

Modeling binary black holes with nearly extremal spins using numerical relativity

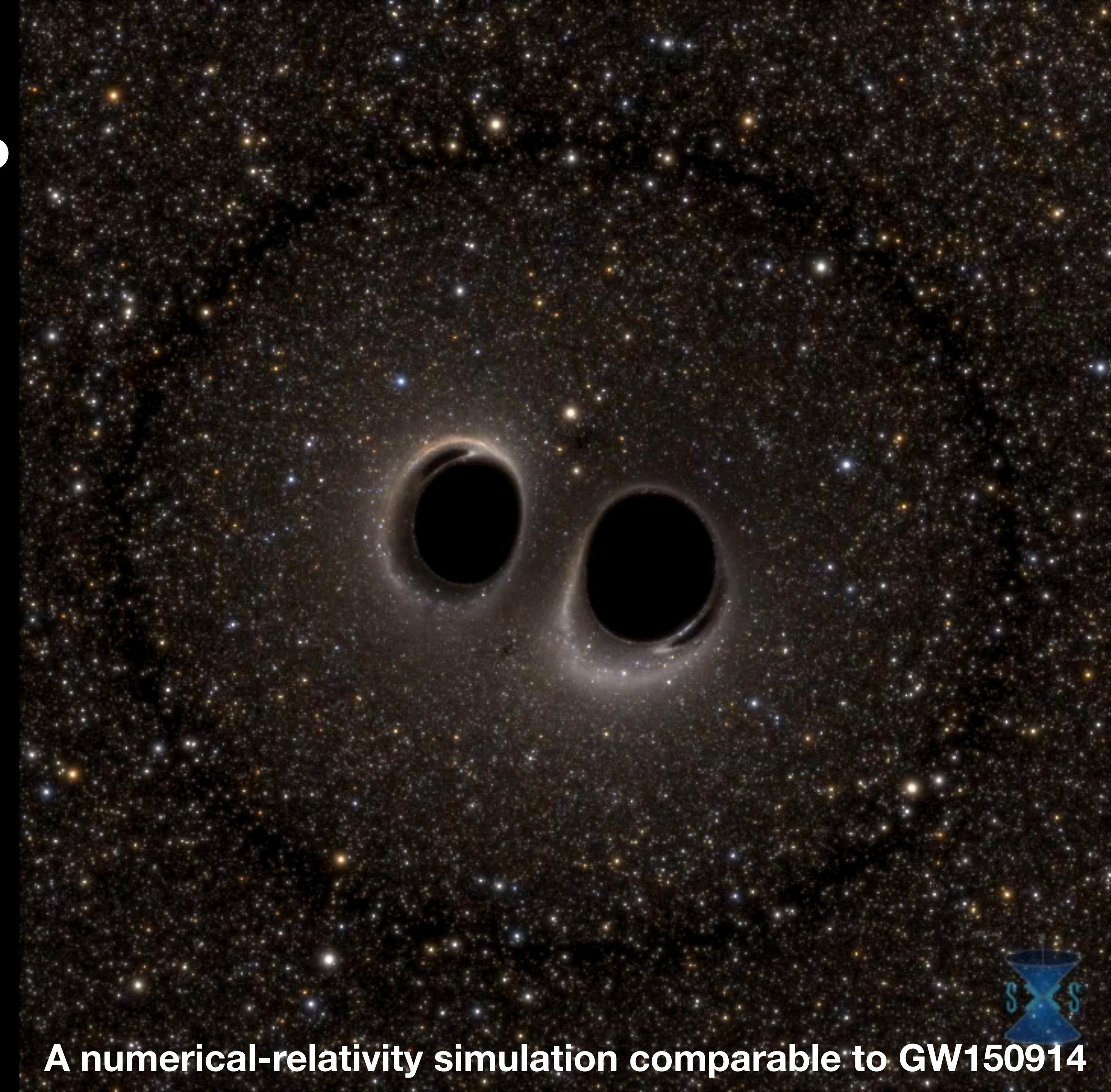
Geoffrey Lovelace
California State University, Fullerton

January 7, 2026

Extremal Black Holes and the Third Law of Black Hole Thermodynamics @ ICERM

What do binary black holes look like?

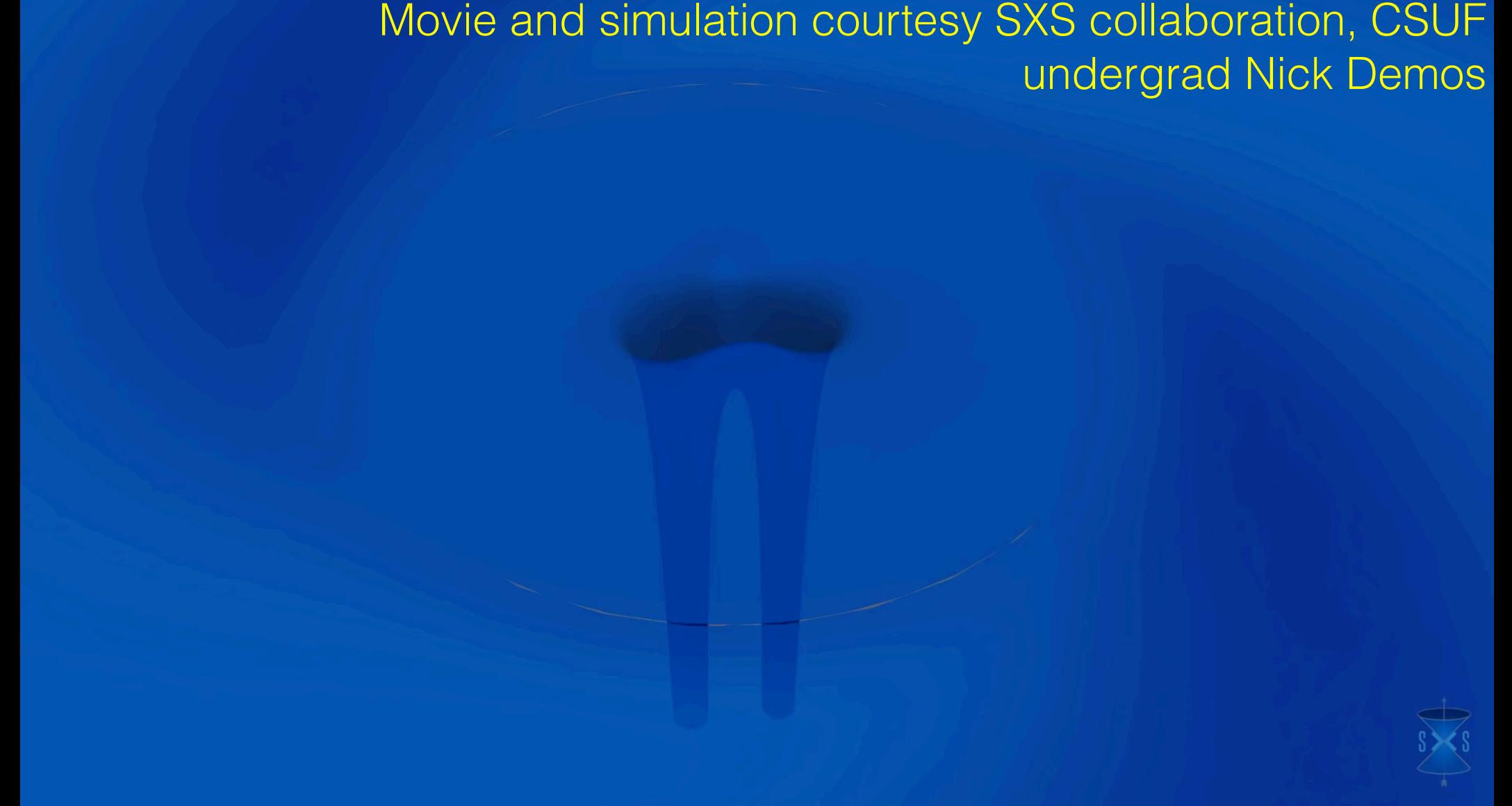
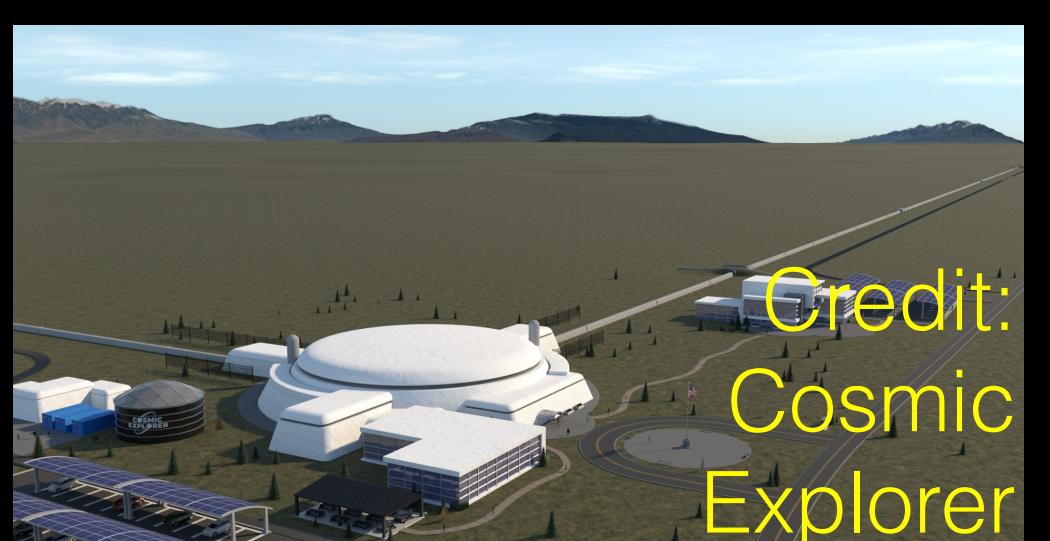
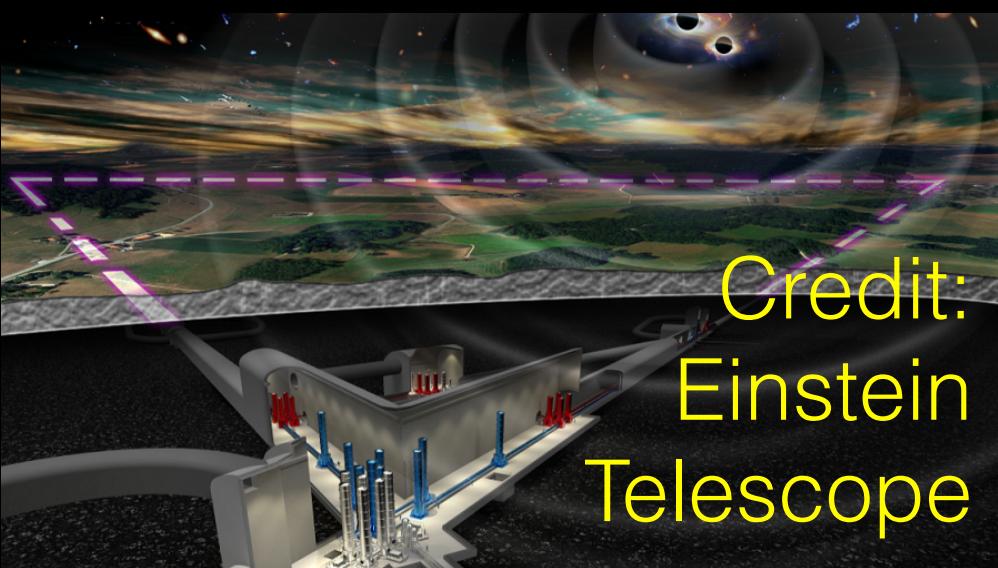
Calculation and movie by
SXS Lensing, CSUF undergraduates
Haroon Khan, Nick Demos



A numerical-relativity simulation comparable to GW150914

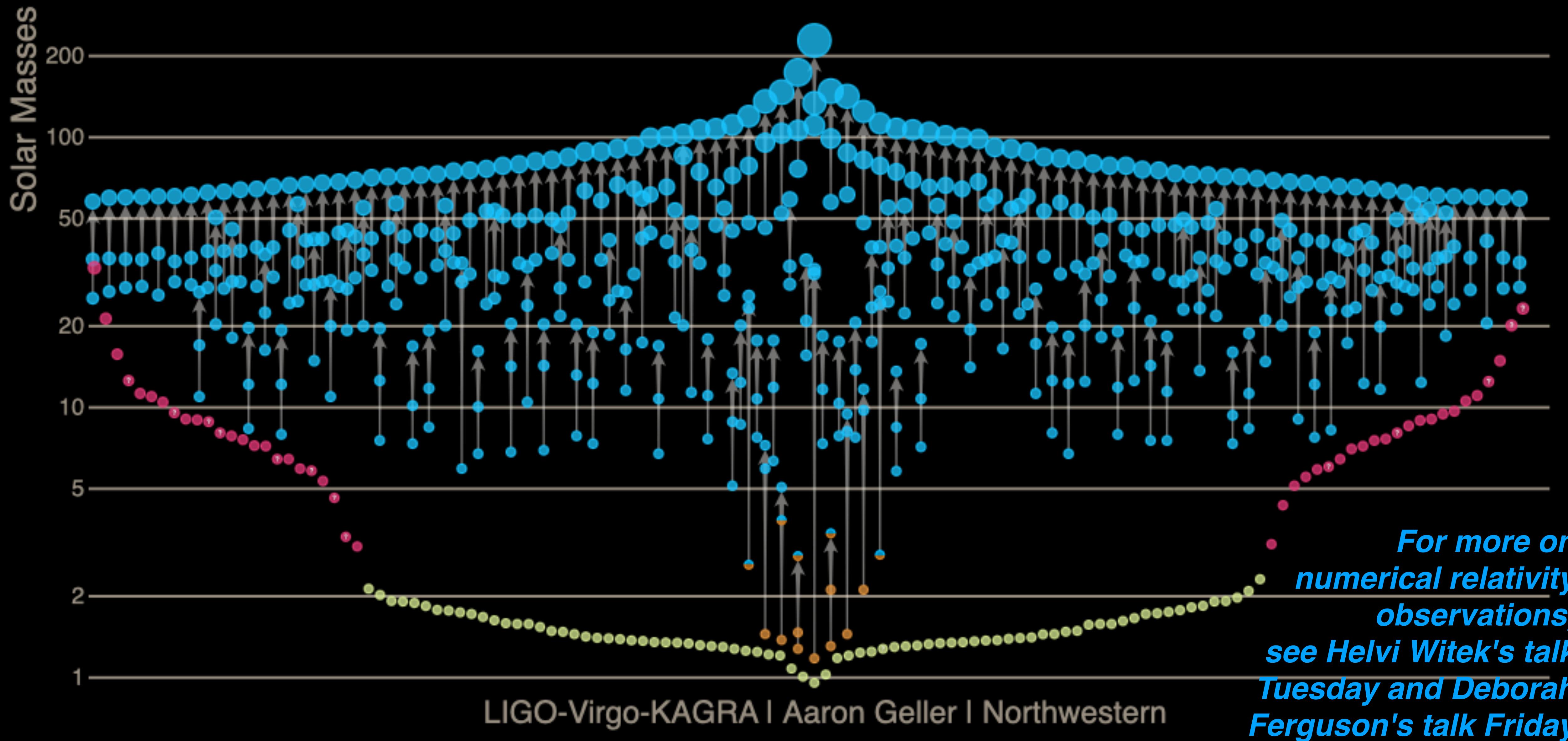
Binary black holes

- LIGO + Virgo
 - Hundreds of binary black holes so far, loudest signal-to-noise ratio (SNRs) ~ 80 (GW250114)
- Cosmic Explorer & Einstein Telescope & LISA
 - SNRs $\gtrsim 1000$, probe strongest gravity
 - Frequent detections, potential to observe rare black holes
- Need accurate waveform models
 - Requires numerical relativity



Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes *LIGO-Virgo-KAGRA Neutron Stars* *EM Black Holes* *EM Neutron Stars*



*For more on
numerical relativity
observations,
see Helvi Witek's talk
Tuesday and Deborah
Ferguson's talk Friday*

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Simulating binary black holes

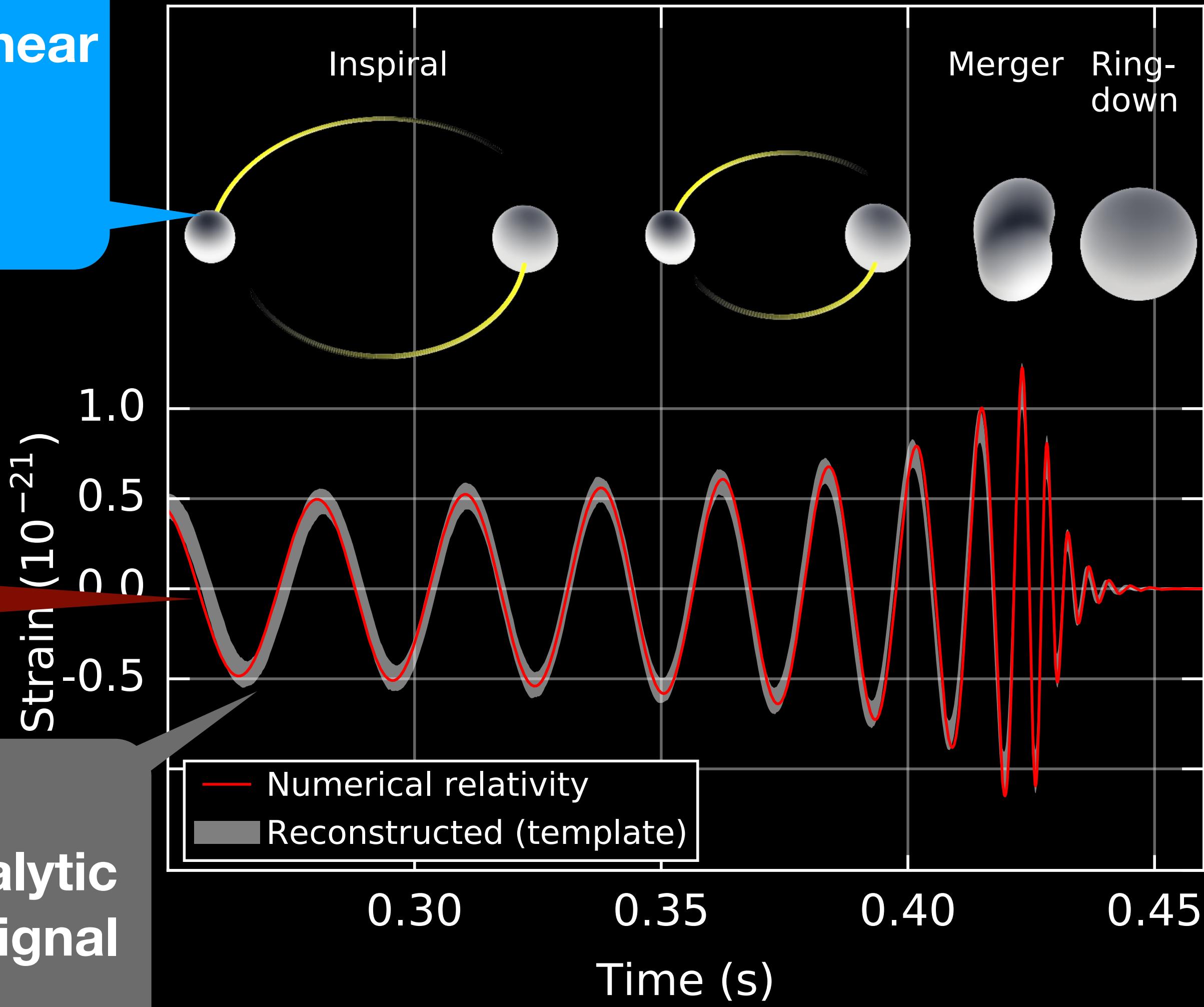
Abbott+ Phys. Rev. Lett.
116, 061102 (2016)
— LIGO GW150914

- Goal: modeling binary black holes and emitted gravitational waves
- Need numerical relativity: solve Einstein's equations on computers
- Near time of merger, all analytic approximations fail

Model warped spacetime nonlinear dynamics
Horizons, orbits, curvature, ...

