.

— +0.04
Y = ().88_0.01

* S=spin angular momentum, M
=mass, G =c =1 "Nonstandard"
Credit: NASA/CXC — () 0471026
* Electromagnetic waves X T —0.04

* Some high-spin claims, but spin
Inference via uncertain |

: : 1.07
accretion-disk models |

L]

.

-

.
et

—— Combined (%
[ NRSur ™
* (Gravitational waves 0.8
* Spin only weakly affects waves V. )
. Afew (of hundreds) shoyv LIGO, Virgo, Kagra = |
evidence for nonzero spin . 0.41
collaborations, |
« GW231123: black holes have ~Abac+ ApJL 993 L25 (2025)  ,
spins consistent with extremal: GW231123 |
_ +0.10 _ +0.2 - - |
x1 =097 gandy = 0.87 7%, spin posteriors ook L UL
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Extremality measures X = 75
for numerical relativity M
* Measure on (apparent) horizon H N TS
* Horizon surface area A zj[ dA C — A
* Mass M "
— Christodoulou mass N
2 A 2 053— /\
M= = 167 (1 6 ) _ |
e 2+ 00}
— Spin limit obeyed N L
by construction ~0.5!
— > _ % Lol :
M2 1+ ¢F 20 S0 0 1020

14



Extremality & axisymmetry 74 "

* Spin angular momentum

1
— 7{ wB¢BdA
H

ST

wp = “angular momentum density”
»P = “azimuthal vector about spin axis”

e [f axisymmetry...
. ¢” is a rotational Killing vector, S conserved

* Inequality ¢ < 1 proven

under broad assumptions

JL Jaramillo, M Reiris and S Dain, Phys. Rev. D 84 121503 (2011)
[review of black-hole inequalities proven: Dain Class. Quantum Grav. 29, 073001 (2012)]



Extremality without axisymmetry ¢ = 875

A
» Simulations not axisymmetric L 7{ »
—Find best approx. symmetry -y
— ¢”is approx. Killing vector 1 i
Dreyer+, PRD 67, 024018 (2003) S = 31 Jay wpp~ dA

Cook and Whiting, PRD 76, 041501(R) (2007)
Owen (2007), Ph.D. thesis.
GL+ (2008), PRD 78, 084017 (2008)

—Depends on horizon’s
null normals 0. it

—Boost gauge invariant

(-n=—1

If rescale normals... ...Sunchanged
Vs eOf S — 5 Common apparent horizon
R e just after two x=0.994 holes merge

(color = intrinsic Ricci scalar curvature)

16



1S

Extremality lower bound C=—
- Booth & Fairhurst extremality A — j[ g
Booth & Fairhurst, PRD 77, 084005 (2008) 2
1 S = : 7{ wpd® dA
e = 74 wpwPdA ST Ju
47t H

—No need for approximate symmetry

—But: must choose scaling
for horizon null normals

* This talk: scale

to min

ep = min

Kerr Extremality

Imize e
1
A Jy

wpwPdA

X
GL+ Class. Quantum Grav. 32, 065007 (2015)
17



Challenges

Binary-black-hole initial data
with nearly extremal spins

 Why conformally flat does't work for high spins 0.3

 Excision: conformally curved
(solve 5 coupled PDEs instead of 1)

for y = 0.93
GL+ Phys. Rev. D 78, 084017 (2008)

* Puncture: conformally curved
(solve 4 coupled PDEs instead of 1),
coordinates compensate for horizon

radius vanishing as y — 1

for y > 0.93
Ruchlin+, Phys. Rev. D 95, 024033 (2017)

1y =0.9837
- = 0.9282

€J max

0.9 -
0.8
0.7
0.6 -
0.5
04 -

— JADM/ E,iDM

0.2
0.1

QQ N 4

o | O 1 '4 51]

8.01 0.1 I1 110 I(I)O IOIOO IO(I)OO
S/m’

P
Figures from GL+ Phys. Rev. D 78, 084017 (2008)

4( o —Ta/w gKerr=Schild A | ,—rz/w? 5Kerr—Schild B)

gzj -y gl] gl]
Fy=0 e
L O8F 505 = —° _
= 0.6 ' )
A 04| 7=0.93 O°9Q6ﬁ )
0.2 7 =099 092G o 05

| | | | I | | | | | | | | I | |
0 0.1 0.2 0.3 0.4

. . 18
Parameter controllineg black-hole spin



Challenges st
Evolving binary black holes with extremal spins |

* EXxcision: need high resolution, excision
delicate, no precession

GL+ Phys. Rev. D 83, 024010 (2011) il
GL+ Class. Quantum Grav. 29, 045003 (2012) Figure courtesy Mark Scheel