Model emitted gravitational waveforms

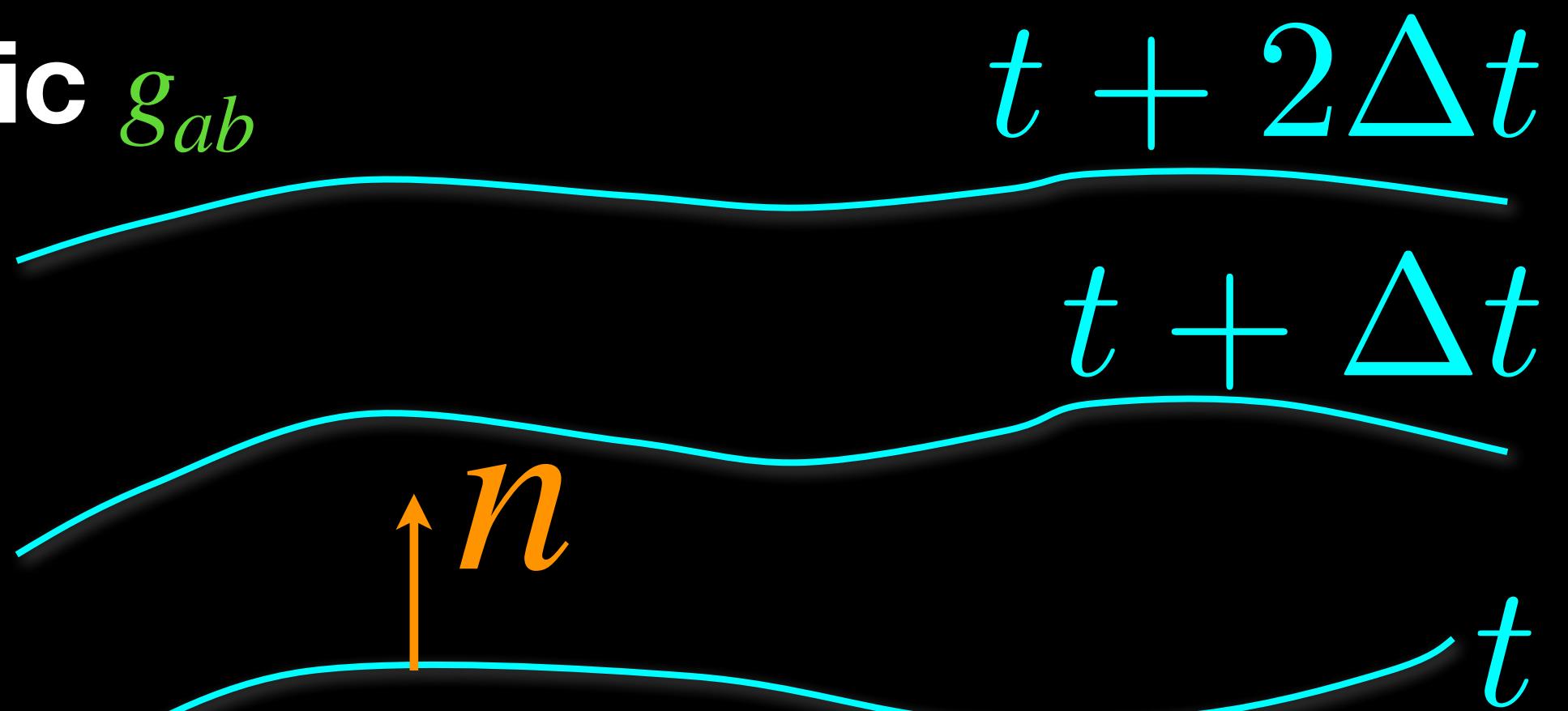
Tune & test approximate analytic waveforms for signal reconstruction



Solving Einstein's equations in vacuum

Goal: solve $G_{\mu\nu} = 0$ for spacetime metric g_{ab}

- Split spacetime into space + time
 - Constraint equations $G_{nj} = 0$ $G_{nn} = 0$
 - Solve to create initial data like $\nabla \cdot E = 0, \nabla \cdot B = 0$
 - Evolution equations $G_{ij} = 0$
 - Constraints must stay satisfied
 - Step 1: Step forward in time
 - Step 2: Repeat step 1 (a lot)
 - like $\frac{\partial B}{\partial t} = -\nabla \times E$,
 $\frac{\partial E}{\partial t} = \nabla \times B$



3+1 split

$$ds^2 = -\alpha^2 dt^2 + \gamma_{jk} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

γ_{jk}

K_{jk}

α, β^i

spatial metric

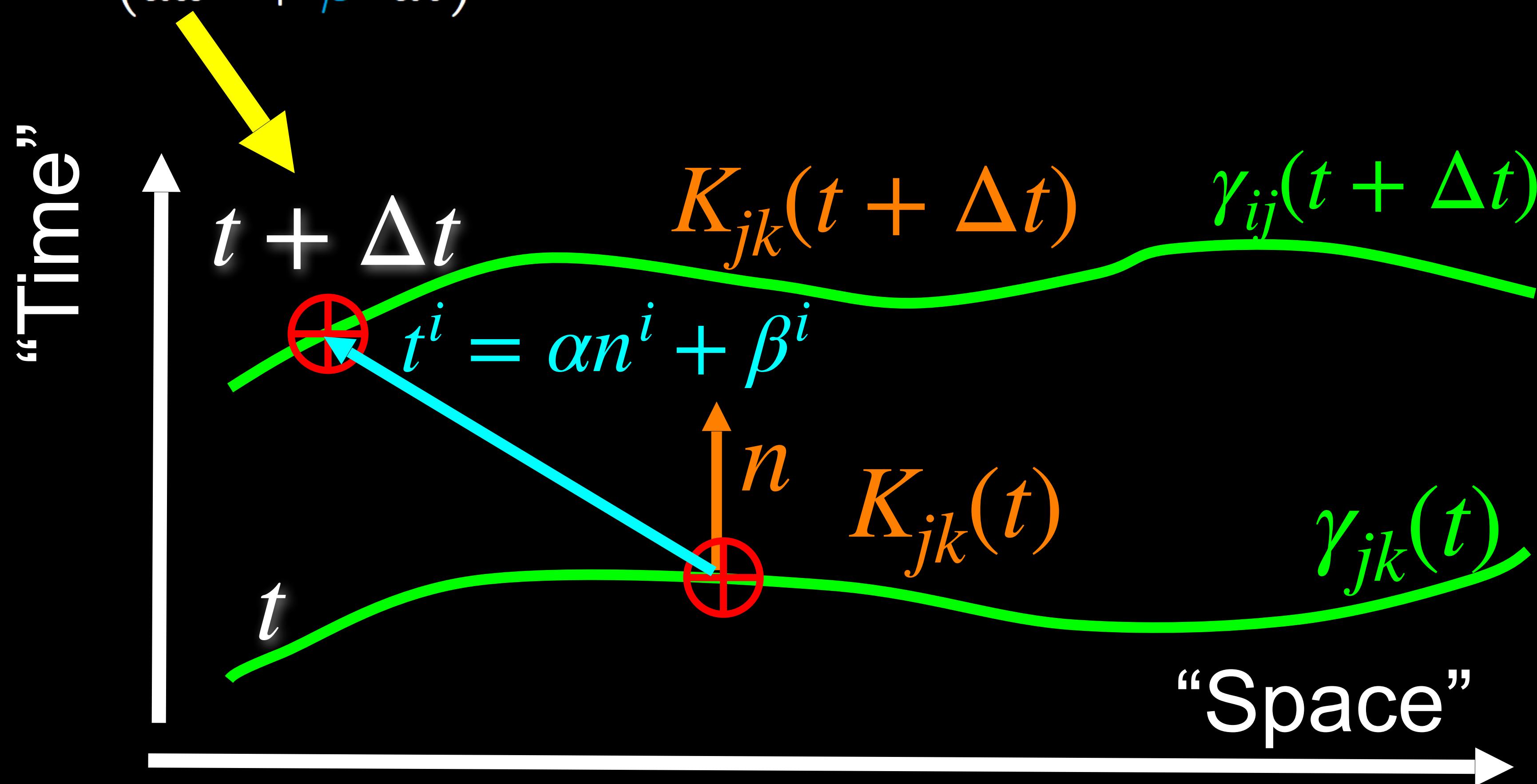
extrinsic
curvature

lapse, shift

slice
geometry

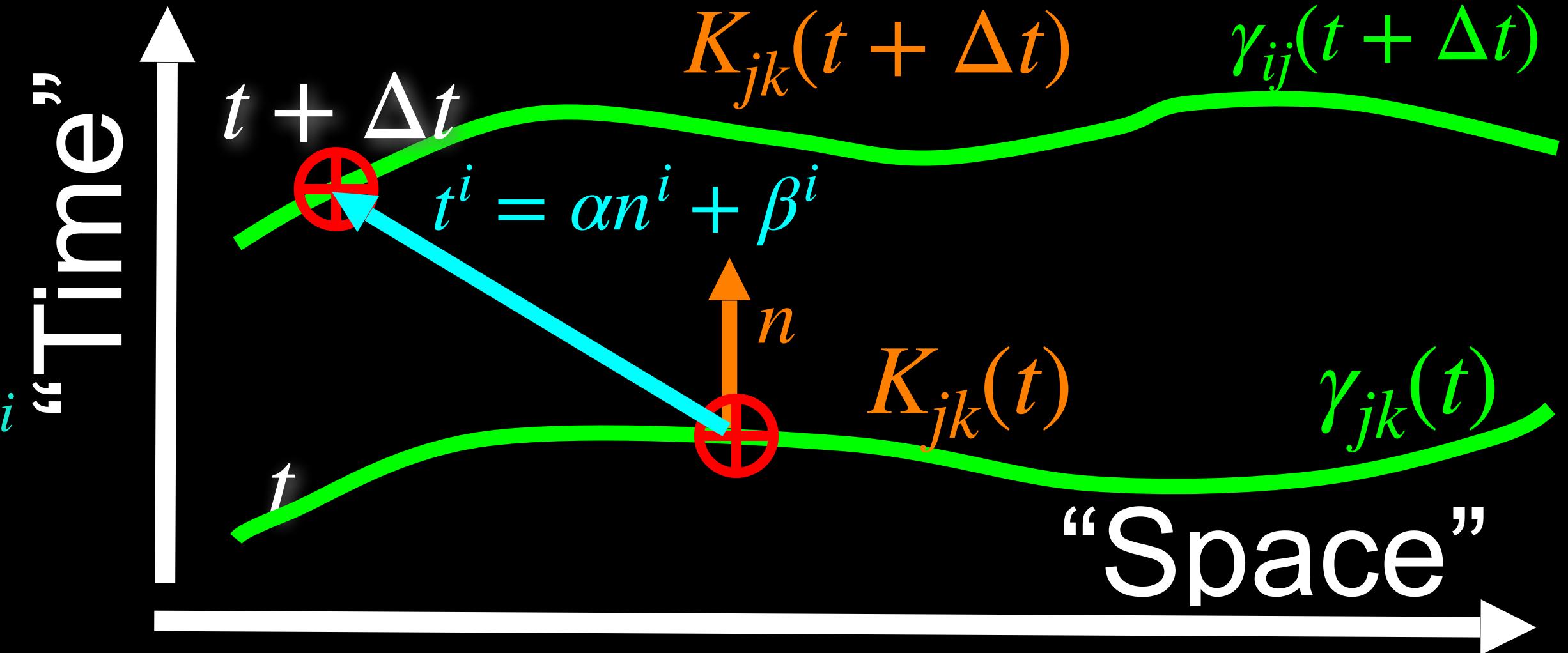
$-1/2(d/dn)\gamma_{jk}$

slice
coordinates



Initial data equations

- Goal: solve constraint equations for γ_{jk} , K_{jk} , α , β^i
- Strategy: conformal decomposition
 - Choose some things (like conformal metric $\tilde{\gamma}_{jk}$)
 - Solve $G_{nn} = 0, G_{nj} = 0$ for the rest
 - Make sure solution really is two black holes with the masses, spins you wanted
- Almost all numerical relativity calculations choose *conformally flat* $\tilde{\gamma}_{jk} = \delta_{jk}$,
 - $G_{nj} = 0$ has analytic solutions in terms of black-hole linear and angular momenta
Bowen and York, Jr. (1980)

$$G_{nn} = 0 \rightarrow \nabla^2 \psi + \dots = 0$$


$$\gamma_{jk} = \psi^4 \tilde{\gamma}_{jk}$$

Initial data equations

What if $\gamma_{ij} \neq \delta_{ij}$?

- One strategy: extended conformal thin sandwich + quaequilibrium
York (1999), York & Pfeiffer (20023), Cook (2002), Cook & Pfeiffer (2004)
- Boundary conditions
 - Excision surface: is (or is slightly inside) marginally trapped surface (i.e. horizon); adjust black-hole spin
 - Outer boundary: asymptotically flat

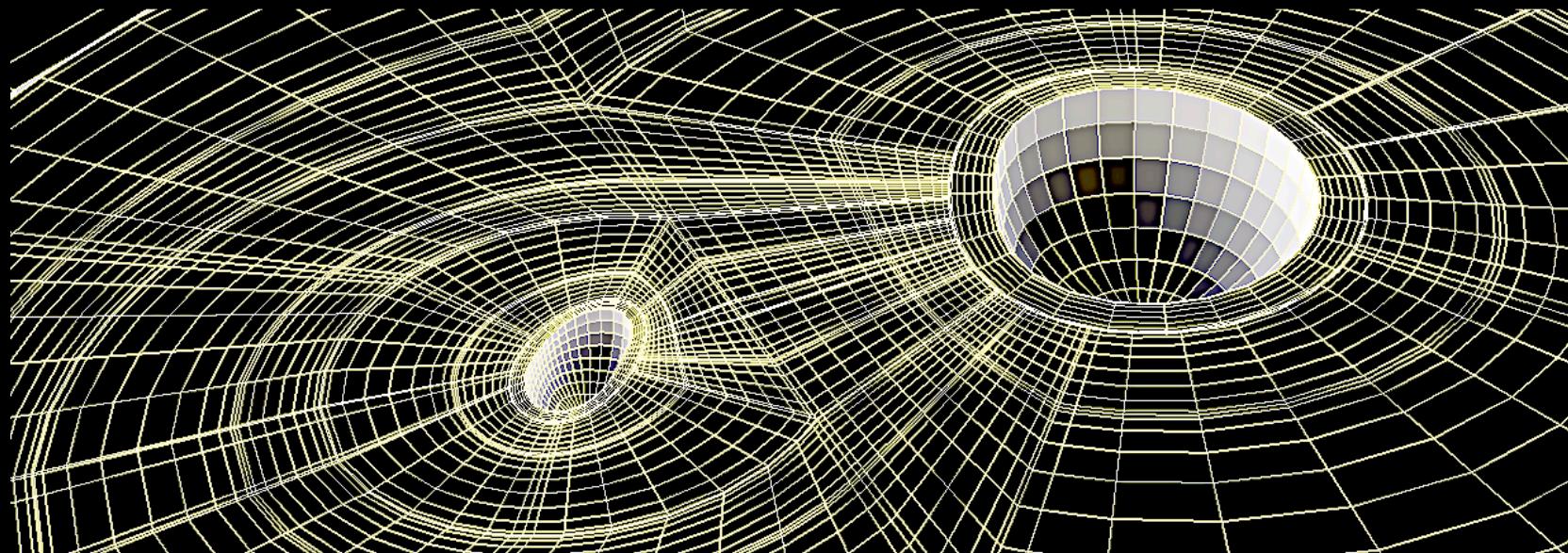
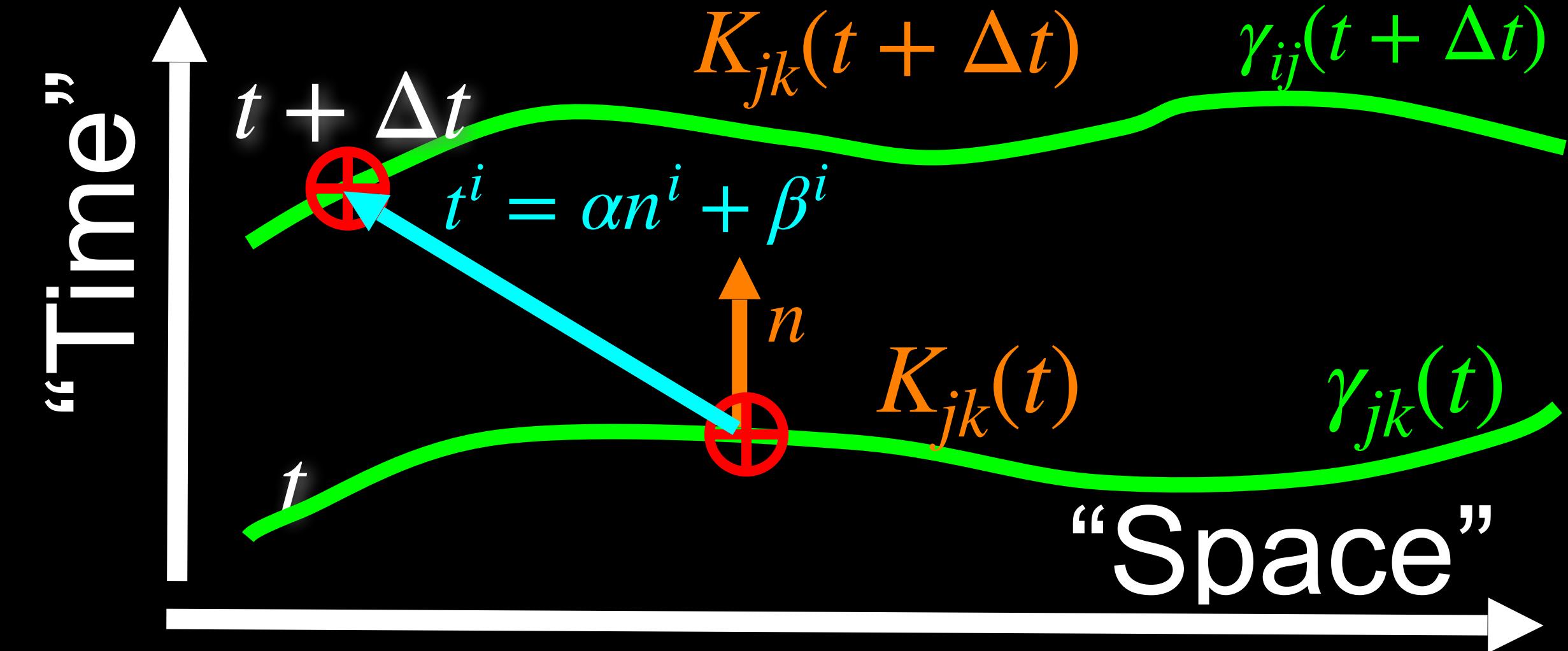


Image courtesy SXS Collaboration



$$\gamma_{jk} = \psi^4 \tilde{\gamma}_{jk}$$

$$G_{nn} = 0 \rightarrow \nabla^2 \psi + \dots = 0$$

$$G_{nj} = 0 \rightarrow \nabla_i (\tilde{\mathbb{L}} \beta)^{ji} + \dots = 0$$

$$\text{one of } G_{ij} = 0 \rightarrow \nabla^2 (\alpha \psi) + \dots = 0$$

Einstein evolution equations $G_{ij} = 0$

An analogy

$$\frac{\partial^2 g}{\partial t^2} = \frac{\partial^2 g}{\partial x^2}$$

$$\frac{\partial g}{\partial t} = \Pi$$

$$\Pi \equiv \frac{\partial g}{\partial t}$$

$$\frac{\partial \Pi}{\partial t} = \frac{\partial \Phi}{\partial x}$$

$$\Phi \equiv \frac{\partial g}{\partial x}$$

$$\frac{\partial \Phi}{\partial t} = \frac{\partial \Pi}{\partial x}$$

$$\mathcal{C} \equiv \Phi - \frac{\partial g}{\partial x} = 0$$

Evolution equations

Constraint equation

Generalized harmonic formulation

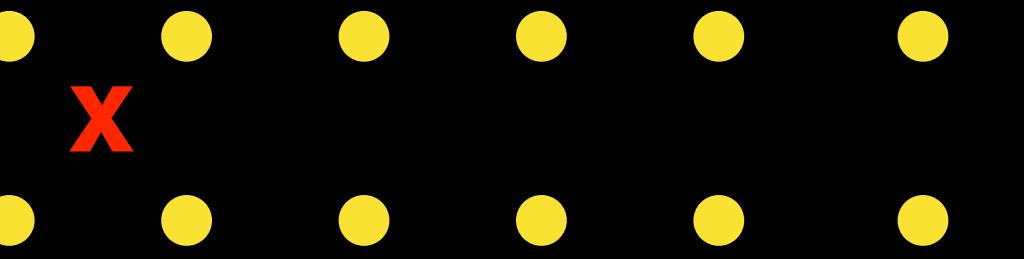
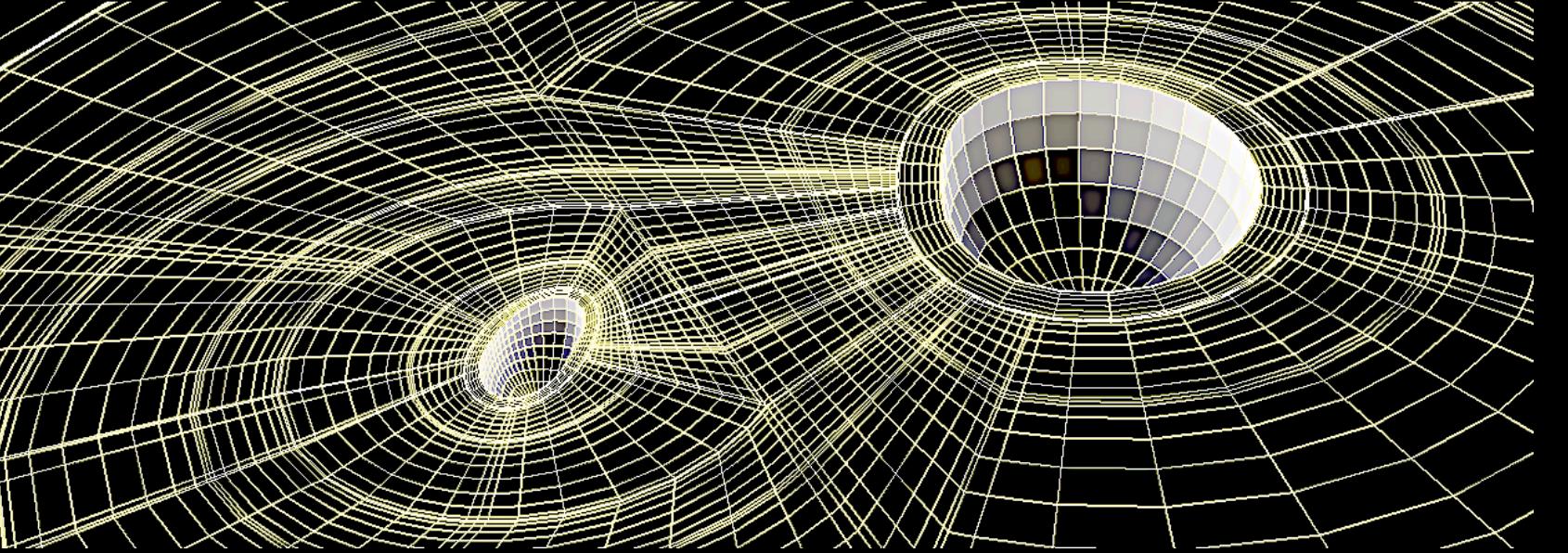
$$\begin{aligned}
\partial_t g_{ab} - (1 + \gamma_1) \beta^k \partial_k g_{ab} &= -\alpha \Pi_{ab} - \gamma_1 \beta^i \Phi_{iab}, \\
\partial_t \Pi_{ab} - \beta^k \partial_k \Pi_{ab} + \alpha \gamma^{ki} \partial_k \Phi_{iab} - \gamma_1 \gamma_2 \beta^k \partial_k g_{ab} &= 2\alpha g^{cd} (\gamma^{ij} \Phi_{ica} \Phi_{jdb} - \Pi_{ca} \Pi_{db} - g^{ef} \Gamma_{ace} \Gamma_{bdf}) \\
&\quad - 2\alpha \nabla_{(a} H_{b)} - \frac{1}{2} \alpha n^c n^d \Pi_{cd} \Pi_{ab} - \alpha n^c \Pi_{ci} \gamma^{ij} \Phi_{jab} \\
&\quad + \alpha \gamma_0 (2\delta^c_{(a} n_{b)} - (1 + \gamma_3) g_{ab} n^c) \mathcal{C}_c \\
&\quad + 2\gamma_4 \alpha \Pi_{ab} n^c \mathcal{C}_c \\
&\quad - \gamma_5 \alpha n^c \mathcal{C}_c \left(\frac{\mathcal{C}_a \mathcal{C}_b - \frac{1}{2} g_{ab} \mathcal{C}_d \mathcal{C}^d}{\epsilon_5 + 2n^d \mathcal{C}_d n^e \mathcal{C}_e + \mathcal{C}_d \mathcal{C}^d} \right) \\
&\quad - \gamma_1 \gamma_2 \beta^i \Phi_{iab} \\
&\quad - 16\pi \alpha \left(T_{ab} - \frac{1}{2} g_{ab} T^c_c \right), \\
\partial_t \Phi_{iab} - \beta^k \partial_k \Phi_{iab} + \alpha \partial_i \Pi_{ab} - \alpha \gamma_2 \partial_i g_{ab} &= \frac{1}{2} \alpha n^c n^d \Phi_{icd} \Pi_{ab} + \alpha \gamma^{jk} n^c \Phi_{ijc} \Phi_{kab} \\
&\quad - \alpha \gamma_2 \Phi_{iab},
\end{aligned}$$

Evolution equations

$$\begin{aligned}
C_a &= H_a + g^{ij} \Phi_{ija} + t^b \Pi_{ba} - \frac{1}{2} g_a^i \psi^{bc} \Phi_{ibc} - \frac{1}{2} t_a \psi^{bc} \Pi_{bc} \\
C_{ia} &\equiv g^{jk} \partial_j \Phi_{ika} - \frac{1}{2} g_a^j \psi^{cd} \partial_j \Phi_{icd} + t^b \partial_i \Pi_{ba} - \frac{1}{2} t_a \psi^{cd} \partial_i \Pi_{cd} \\
&\quad + \partial_i H_a + \frac{1}{2} g_a^j \Phi_{jcd} \Phi_{ief} \psi^{ce} \psi^{df} + \frac{1}{2} g^{jk} \Phi_{jcd} \Phi_{ike} \psi^{cd} t^e t_a \\
&\quad - g^{jk} g^{mn} \Phi_{jma} \Phi_{ikn} + \frac{1}{2} \Phi_{icd} \Pi_{be} t_a \left(\psi^{cb} \psi^{de} + \frac{1}{2} \psi^{be} t^c t^d \right) \\
&\quad - \Phi_{icd} \Pi_{ba} t^c \left(\psi^{bd} + \frac{1}{2} t^b t^d \right) + \frac{1}{2} \gamma_2 (t_a \psi^{cd} - 2\delta_a^c t^d) C_{icd} \\
C_{iab} &= \partial_i g_{ab} - \Phi_{iab} \\
C_{ijab} &= 2\partial_{[i} \Phi_{j]ab} \\
\mathcal{F}_a &\equiv \frac{1}{2} g_a^i \psi^{bc} \partial_i \Pi_{bc} - g^{ij} \partial_i \Pi_{ja} - g^{ij} t^b \partial_i \Phi_{jba} + \frac{1}{2} t_a \psi^{bc} g^{ij} \partial_i \Phi_{jbc} \\
&\quad + t_a g^{ij} \partial_i H_j + g_a^i \Phi_{ijb} g^{jk} \Phi_{kcd} \psi^{bd} t^c - \frac{1}{2} g_a^i \Phi_{ijb} g^{jk} \Phi_{kcd} \psi^{cd} t^b \\
&\quad - g_a^i t^b \partial_i H_b + g^{ij} \Phi_{icd} \Phi_{jba} \psi^{bc} t^d - \frac{1}{2} t_a g^{ij} g^{mn} \Phi_{imc} \Phi_{njd} \psi^{cd} \\
&\quad - \frac{1}{4} t_a g^{ij} \Phi_{icd} \Phi_{jbe} \psi^{cb} \psi^{de} + \frac{1}{4} t_a \Pi_{cd} \Pi_{be} \psi^{cb} \psi^{de} - g^{ij} H_i \Pi_{ja} \\
&\quad - t^b g^{ij} \Pi_{bi} \Pi_{ja} - \frac{1}{4} g_a^i \Phi_{icd} t^c t^d \Pi_{be} \psi^{be} + \frac{1}{2} t_a \Pi_{cd} \Pi_{be} \psi^{ce} t^d t^b \\
&\quad + g_a^i \Phi_{icd} \Pi_{be} t^c t^b \psi^{de} - g^{ij} \Phi_{iba} t^b \Pi_{je} t^e - \frac{1}{2} g^{ij} \Phi_{icd} t^c t^d \Pi_{ja} \\
&\quad - g^{ij} H_i \Phi_{jba} t^b + g_a^i \Phi_{icd} H_b \psi^{bc} t^d + \gamma_2 (g^{id} \mathcal{C}_{ida} - \frac{1}{2} g_a^i \psi^{cd} \mathcal{C}_{icd}) \\
&\quad + \frac{1}{2} t_a \Pi_{cd} \psi^{cd} H_b t^b - t_a g^{ij} \Phi_{ijc} H_d \psi^{cd} + \frac{1}{2} t_a g^{ij} H_i \Phi_{jcd} \psi^{cd} \\
&\quad - 16\pi t^a T_{ab}
\end{aligned}$$

Constraint equations

Current-generation numerical relativity

Initial data	Puncture data Pseudospectral (Usually) solve 1 elliptic eq.	Quasiequilibrium with excision Pseudospectral Solve 4 or 5 elliptic eqs.
Evolution	BSSN/CCZ4 evolution eqs. High-order finite-difference Moving puncture	Generalized harmonic evolution eqs. Pseudospectral Excision
Codes	BAM, Hahndol, LazEv, Lean, Llama, MayaKrac, UIUC, Einstein Toolkit,...	SpEC
		
	$f'(x_i) \sim \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}}$	$f'(x_i) \sim \sum_n a_n b'(x_i)$
Advantages	Robust, open-source	Efficient

Do black holes spin?

- Extremal if $\chi = S/M^2 = 1$
 - S =spin angular momentum, M =mass, $G = c = 1$
- Electromagnetic waves
 - Some high-spin claims, but spin inference via uncertain accretion-disk models
- Gravitational waves
 - Spin only weakly affects waves
 - A few (of hundreds) show evidence for nonzero spin
 - **GW231123**: black holes have spins consistent with extremal: $\chi_1 = 0.9^{+0.10}_{-0.19}$ and $\chi = 0.8^{+0.2}_{-0.51}$

Cygnus X-1

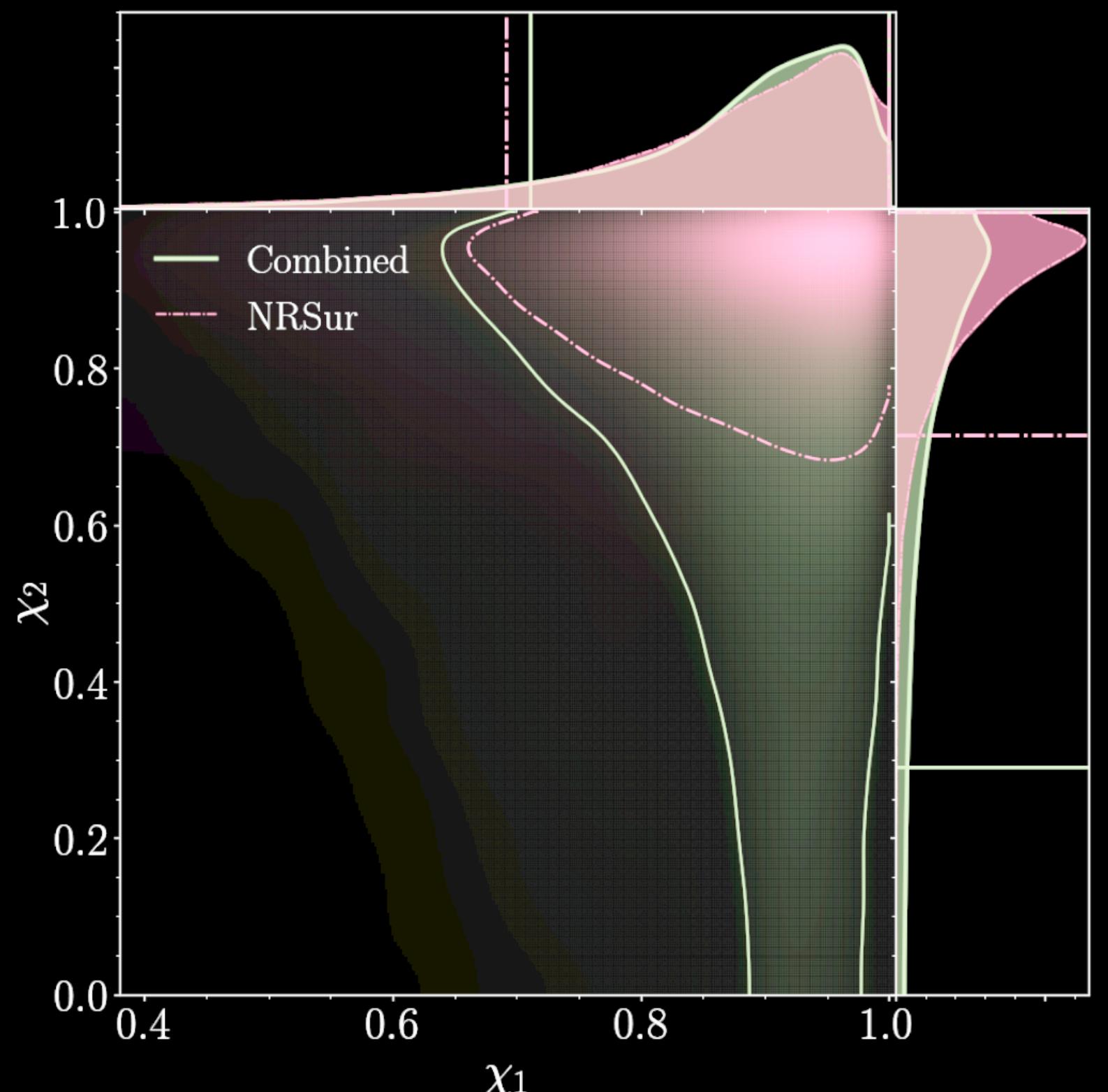
Credit: NASA/CXC

Zdziarski+ *ApJL* **967** L9 (2024):
"Standard"
 $\chi = 0.985^{+0.06}_{-0.004}$

Fit inclination, color correct.
 $\chi = 0.88^{+0.04}_{-0.01}$

"Nonstandard"
 $\chi = 0.04^{+0.26}_{-0.04}$

*LIGO, Virgo, Kagra collaborations, Abac+ ApJL **993** L25 (2025) GW231123 spin posteriors*



Extremality measures for numerical relativity

- Measure on (apparent) horizon H

- Horizon surface area $A \equiv \oint_{\mathcal{H}} dA$

- Mass M

- Christodoulou mass

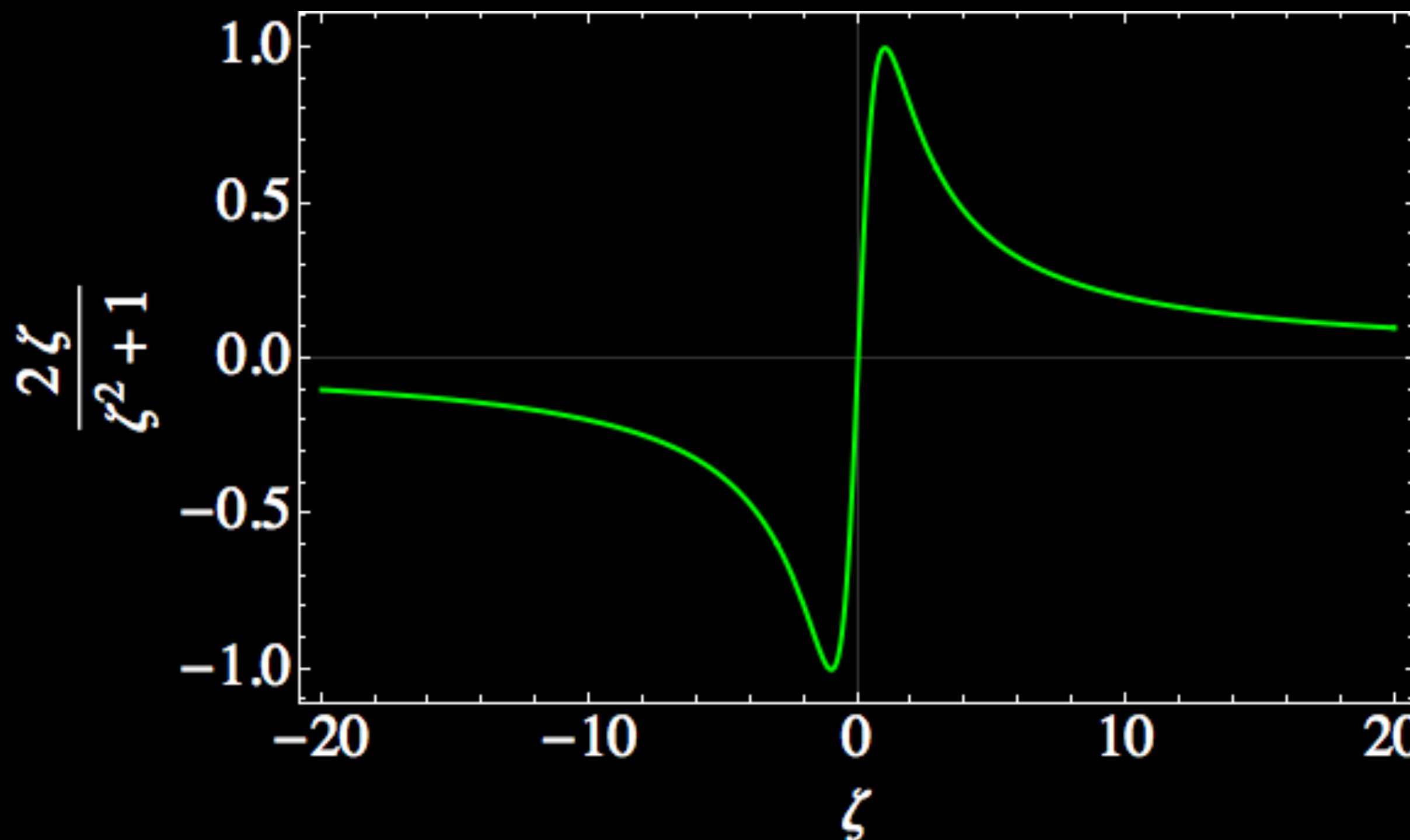
$$M^2 = \frac{A}{16\pi} (1 + \zeta^2)$$

- Spin limit obeyed by construction

$$\chi \equiv \frac{S}{M^2} = \frac{2\zeta}{1 + \zeta^2}$$

$$\chi \equiv \frac{S}{M^2}$$

$$\zeta \equiv \frac{8\pi S}{A}$$



$$\zeta \equiv \frac{8\pi S}{A}$$

$$A \equiv \oint_{\mathcal{H}} dA$$

Extremality & axisymmetry

- Spin angular momentum

$$S \equiv \frac{1}{8\pi} \oint_{\mathcal{H}} \omega_B \phi^B dA$$

ω_B = “angular momentum density”

ϕ^B = “azimuthal vector about spin axis”

- If axisymmetry...
 - ϕ^B is a rotational Killing vector, S conserved
 - Inequality $\zeta \leq 1$ proven under broad assumptions

JL Jaramillo, M Reiris and S Dain, Phys. Rev. D **84** 121503 (2011)

[review of black-hole inequalities proven: Dain Class. Quantum Grav. **29**, 073001 (2012)]

Extremality without axisymmetry

- Simulations not axisymmetric

- Find best approx. symmetry

- ϕ^B is approx. Killing vector

Dreyer+, PRD **67**, 024018 (2003)

Cook and Whiting, PRD **76**, 041501(R) (2007)

Owen (2007), Ph.D. thesis.