Scheel+, ... GL+ Class. Quantum Grav 32, 105009 (2015)
Boyle+ Class. Quantum Grav. 36, 195006 (2019) (2019)

* No boundary condition on excision

surfaces Voo | > | v_|
* Well-posedness requires no incoming .
characteristic speeds (no incoming info) Vo= —mp —a

at excision boundaries

 Moving-puncture: in usual coordinates,
Excision surface

horizon size vanishes for extremal black hole

19




min char speed on excision surface

Original KS Spherical KS

An optimization

* Spherical Kerr Schild

 New gauge that reduces resolution needed
by keeping horizons coordinate spheres
during inspiral
Chen+ Phys. Rev. D 104, 084046 (2021)

= Quter Horizon = |nNner Horizon = == [EXxcision Surface

. ~2x faster inspiral at same quality (constraint violation) ~ Figure & plot courtesy Chen+ Phys. Rev. D 104, 084046 (2021)

0.0005-
Min char speed when excising y = 0.999 Spin 0.9 BBH CPU Time Ratio

0.0004

Narrow window
where they are
(barely) positive

0.0003;

O O
o o
o o
o o
= N

char speed
—— comoving char speed
—— inner horizon | N | e Lev3
0.0000- ——— outer horizon | 0.0—3—7000 2000 3000 4000 5000 6000 7000
0.96 0.98 1.00 1.02 1.04 t/M

excision surface radius (code units) 240



0.4

0.3

0.2

1.00-

Highest BBH spin so far ..

. 0.98-
Excision: y = 0.998 <
Simulation by Matthew Giesler 0.97°
Appears in Boyle+, ... GL+... |
Class. Quantum Grav. 36, 195006 (2019) 0.96-

0.951!
0 1000 2000 3000 4000 5000 6000 7000

Time (code units)

0.9975- T

0.9950-

0 1000 2000 3000 4000
Time (code units)

x (individual horizon) |
—— xg (individual horizon)

Xc (common horizon)

0 1000 2000 3000 4000 5000 6000 7000
Time (code units)

y = 0.998: last 25.7 orbits before merger

vs. ¥y = — 0.97, same initial separation:
12.2 orbits before merger

21




What kind of black hole is left behind?

* Fit final mass, spin for equal-mass, aligned-spin inspirals
Hemberger+, ... GL, ...+ Phys. Rev. D 88, 064014 (2013)

0.12

0.11f

—— 3-parameter hyperbola

- 2nd-order polynomial

0.10}
0.09 |
- 0.08}
S
K 0.07]
0.06 |
0.05!
0.04 |

0.03

-1.0
5e-4 |

0|

Residuals

Se-4 !

Residuals

1.0

09| ---

0.8

S5e-4

-Se-4|

vvvvvvvvvvvvvvvvvv

—— 4th-order polynomial

2nd-order polynomial

...................
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Do evolutions obey { < 17

Do evolutions obey ¢ <1 ?

— 0.994
1.00 X

0.95

0.90 ¢--

~ (0.85 — Individual horizons

0 80 — Common horizon

0 2000 4000

t / Mo
GL+ Class. Quantum Grav. 32, 065007 (2015)

815
6= A

Color = horizon
Intrinsic Riccl scalar

¥ curvature

23



Can you generate initial data with > 1? -

1
e = min | — wpwdA
1.2 —m—mm™@m8m™ ™M AT Sy
-+ { (inner) P
1.1.'. --=== €0 (inner) C B TS
| —— ( (outer) |
; 1-0_-' —— ¢ (outer)
M - e .alNe., Y, e e
097 _ /' Color =
- '] horizon
. Intrinsic
o8t N ] Ricci scalar
086 087 088 089 09 091 092 curvature
Parameter controlling black-hole spin _ S
X = N2

GL+ Class. Quantum Grav. 32, 065007 (2015)




Puncture evolutions with nearly extremal splns

 Choose radial coordinate carefully,
so extremal horizon radius not zero

Liu+ (2009) — spins up to 0.95

 Puncture evolutions with y = 0.95

Zlochower+ Phys. Rev. D 96, 044002 (2017)
— spins up to 0.99 (head-on) / 0.95 (inspiral)

« ¥ = 0.95, 1.5:1 mass ratio:
recoil > 500 km/s, largest for
aligned-spin
Healy+ Phys. Rev. D 97, 104026 (2017)
— very large recoll

* |nitial data for charged, spinning

black holes up to 90% extremity
Mukherjee+ arXiv:2202.12133v1 (2022)

Figures courtesy Zlochower+ Phys. Rev.