GL+ (2008), PRD **78**, 084017 (2008)

- Depends on horizon's

- null normals $\vec{\ell}, \vec{n}$

- Boost gauge invariant

$$\vec{\ell} \cdot \vec{n} = -1$$

If rescale normals... ... S unchanged

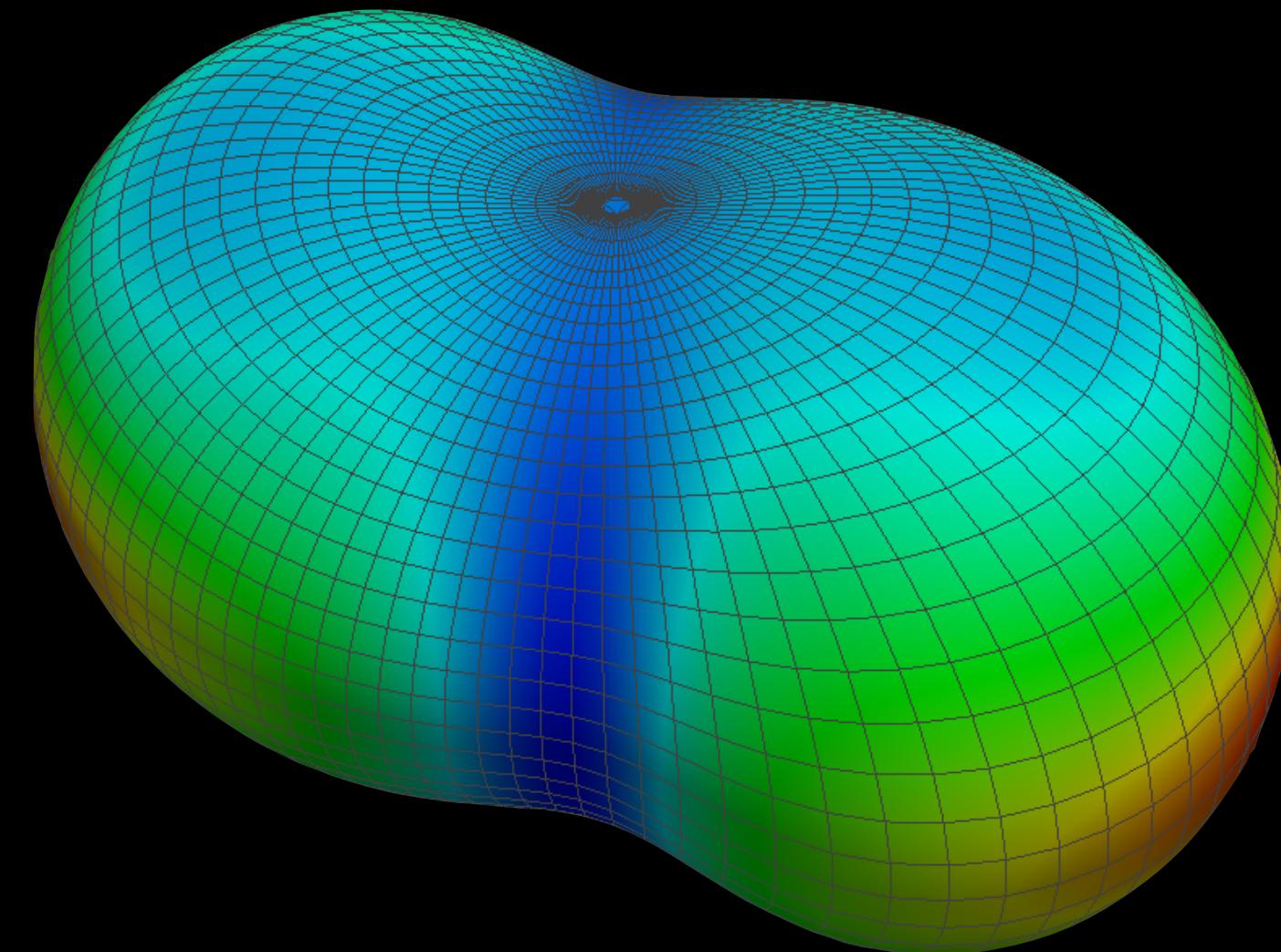
$$\vec{\ell} \rightarrow e^a \vec{\ell} \quad S \rightarrow S$$

$$\vec{n} \rightarrow e^{-a} \vec{n}$$

$$\zeta \equiv \frac{8\pi S}{A}$$

$$A \equiv \oint_{\mathcal{H}} dA$$

$$S \equiv \frac{1}{8\pi} \oint_{\mathcal{H}} \omega_B \phi^B dA$$



Common apparent horizon
just after two $\chi=0.994$ holes merge
(color = intrinsic Ricci scalar curvature)

Extremality lower bound

- Booth & Fairhurst extremality

Booth & Fairhurst, PRD **77**, 084005 (2008)

$$e \equiv \frac{1}{4\pi} \oint_{\mathcal{H}} \omega_B \omega^B dA$$

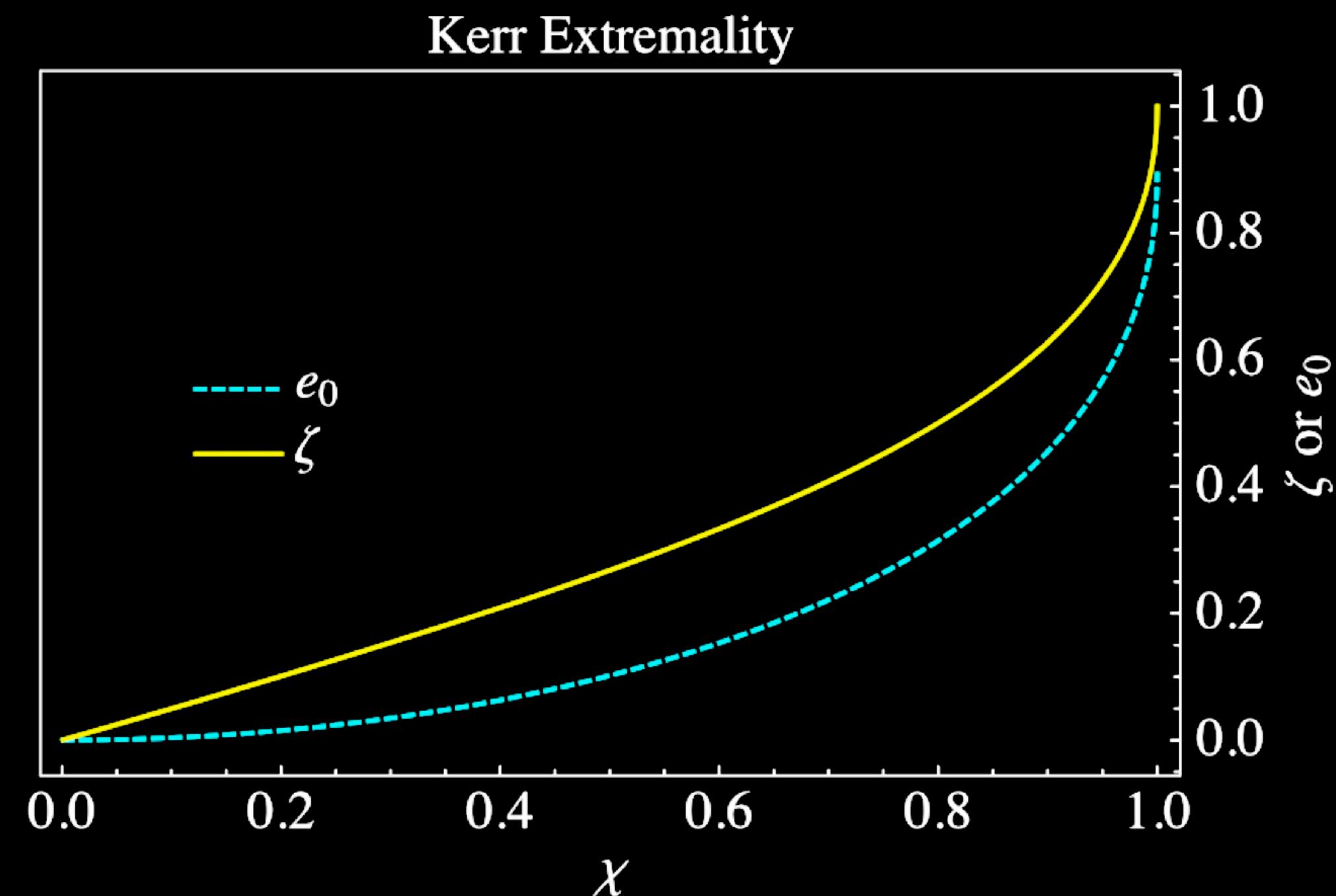
- No need for approximate symmetry
- But: must choose scaling for horizon null normals
 - This talk: scale to minimize e

$$e_0 \equiv \min \left[\frac{1}{4\pi} \oint_{\mathcal{H}} \omega_B \omega^B dA \right]$$

$$\zeta \equiv \frac{8\pi S}{A}$$

$$A \equiv \oint_{\mathcal{H}} dA$$

$$S \equiv \frac{1}{8\pi} \oint_{\mathcal{H}} \omega_B \phi^B dA$$



GL+ Class. Quantum Grav. **32**, 065007 (2015)

Challenges

Binary-black-hole initial data with nearly extremal spins

- Why conformally flat doesn't work for high spins

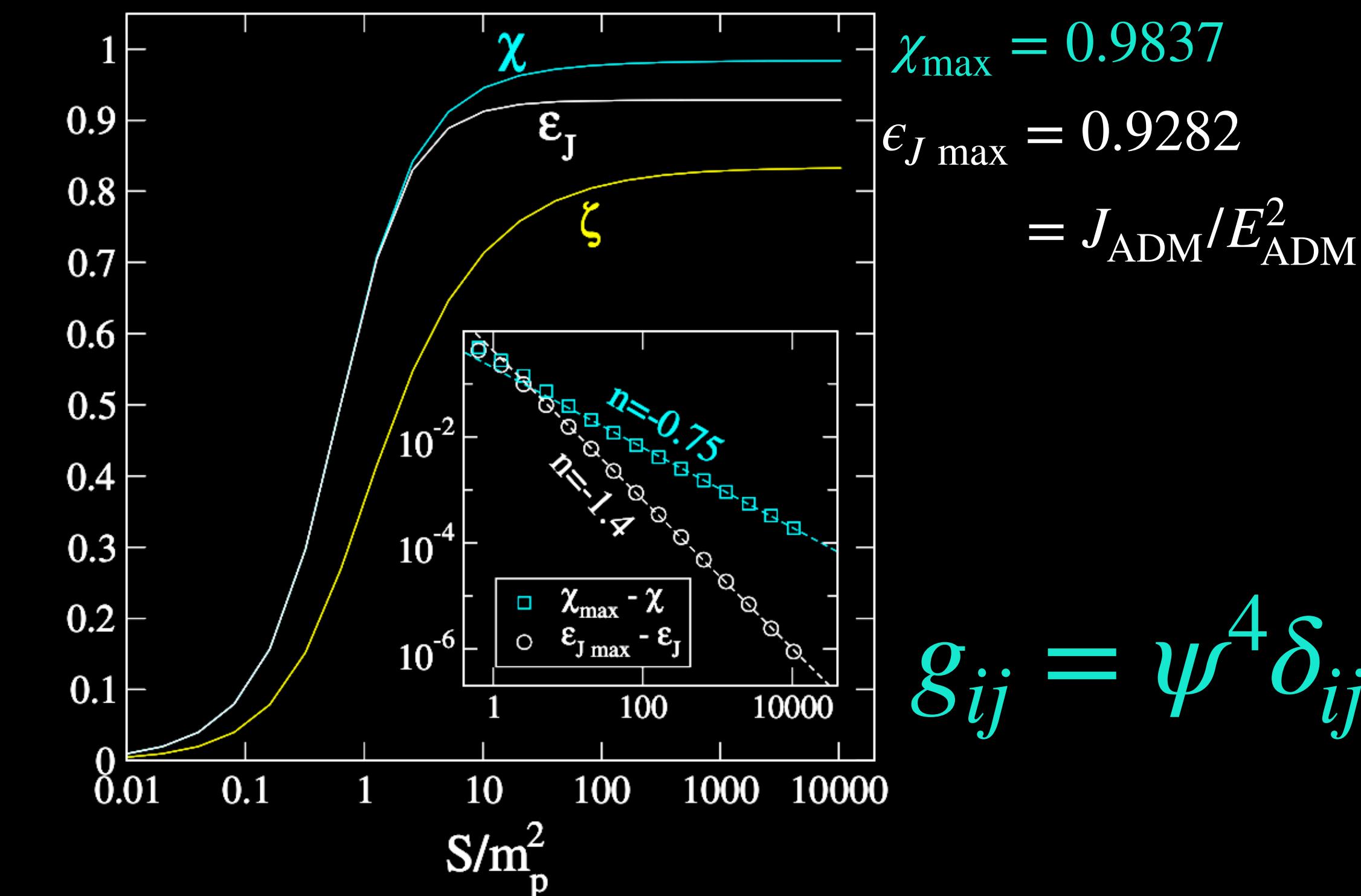
- **Excision**: conformally curved
(solve 5 coupled PDEs instead of 1)
for $\chi \gtrsim 0.93$

GL+ Phys. Rev. D **78**, 084017 (2008)

- **Puncture**: conformally curved
(solve 4 coupled PDEs instead of 1),
coordinates compensate for horizon
radius vanishing as $\chi \rightarrow 1$

for $\chi \gtrsim 0.93$

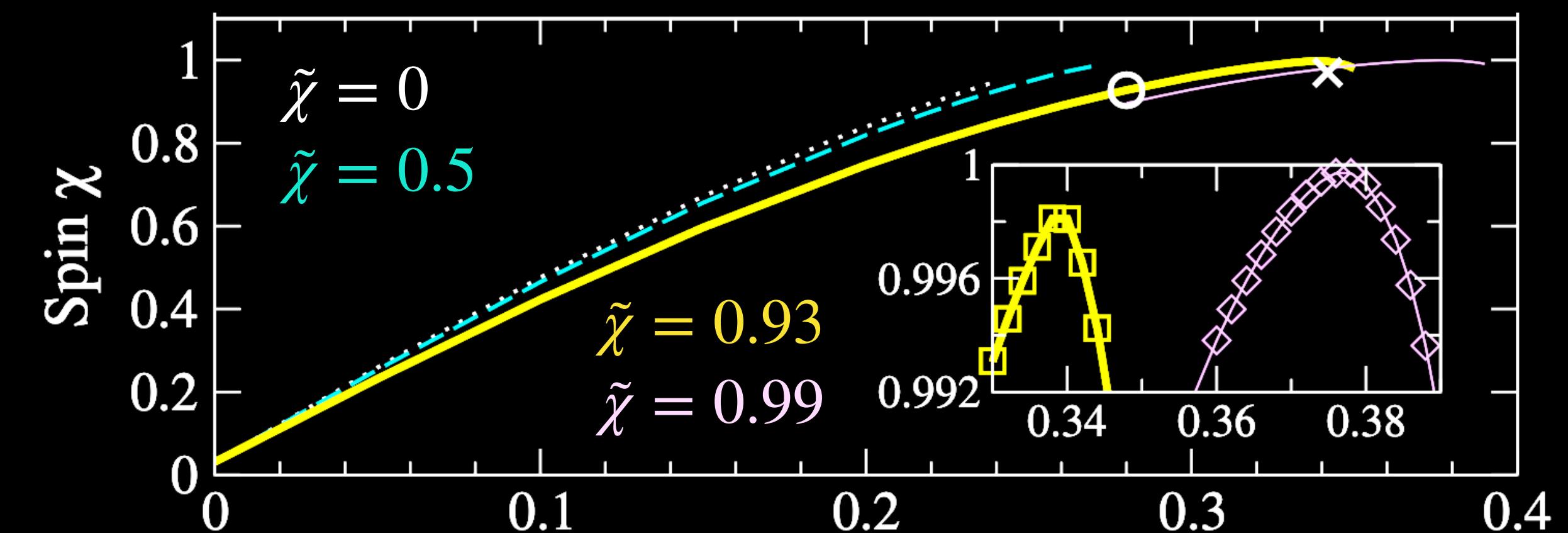
Ruchlin+, Phys. Rev. D **95**, 024033 (2017)



$$g_{ij} = \psi^4 \delta_{ij}$$

Figures from GL+ Phys. Rev. D **78**, 084017 (2008)

$$g_{ij} = \psi^4 (e^{-r_A^2/w^2} \tilde{g}_{ij}^{\text{Kerr-Schild A}} + e^{-r_B^2/w^2} \tilde{g}_{ij}^{\text{Kerr-Schild B}})$$



Parameter controlling black-hole spin

Challenges

Evolving binary black holes with extremal spins

- Excision: need high resolution, excision delicate, no precession

GL+ Phys. Rev. D **83**, 024010 (2011)

GL+ Class. Quantum Grav. **29**, 045003 (2012)

Scheel+, ... GL+ Class. Quantum Grav **32**, 105009 (2015)

Boyle+ Class. Quantum Grav. **36**, 195006 (2019) (2019)

- No boundary condition on excision surfaces

- Well-posedness requires no incoming characteristic speeds (no incoming info) at excision boundaries

- Moving-puncture: in usual coordinates, horizon size vanishes for extremal black hole

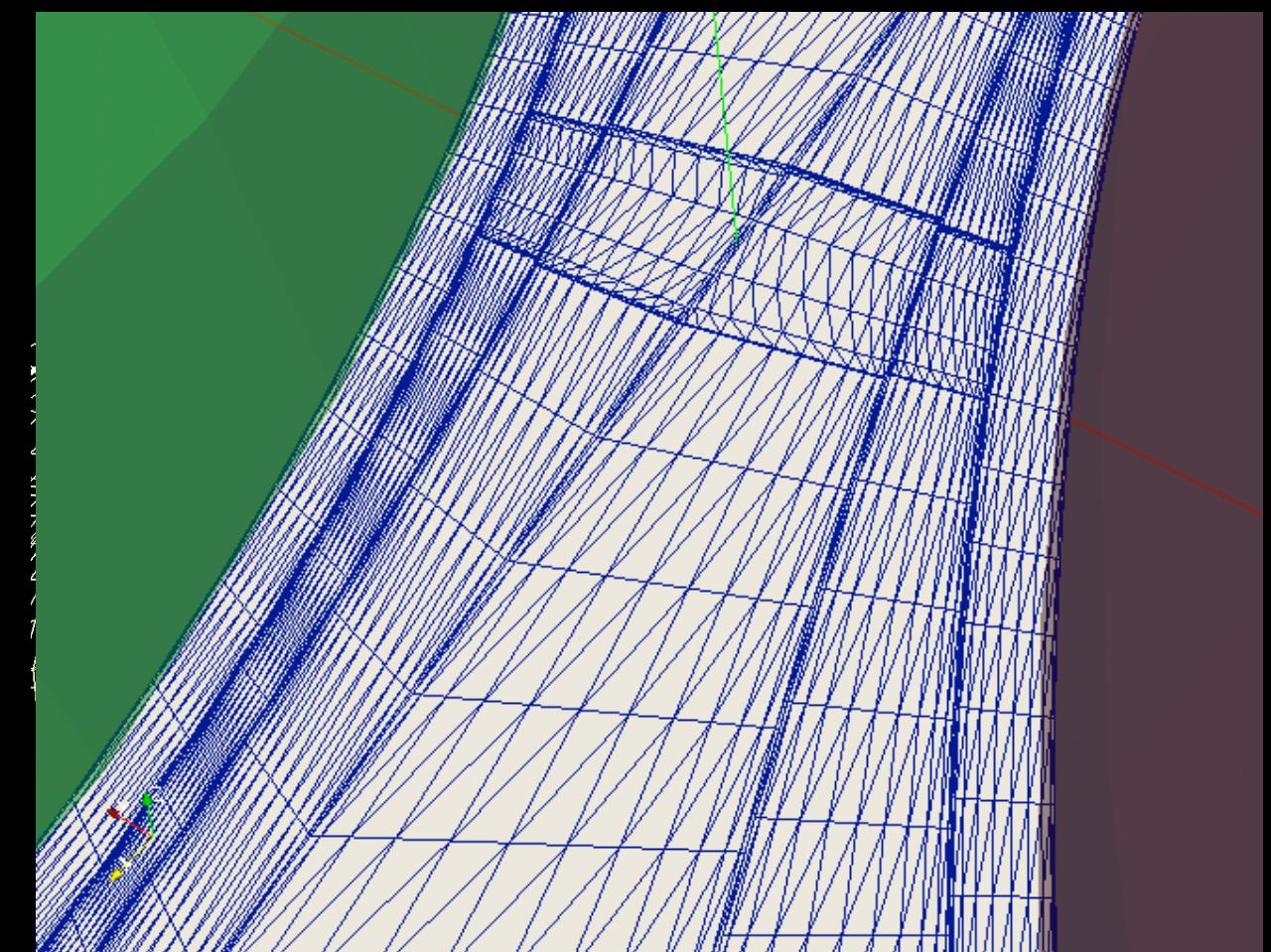
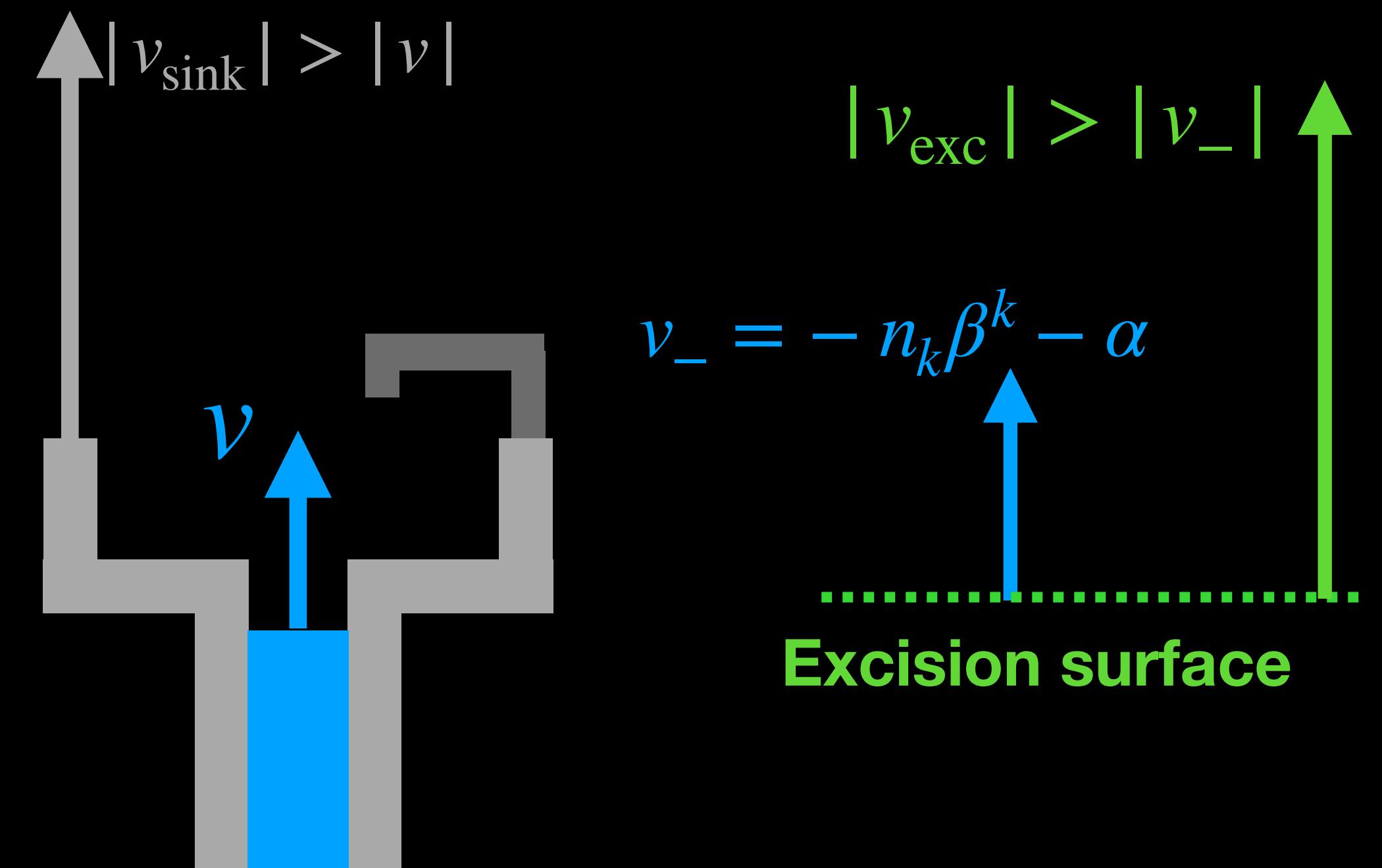


Figure courtesy Mark Scheel

Horizon



An optimization

- Spherical Kerr Schild
 - New gauge that reduces resolution needed by keeping horizons coordinate spheres during inspiral
- Chen+ Phys. Rev. D **104**, 084046 (2021)
- ~2x faster inspiral at same quality (constraint violation)

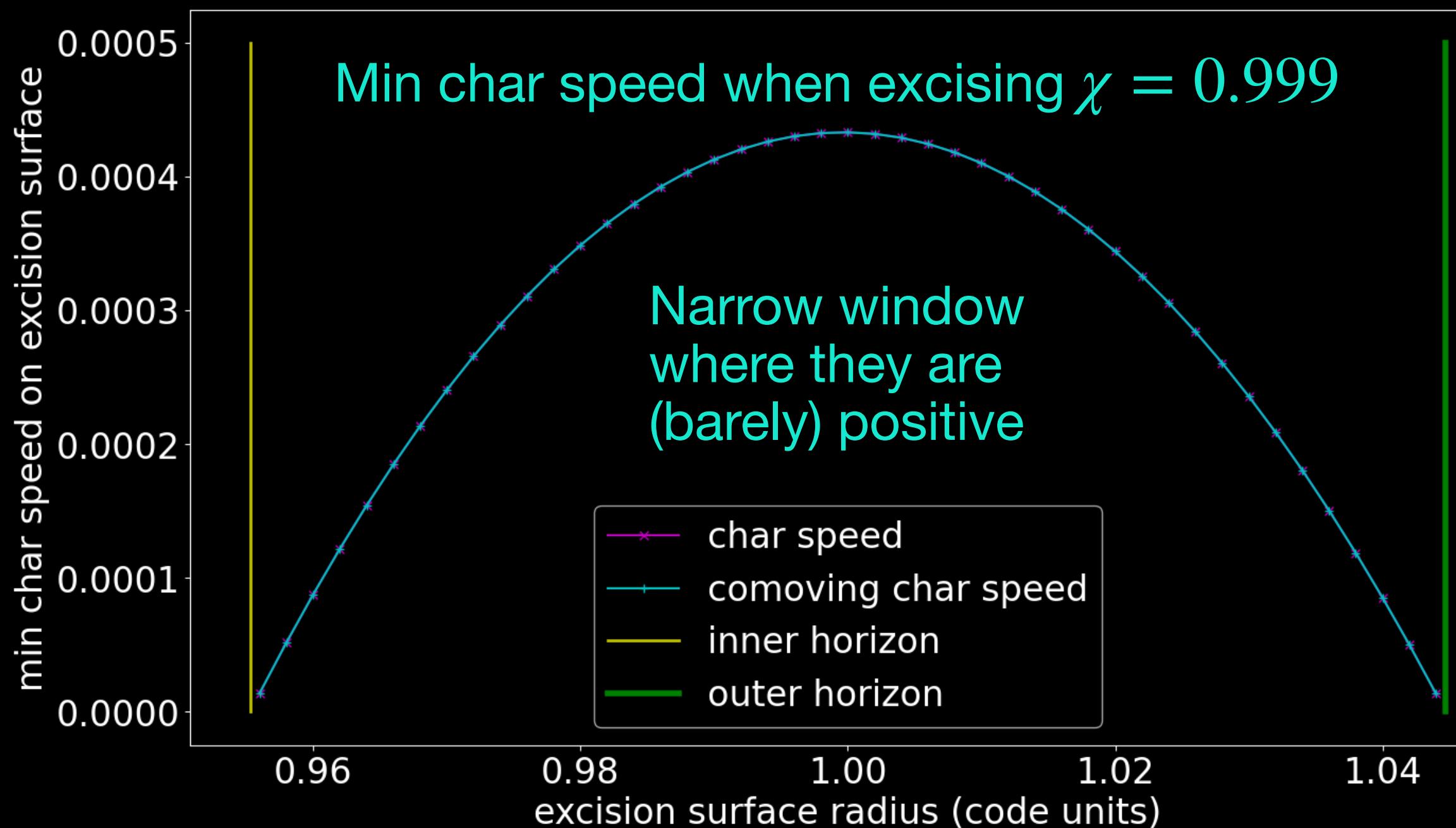
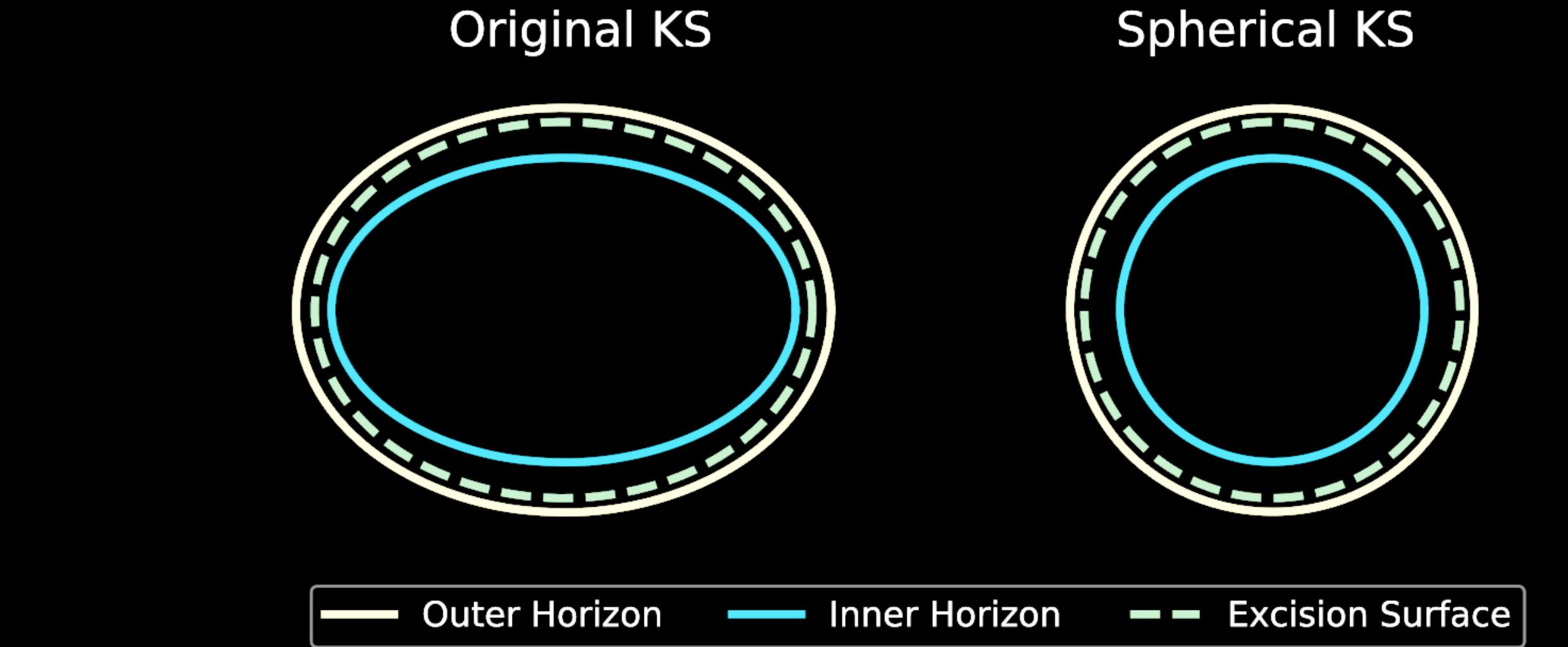
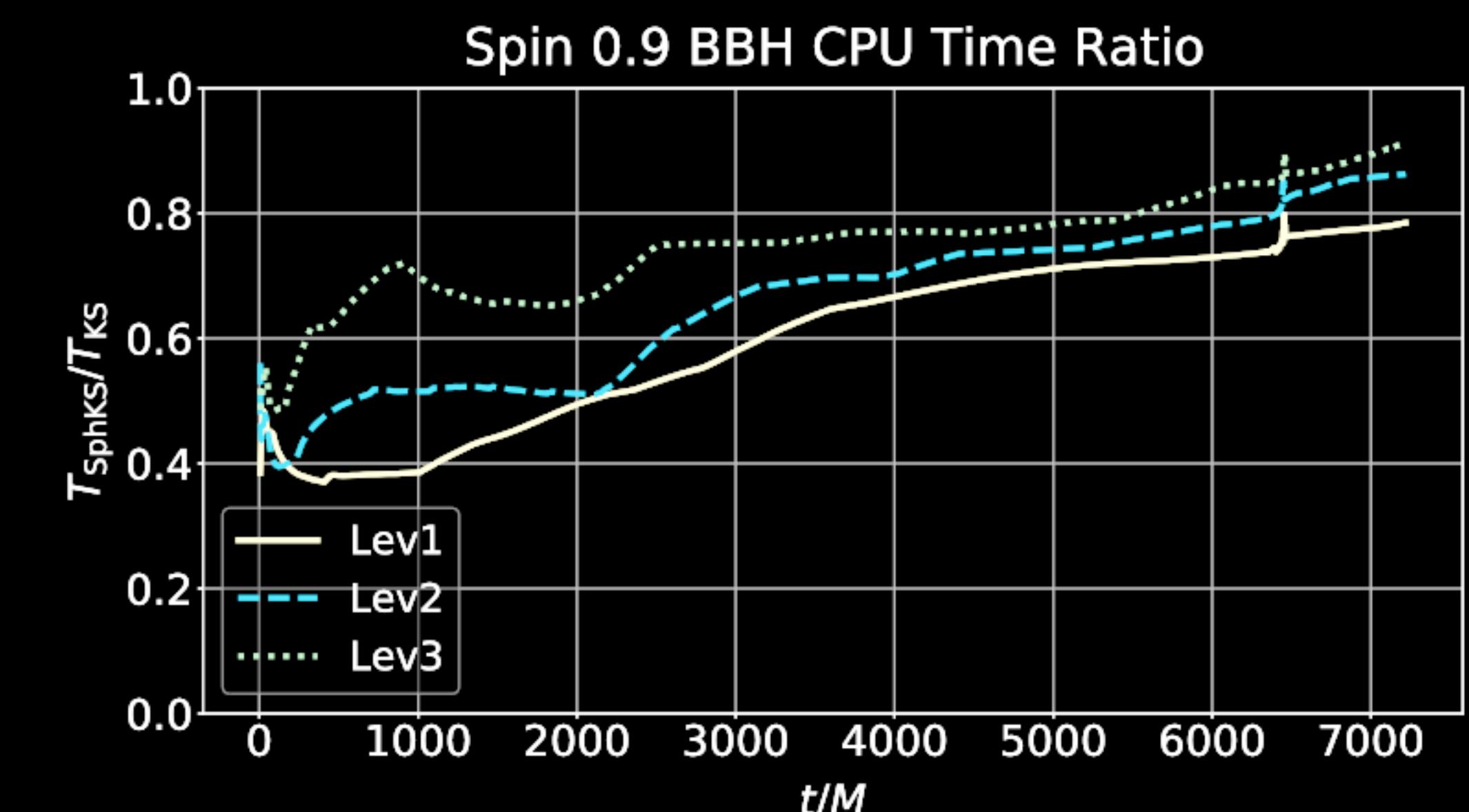


Figure & plot courtesy Chen+ Phys. Rev. D **104**, 084046 (2021)



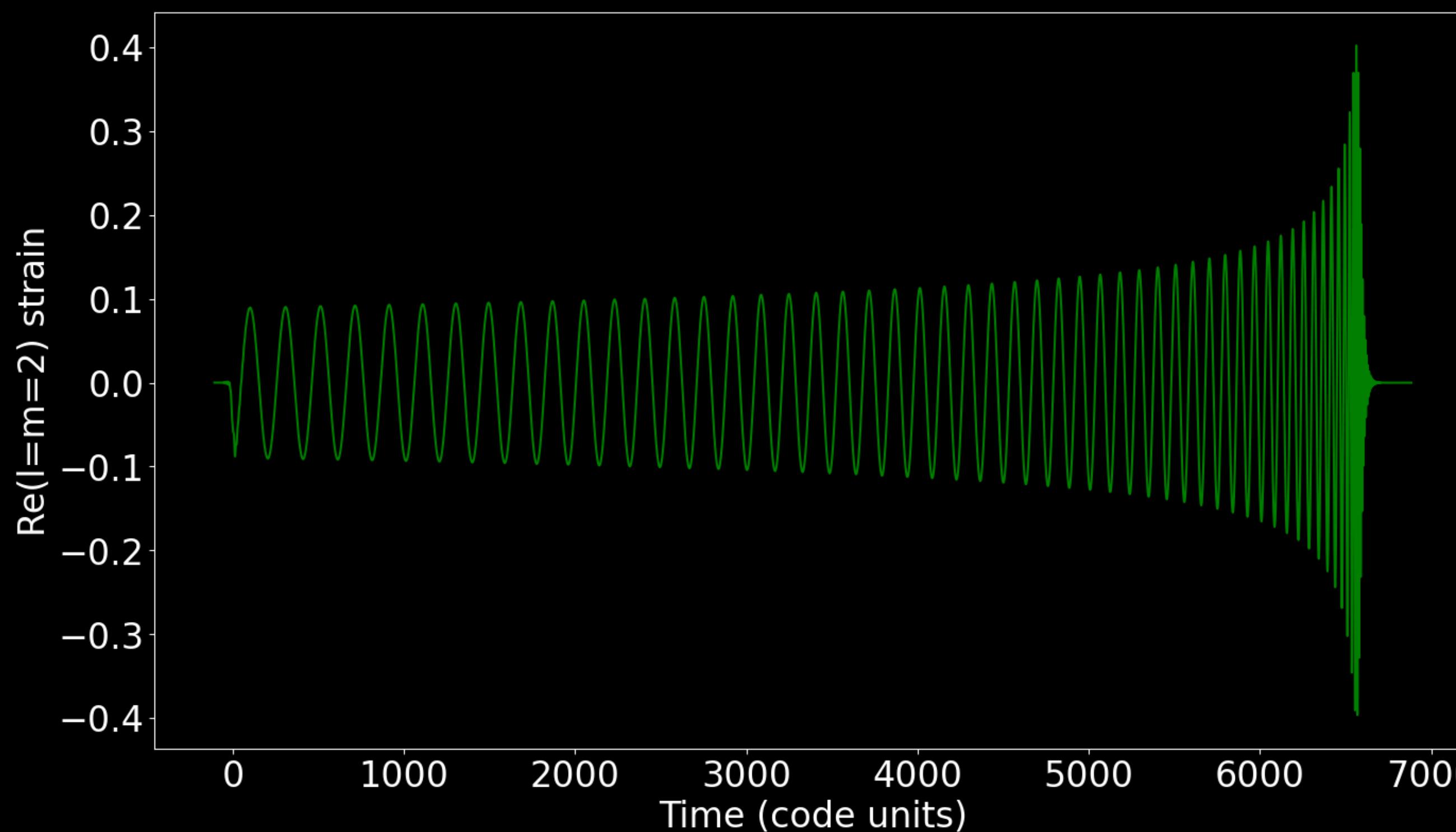
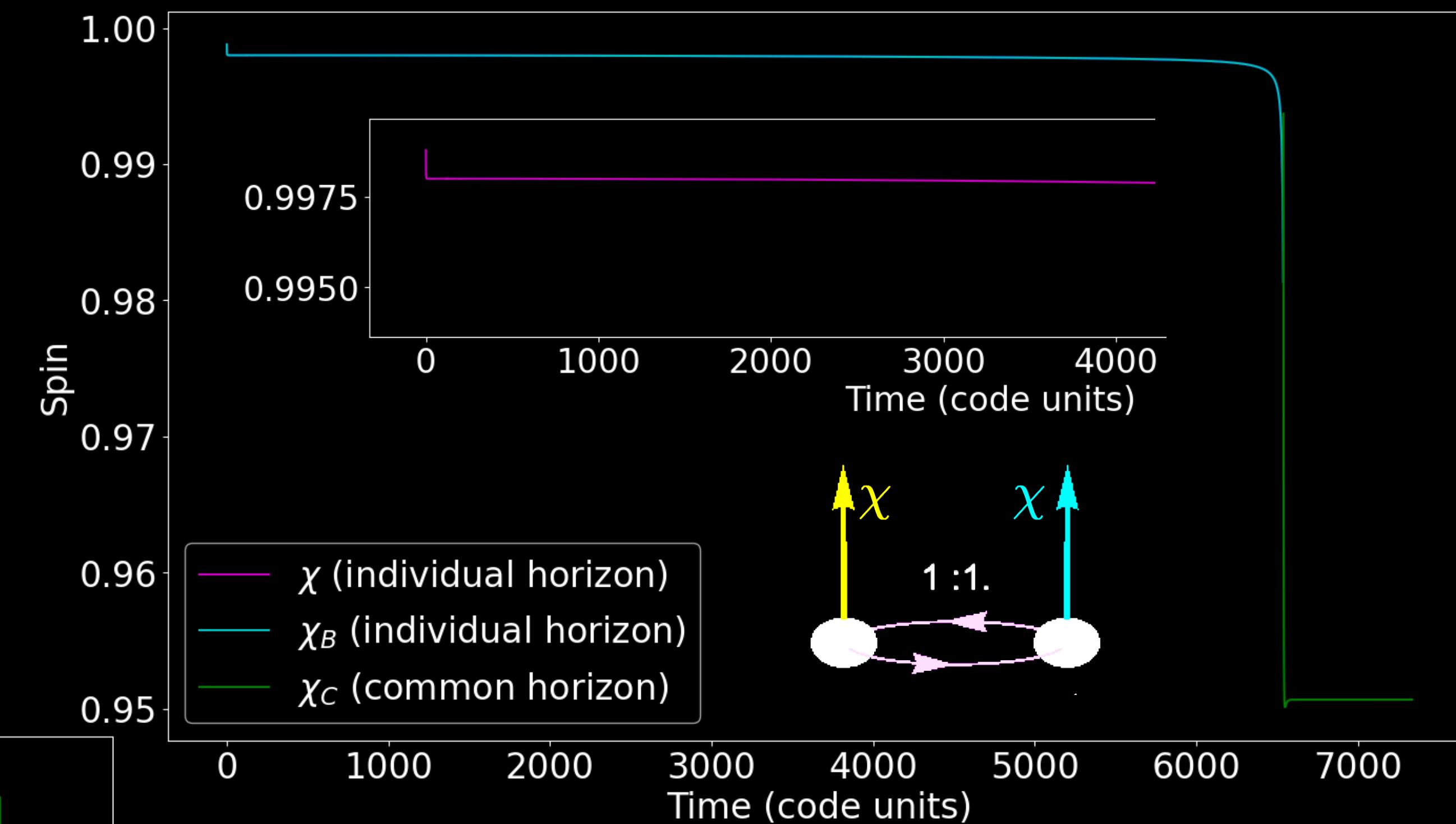
Highest BBH spin so far

- Excision: $\chi = 0.998$

Simulation by Matthew Giesler

Appears in Boyle+, ... GL+...