— 015 """""""""""""""
c_é_ﬁ 0,102- Puncture “I
2 & 005 Excision | ” :
-8 G : f
1 — O.OOE-W\/\—/\A/\/\/\ -;
Lz | -
S & _0.10f - | ' :
0 015E | :

£ - S 6000 6100 6200 6300 6400 6500

0 S Time (code units)

@ O

L R —

2 0.25¢

T Q1 5n

O ! 020‘

w ©0.15¢

S .20.10¢

£ .30.05

355000

O — 5200 5400 5600 5800 6000 6200 6400

<

D 96, 044002 (2017) Time (code units)
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Can LIGO measure high spins?

» Merging black holes with...

—= Masses
—spins = 1

—|f LIGO sees
waves from
this binary,
could we tell?

.

.

.

.
"

-
| = Combined \*\
. \.

LIGO, Virgo, Kagra
collaborations,
Abac+ ApJL

993 [ 25 (202

—0.75 —=0.50 —=0.25 0.00 0.25 0.50 0.75 1.00

Larger black-hole spin
Chatziioannou, GL+ Phys. Rev. D 98, 044028 (2018) 26
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Total Binary Mass [M)]

1 10 100 1000
1000 = ' ! Coon Co Gl D e
" ) -
Cosmic Explorer's )
VIeW IntO the - \75 /Ve”/ton/an Primordial Black Holes :% ok Ao
] 100 = .- BS | ‘*S 20 Myr
Universe L :
Q_/sé’@ it R_e.‘ionizatilon'-
10 =, 500 Myr i
n N E i
C‘SMIC % : E\; | -lI‘Deak“_’sté’r' F‘ornl1:atj§pn
EXPLORER ° ../ ° D e
U S )
: 2 %
01 12.5 Cy'r-

Cosmic Explorer White Paper
for NSF MSCAC ngGW
arXiv:2109.09882 0.01

* GW170817



Total Binary Mass [Mg)]

1 10 100 1000
1000 ket bz, sber fackeokatebt Loz feslaat St biad 0 b e el
Next_ en NR arXiv:2109.09882 ,
g : F o Mo, Primordial Black Holes 2 N
100 = .- \5\ | :/anCE40‘ N “D-o 20 Myr g
* BBH catalogs for Cosmic Explorer, S $
Einstein Telescope, LISA R A R A W
* Need much more accuracy LY NG Vg
(SNR > 1000) £ . 2 R0
Pirrer & Haster (2020) g 3 E w4 >
Ferguson+ (2021), Jan+ (2024) L ; : >
* Novel codes aiming to achieve this - . |
AthenaK: Zhu+ (2024) 0.1 - g T4 owisoons 25 61
Simulated GW150914-like observations

NMesh: Adhikari+ (2025)

Dendro-GR: Fernando+ (2023),

Figure courtesy
Cosmic Explorer
arXiv:2306.13745

AsterX: Kalinani+ (2024)

Strain (10721)

SuperB: Tootle+ (2025)

—_1.041 E42 LIGOA+ HE Cosmic Explorer

SpECTRE: GL, K Nelli+ (2025),
successor to Spectral Einstein Code (SpE!

14 12 10 08 06 04 02 00
Time before merger (s) Lovelace —28



SPECTRE methods

See GL, Kyle Nelli+, Class. Quantum Grav. 42, 035001 (2025)

* Open-source code

 Discontinous-Galerkin method for initial data &

evolution N |
Smaller N _ Bigger N
. . J&x) = ) a,p(x)
* Local adaptive time stepping (4th-order Adams more cells fewer cells
Moulton) n=0

Exponential convergence when solution smooth
e Jask-based parallelism via charm++ library

* (Generalized-harmonic formulation, damped harmonic
gauge, constraint-preserving boundary conditions

* EXcision, maps & control system
to match domain, horizons

 Domain made entirely of deformed cubes

QL
C

—~

i

* Scales to many more CPU cores —
but many more points vs. spherical shells

Q2
<,

CCE Domain

o
®.
C )
.--"*--.\\:_:;