Class. Quantum Grav. **36**, 195006 (2019)

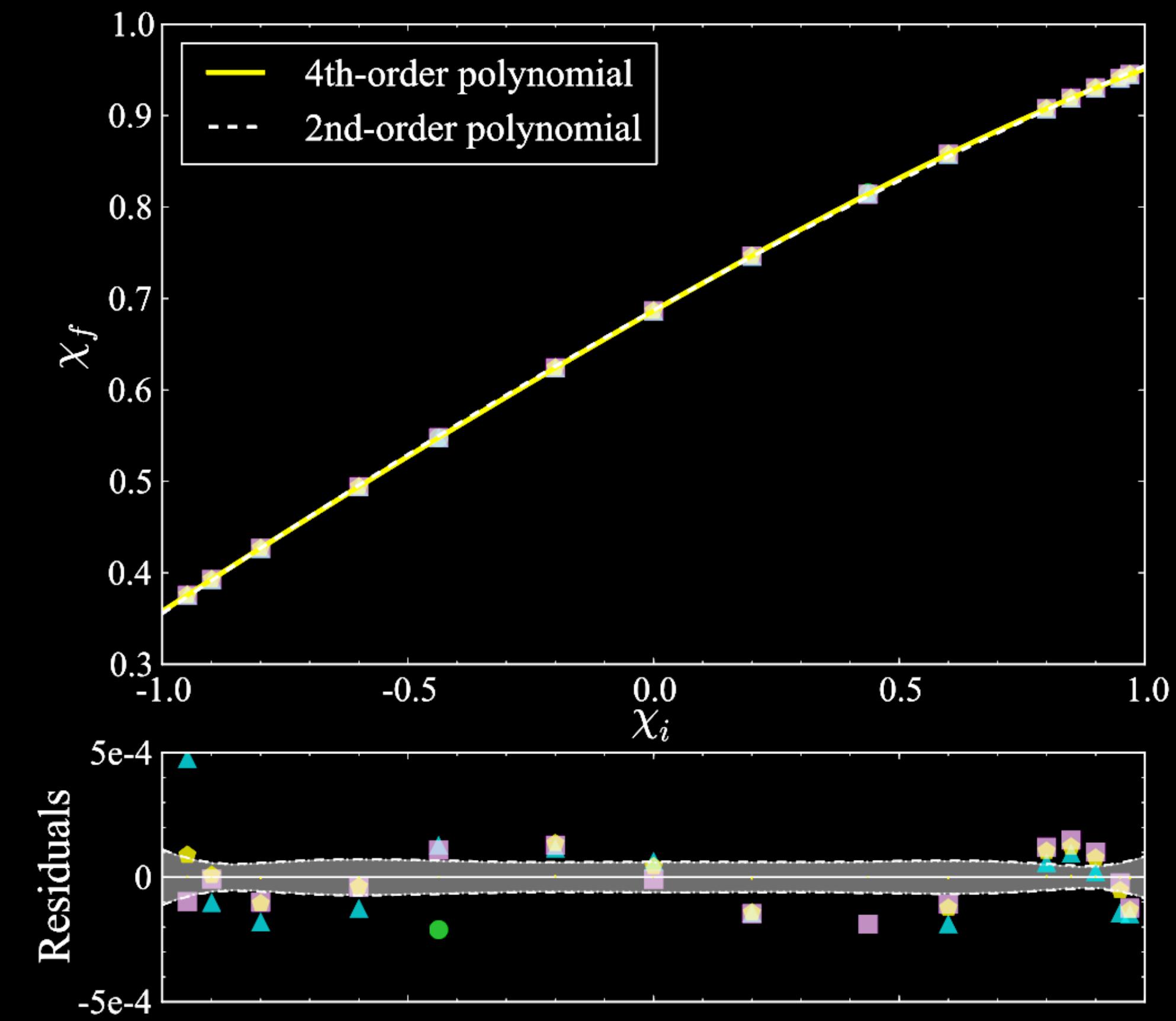
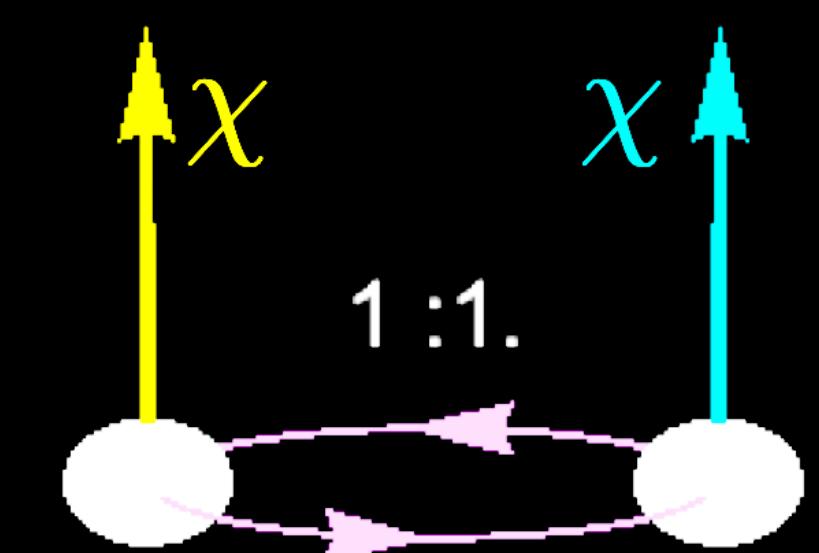


$\chi = 0.998$: last 25.7 orbits before merger

vs. $\chi = -0.97$, same initial separation:
12.2 orbits before merger

What kind of black hole is left behind?

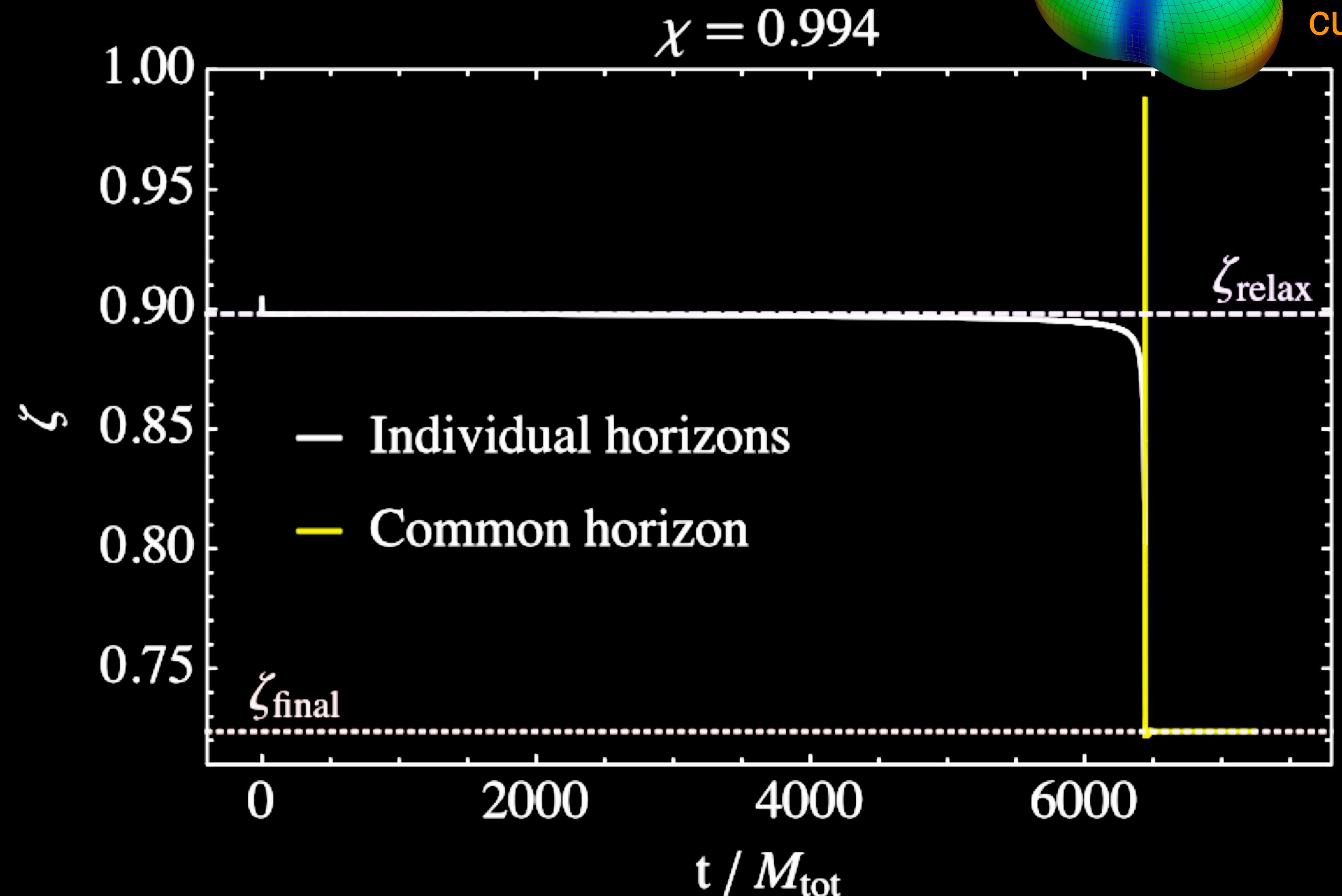
- Fit final mass, spin for equal-mass, aligned-spin inspirals
Hemberger+, ... GL, ...+ Phys. Rev. D **88**, 064014 (2013)



Do evolutions obey $\zeta \leq 1$?

$$\zeta \equiv \frac{8\pi S}{A}$$

- Do evolutions obey $\zeta \leq 1$?

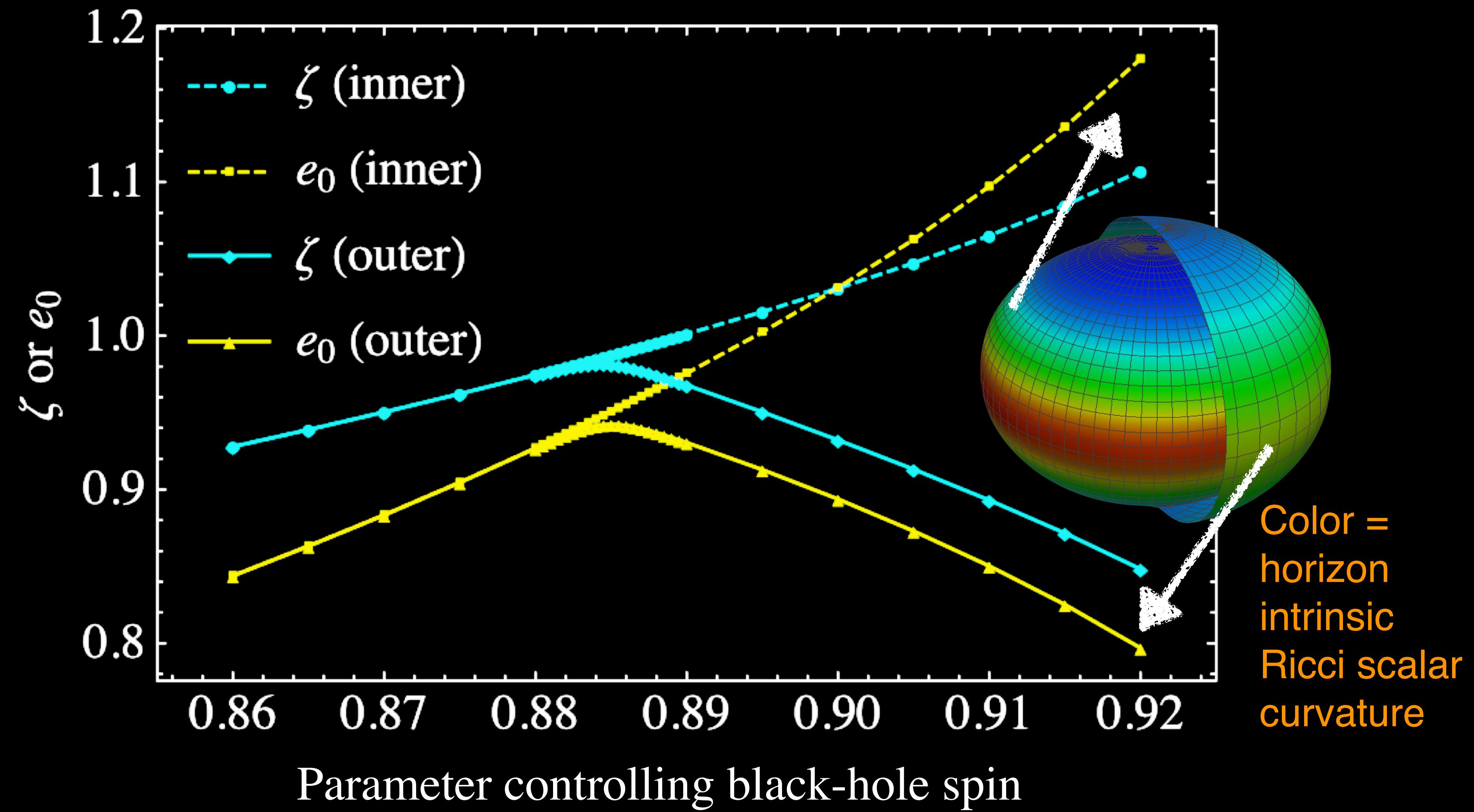


$$\chi \equiv \frac{S}{M^2}$$

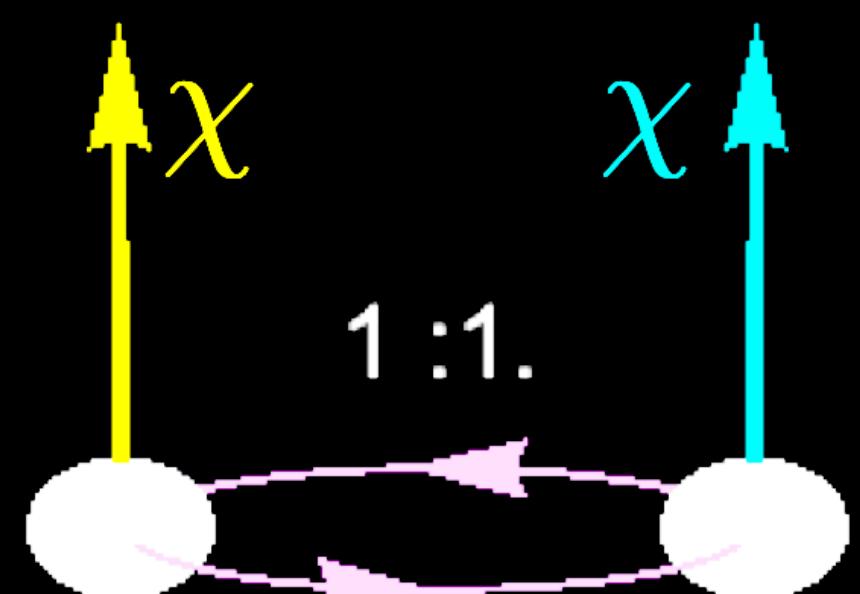
Color = horizon
intrinsic Ricci scalar
curvature

Can you generate initial data with $\zeta > 1$?

$$e_0 \equiv \min \left[\frac{1}{4\pi} \oint_{\mathcal{H}} \omega_B \omega^B dA \right]$$



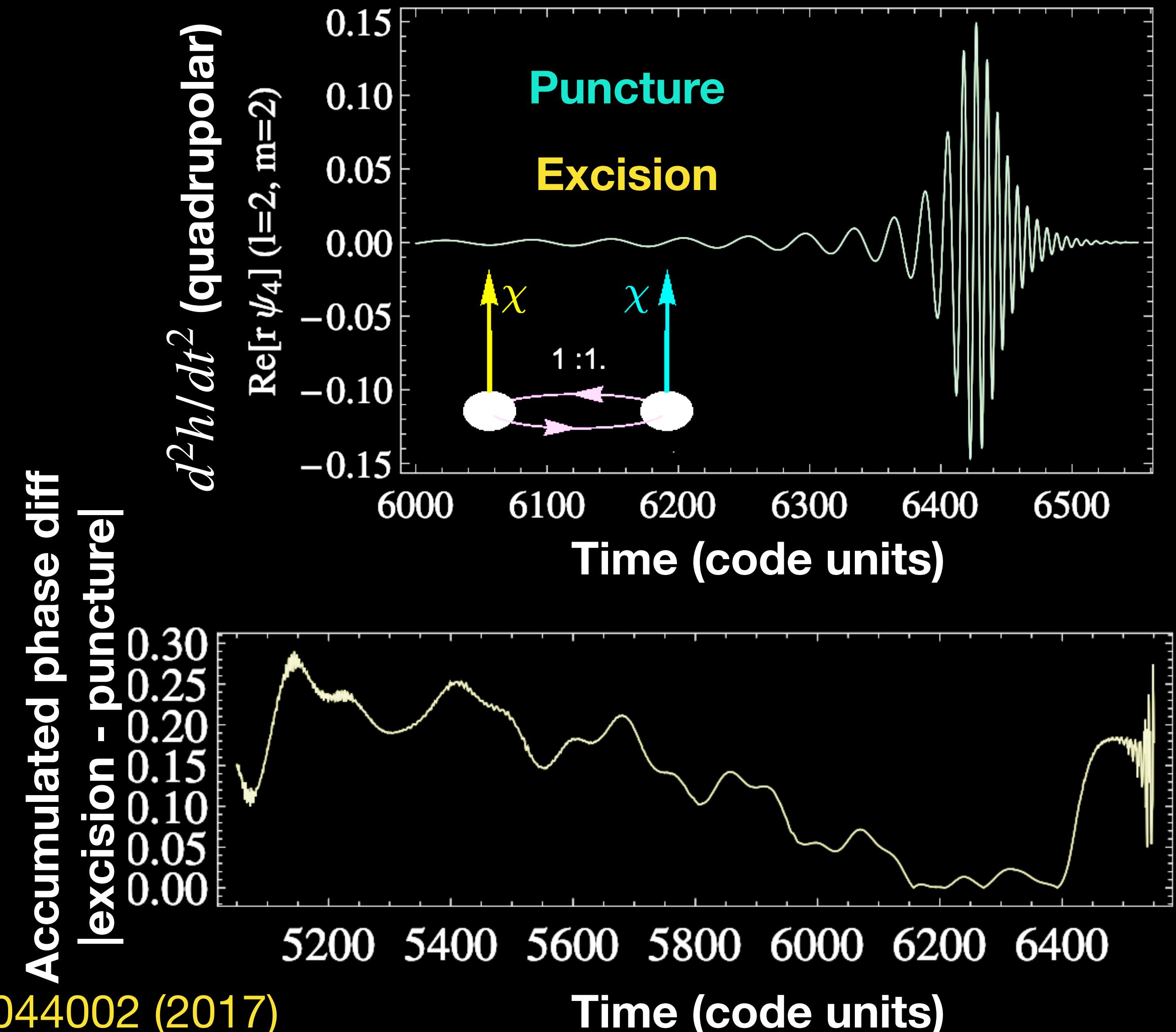
$$\zeta \equiv \frac{8\pi S}{A}$$



$$\chi \equiv \frac{S}{M^2}$$

Puncture evolutions with nearly extremal spins

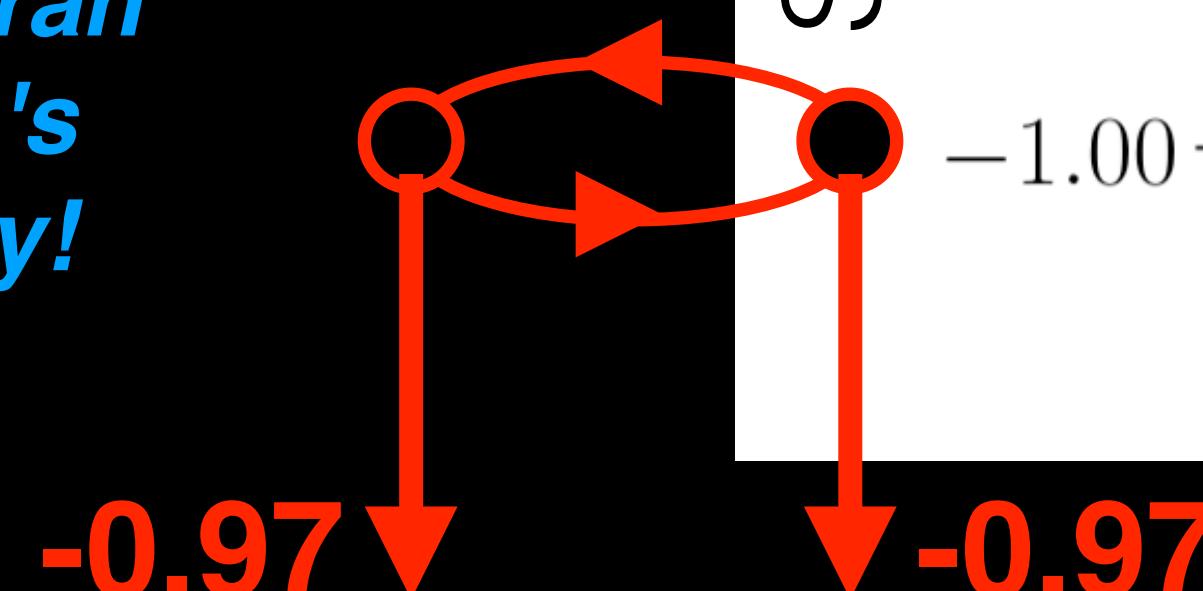
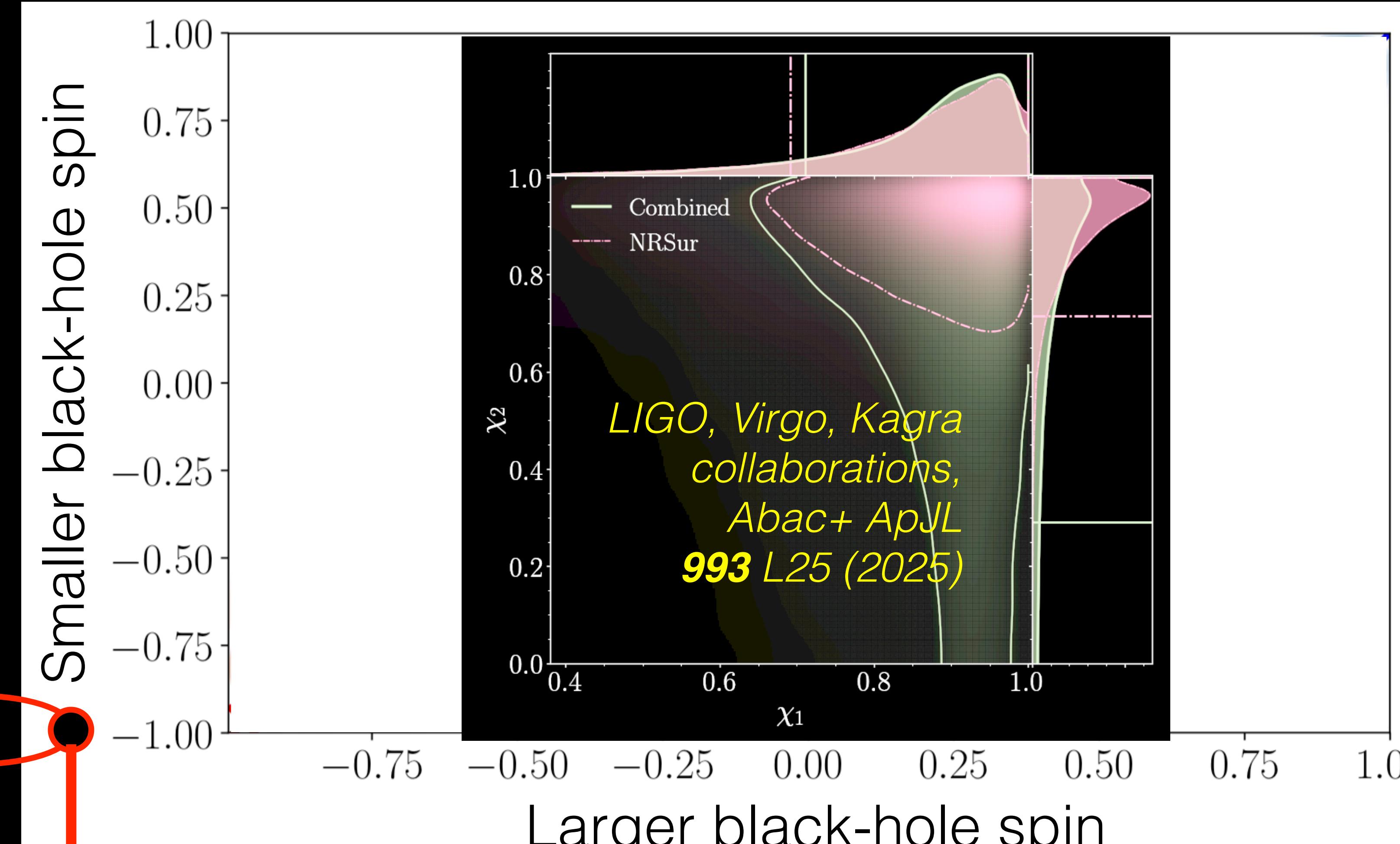
- Choose radial coordinate carefully, so extremal horizon radius not zero
Liu+ (2009) – spins up to 0.95
- Puncture evolutions with $\chi = 0.95$
Zlochower+ Phys. Rev. D **96**, 044002 (2017)
– spins up to 0.99 (head-on) / 0.95 (inspiral)
- $\chi = 0.95$, 1.5:1 mass ratio:
recoil > 500 km/s, largest for aligned-spin
Healy+ Phys. Rev. D **97**, 104026 (2017)
– very large recoil
- Initial data for charged, spinning black holes up to 90% extremity
Mukherjee+ arXiv:2202.12133v1 (2022)



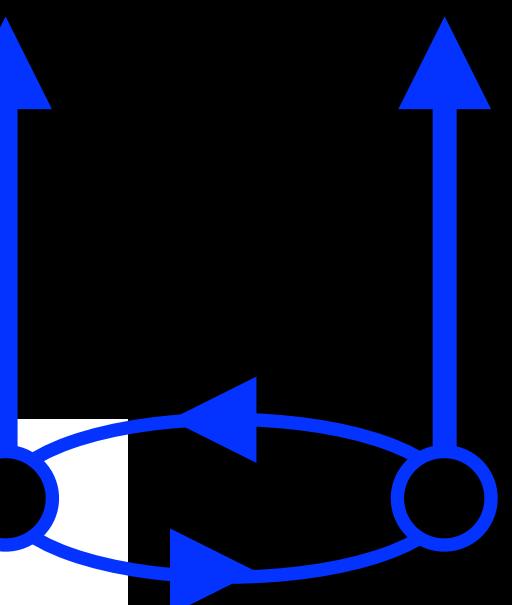
Can LIGO measure high spins?

- Merging black holes with...
 - \approx masses
 - spins ≈ 1
 - If LIGO sees waves from this binary, **could we tell?**

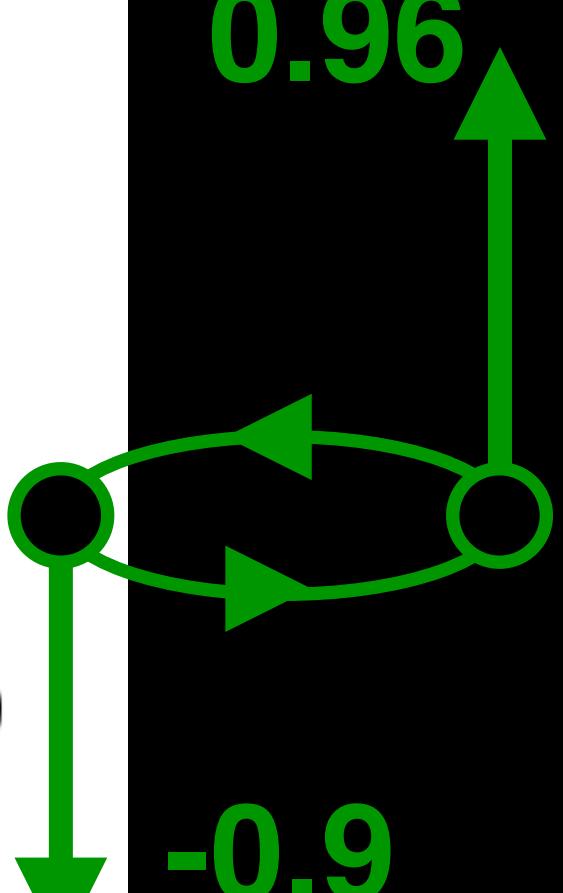
For more on numerical relativity & inferring gravitational-wave source properties, see Deborah Ferguson's talk Friday!



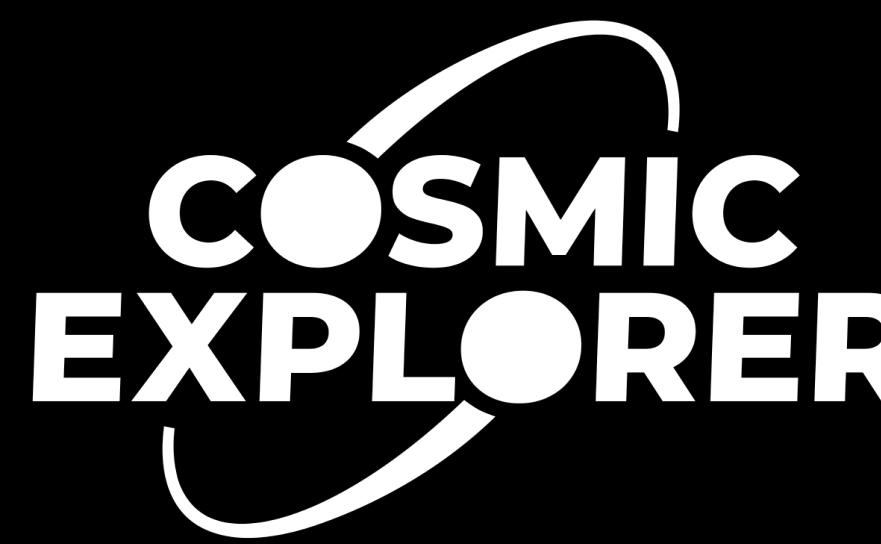
0.998 0.998



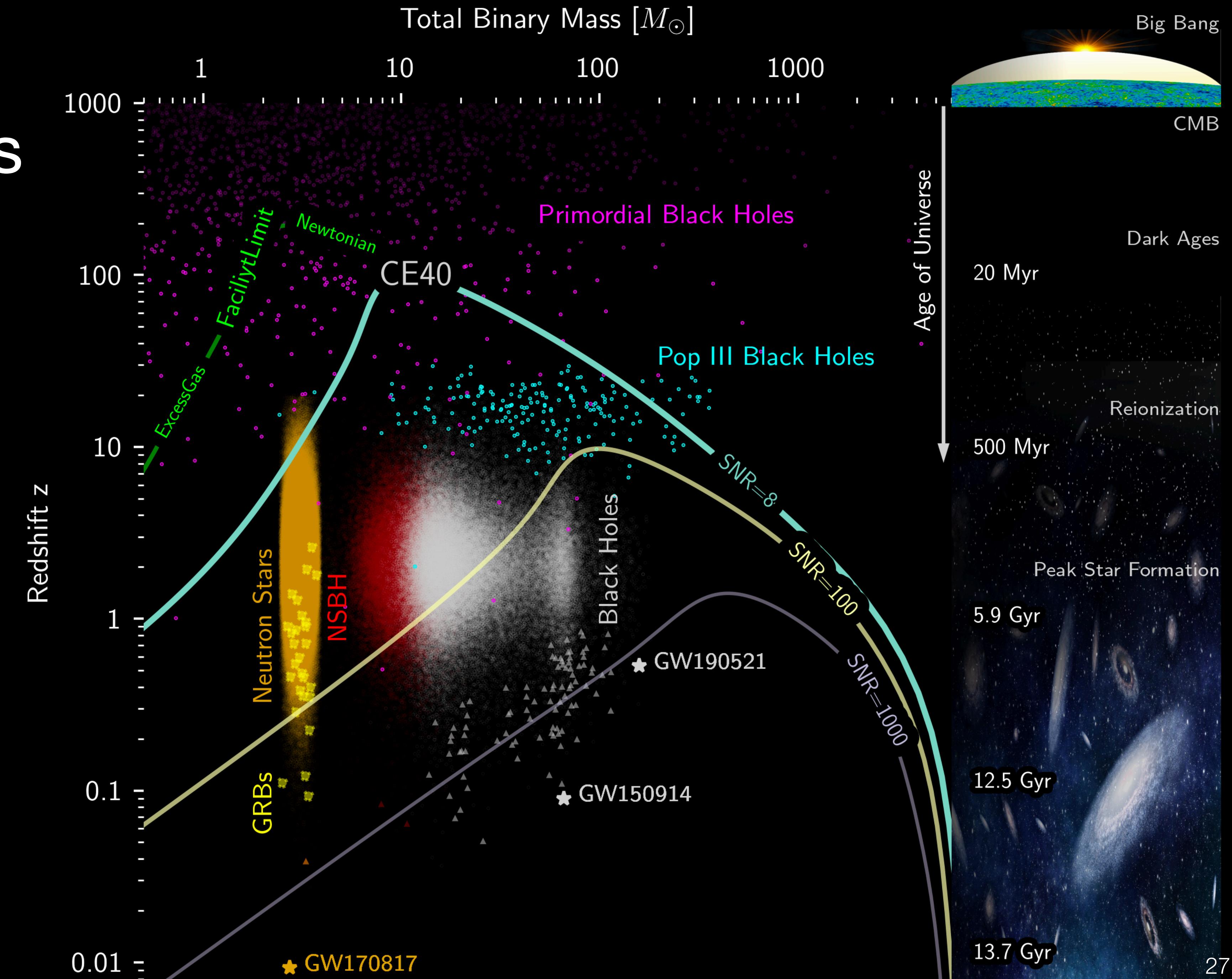
0.96



Cosmic Explorer's View into the Universe

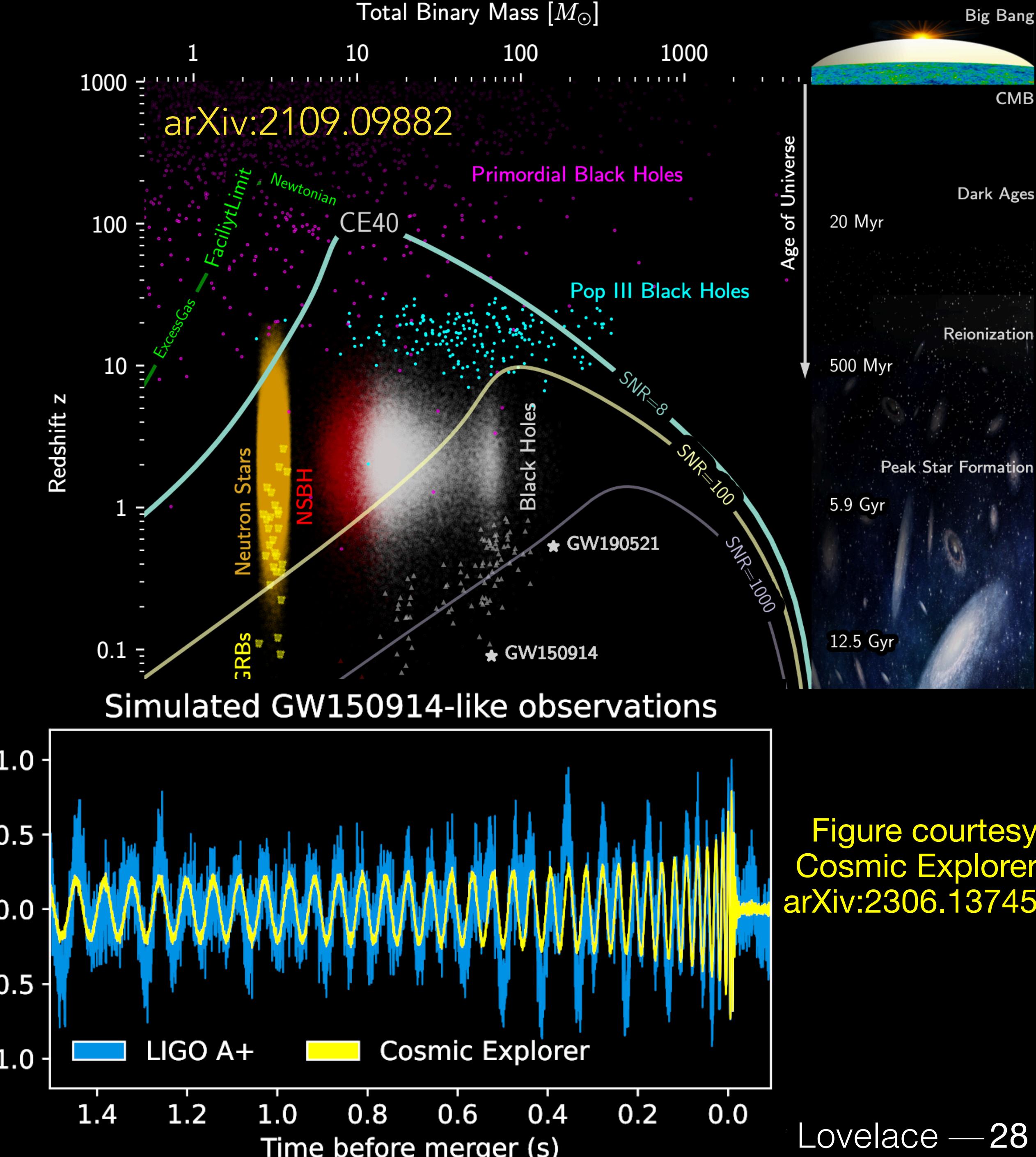


Cosmic Explorer White Paper
for NSF MSCAC ngGW,
arXiv:2109.09882



Next-gen NR

- BBH catalogs for Cosmic Explorer, Einstein Telescope, LISA
 - Need much more accuracy ($\text{SNR} > 1000$)
[Pürrer & Haster \(2020\)](#)
[Ferguson+ \(2021\)](#), [Jan+ \(2024\)](#)
 - Novel codes aiming to achieve this
[AthenaK](#): [Zhu+ \(2024\)](#)
- NMesh**: [Adhikari+ \(2025\)](#)
- Dendro-GR**: [Fernando+ \(2023\)](#),
- AsterX**: [Kalinani+ \(2024\)](#)
- SuperB**: [Tootle+ \(2025\)](#)
- SpECTRE**: [GL, K Nelli+ \(2025\)](#),
successor to Spectral Einstein Code (SpE)

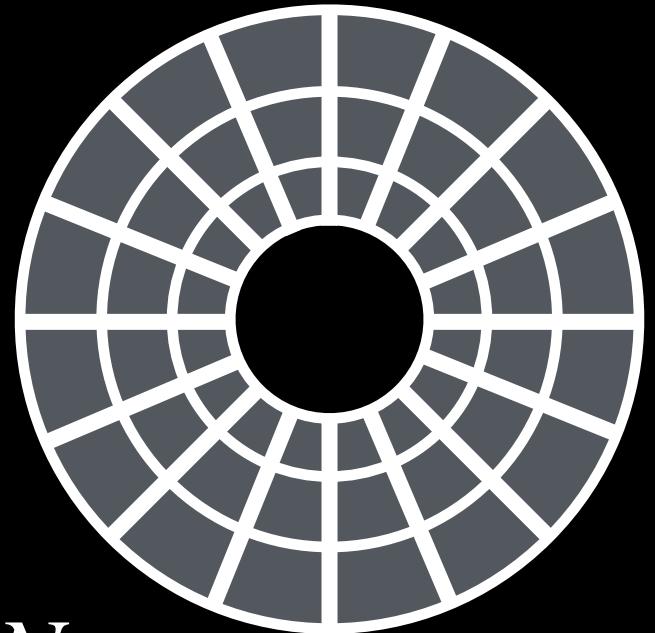


SpECTRE methods

See GL, Kyle Nelli+, Class. Quantum Grav. **42**, 035001 (2025)

- Open-source code
- Discontinuous-Galerkin method for initial data & evolution
- Local adaptive time stepping (4th-order Adams Moulton)
- Task-based parallelism via charm++ library
- Generalized-harmonic formulation, damped harmonic gauge, constraint-preserving boundary conditions
- Excision, maps & control system to match domain, horizons
 - Domain made entirely of deformed cubes
 - Scales to many more CPU cores – but many more points vs. spherical shells
- Waveforms via Cauchy Characteristic Evolution (CCE)
Moxon+ Phys. Rev. D **107**, 064013 (2023)
CCE: Bishop+ Phys. Rev. D **54**, 6153 (1996)