N\

 Waveforms via Cauchy Characteristic Evolution (CCE) _
Moxon+ Phys. Rev. D 107, 064013 (2023) Cauchy Domain

CCE: Bishop+ Phys. Rev. D 54, 6153 (1996) Figure courtesy Moxon+
Phys. Rev. D 107, 064013 (2023)  Geoffrey Lovelace —29




~15 orbits, equal-mas, spin=0.5 anti-
aligned with orbital angular momentum

y (code units)
-

SpECTRE status

First spinning binary black hole

' Horizon A Center
—— Horizon B Center

-5

0

X (code units)

0.41/ _ SpECTRE, Spin=-0.5
=~ 0.3/ — SPECTRE, Spin=0
= 02
> T *ﬂ) T
c Ob \ [ PMMMH{\MMW I |
EWWV /
Edj_o'l— . \}JWWUUUUUUUMM “UMUW I
%—02
3 0.3

~0.4

0 1000 2000 3000 4000 5000

_ Time (code units)
Spin 0 waveform from

GL, Kyle Nelli+, Class. Quantum Grav. 42, 035001 (2025)

M=05 M = 0.5

Geoffrey Lovelace — 30



Apparent horizon Ricci scalar (difference from Kerr)

0.0012- —— ¥=0.999, p+2, Amp=0.01

| — ¥=0.999, p+4, Amp=0.01

SpECTRE Status 0.0010] —— x=0.999, p+6, Amp=0.01
il — ¥=0, p+2, Amp=0.02

0.0008-

Perturbed black hole

« Initial data: solve constraints for y = 0.999 Kerr-Schild

black hole + incoming £ = m = 2 even Teukolsky wave
Teukolsky, Phys. Rev. D 26, 745 (1982)

|Max AH Ricci Scalar R(t) — Rkerr|

o o o
(@) (@) o
(@) o -
o o o
N NN (@)

e Gaussian with width w = 4M & amplitude _

A = 0.01 or 0.02 centered at ry = 20M 0 50 100 150 200 250 300 350 400
Time: 0.000000 2e-07 Time (code units)

rPsi4Real

RicciScalar

Horizon curvature at time t=0

(SPECTRE p+4) Geoffrey Lovelace — 31

r'Y, (outgoing gravitational waves)




SpECTRE status

Perturbed black hole

» |nitial data: solve constraints for y = 0.999 Kerr-Schild
black hole + incoming £ = m = 2 even Teukolsky wave

Spin vs. spin att=0 X 107’
S
(@)

|
O
o

I
=
o

Teukolsky, Phys. Rev. D 26, 745 (1982)

« Gaussian with width w = 4M & amplitude
A = 0.01 or 0.02 centered at r, = 20M

— x=0.999, p+4, Amp=0.01
— x=0.999, p+6, Amp=0.01
X=0, p+2, Amp=0.02

¥=0.999, p+2, Amp=0.01

100 150 200 250 300

Time (code units)

350

400

0.0012

IMax AH Ricci Scalar R(t) — Rkerr|

IMax AH Ricci Scalar R(t) — Rkerr|
=
<

Apparent horizon Ricci scalar (difference from Kerr)

0.0010

0.0008;

0.0006

0.0004

0.0002/

¥ =0.999, p+2, Amp=0.01
—— ¥=0.999, p+4, Amp=0.01
—— ¥=0.999, p+6, Amp=0.01

x=0, p+2, Amp=0.02

Aot Ll

— e s e P e M e

0 50 100 150

250 300 350 400

Time (code units)

¥=0.999, p+2, Amp=0.01

|| —— x=0.999, p+4, Amp=0.01
||— x=0.999, p+6, Amp=0.01

X=0, p+2, Amp=0.02

"mmmmu.n'ww

0 50 100 150

250 300 350 400

Time (code units)
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* Possible but challenging to simulate Y 7 B
merging black holes with nearly S X
extremal spins with full 3+1 numerical relativity BT\ O\

e Future work

* Evolve higher mass ratios with nearly-extremal spin

* Precessing, nearly-extremal spins
J, hearly P GL+ Class. Quantum Grav. 32, 065007 (2015)

* Evolve nearly-extremal spins with next-generation codes

* Achieve high accuracy future detectors will need

* Perturbed nearly extremal black holes: improve accuracy, higher spin, higher amplitude

33