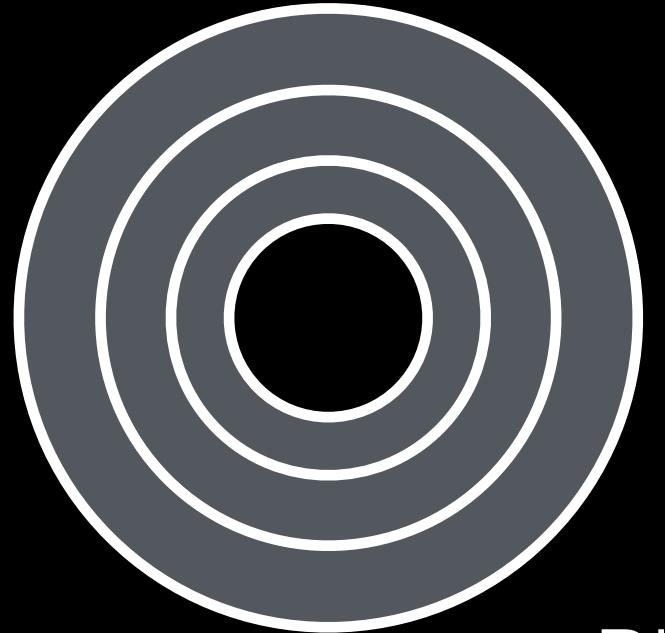
SpECTRE



Smaller N
more cells

$$f(x) = \sum_{n=0}^N a_n \phi(x)$$

SpEC



Bigger N
fewer cells

Exponential convergence *when solution smooth*

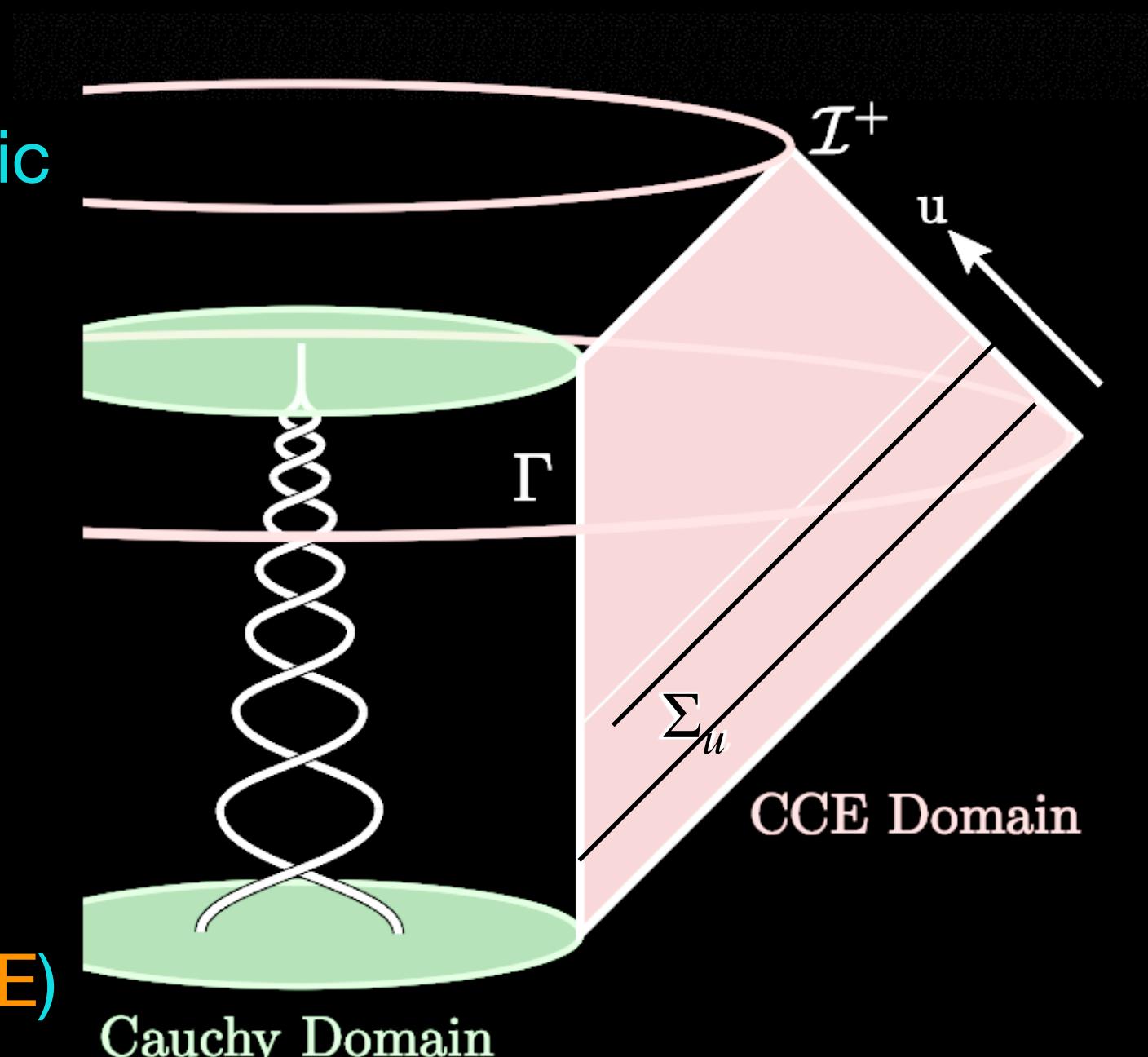
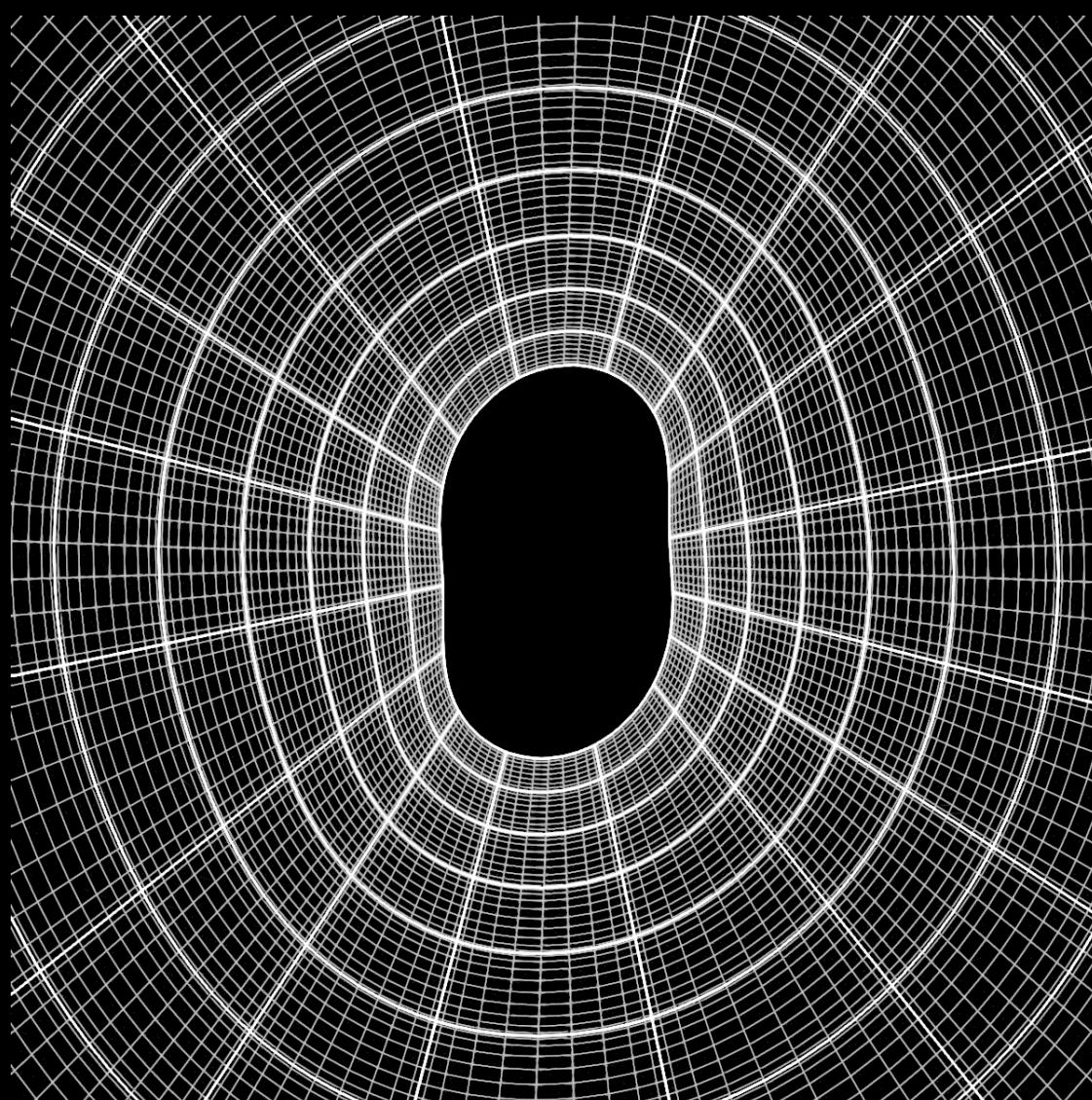


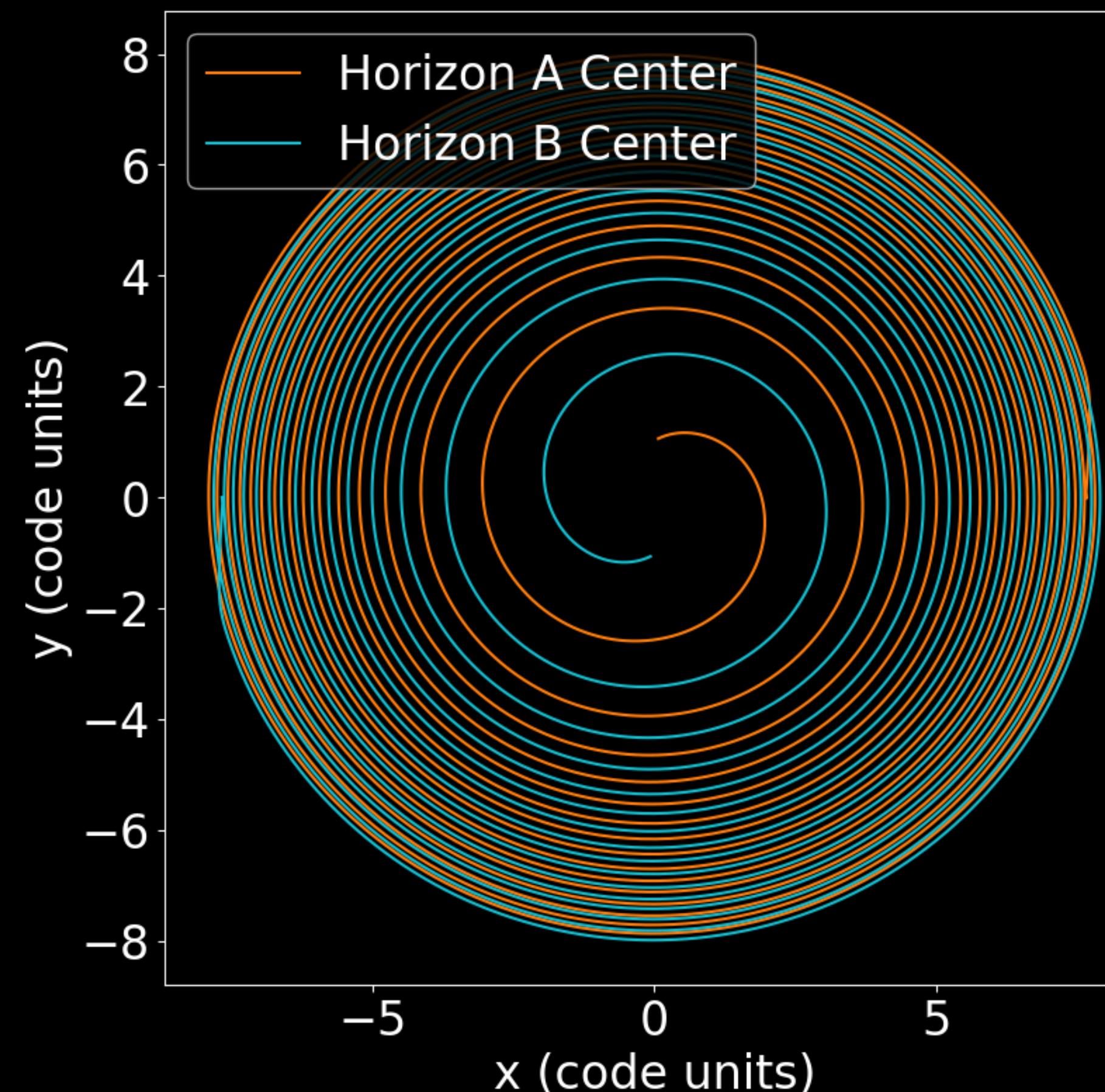
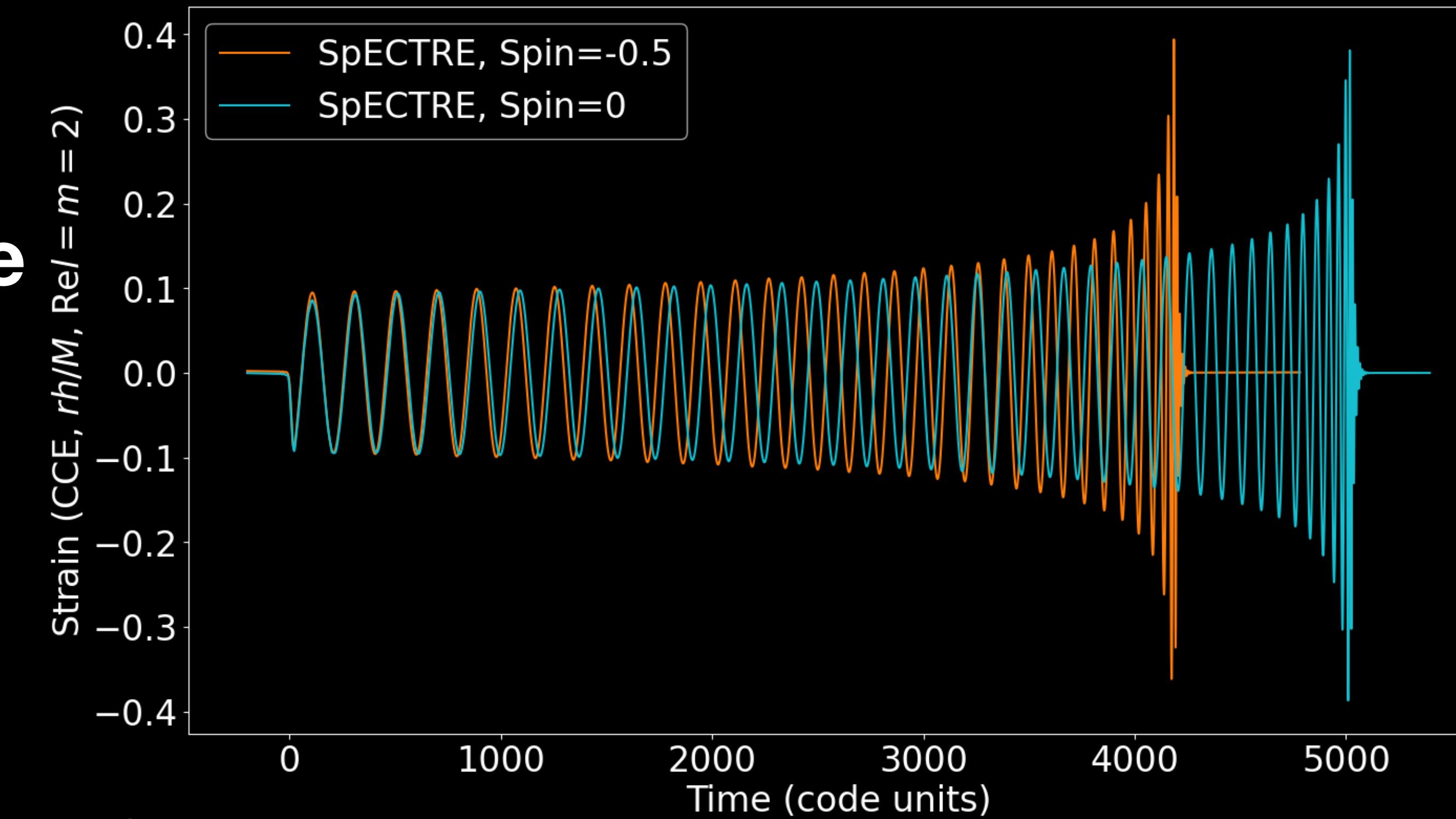
Figure courtesy Moxon+
Phys. Rev. D **107**, 064013 (2023)



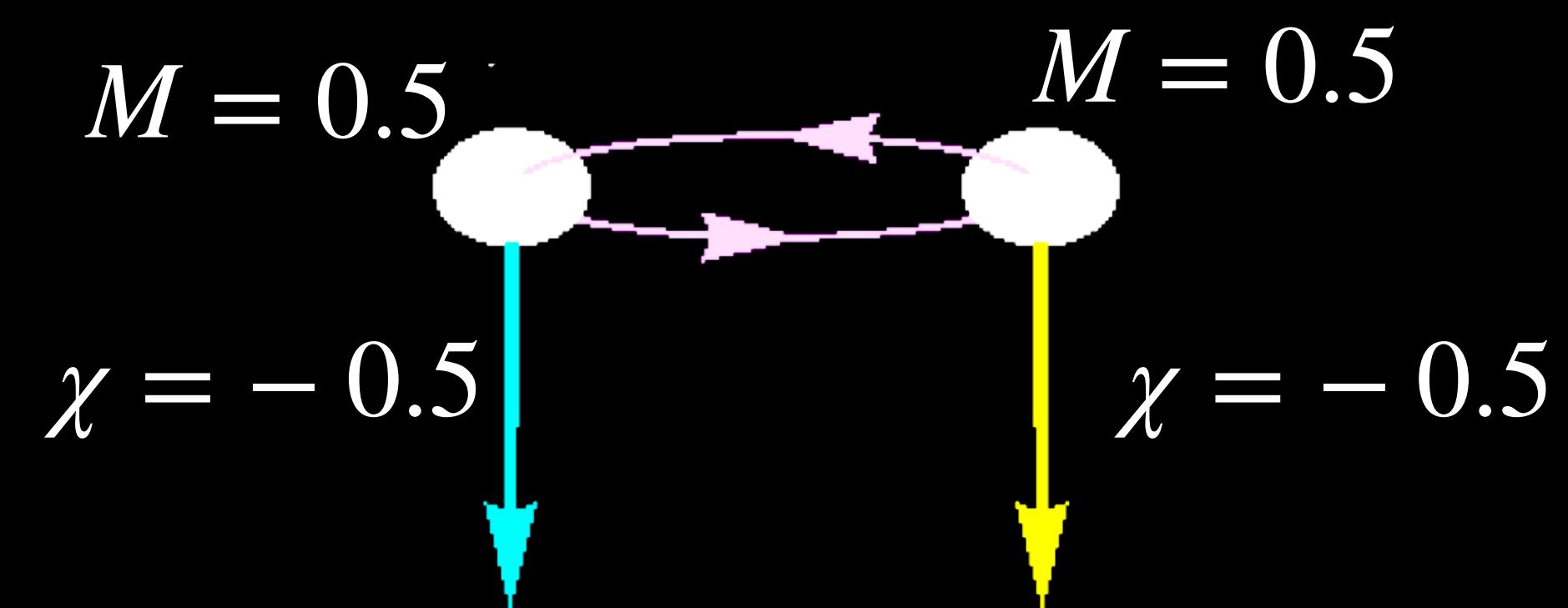
SpECTRE status

First spinning binary black hole

- ~15 orbits, equal-mas, spin=0.5 anti-aligned with orbital angular momentum



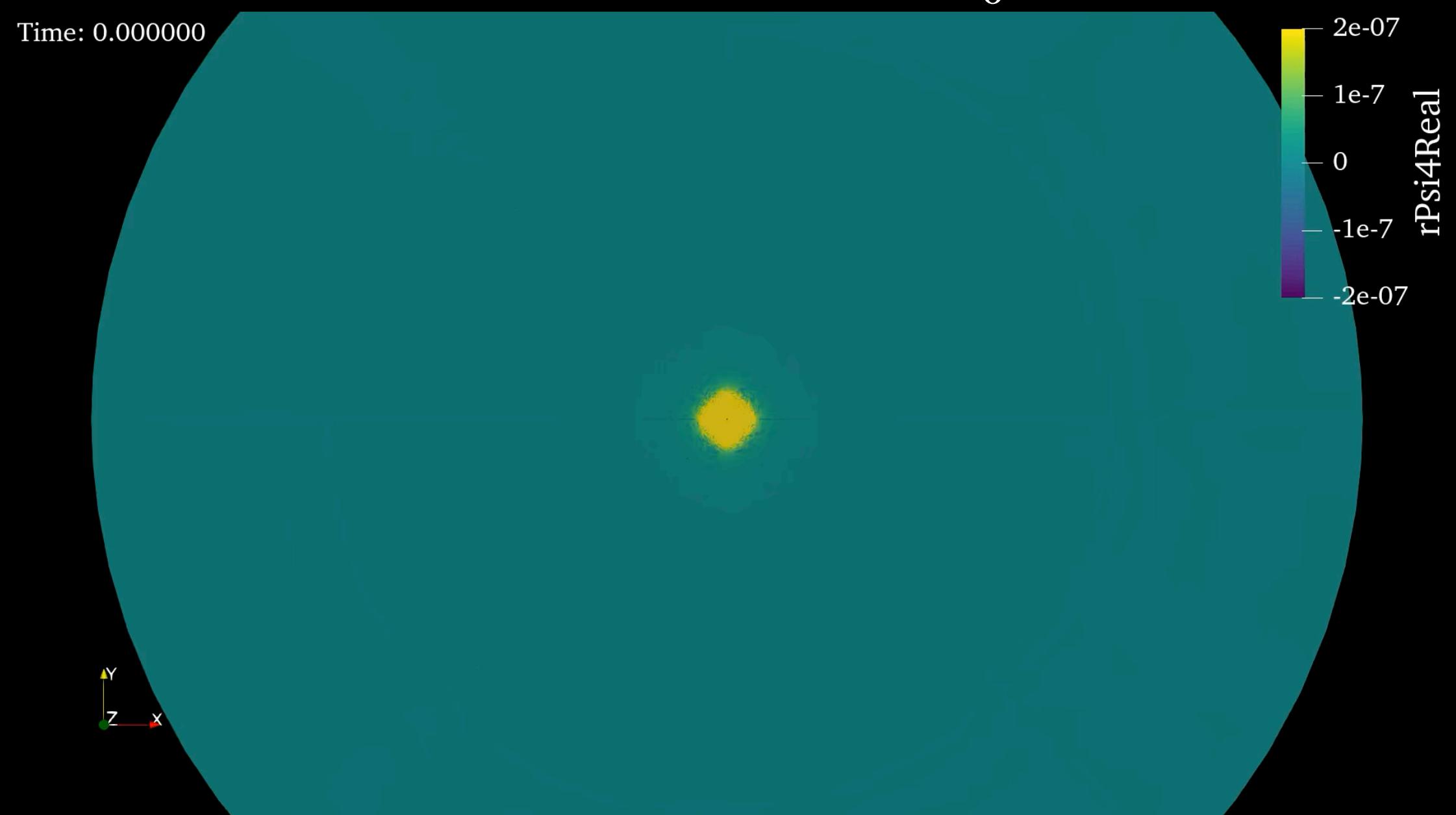
Spin 0 waveform from
GL, Kyle Nelli+, Class. Quantum Grav. **42**, 035001 (2025)



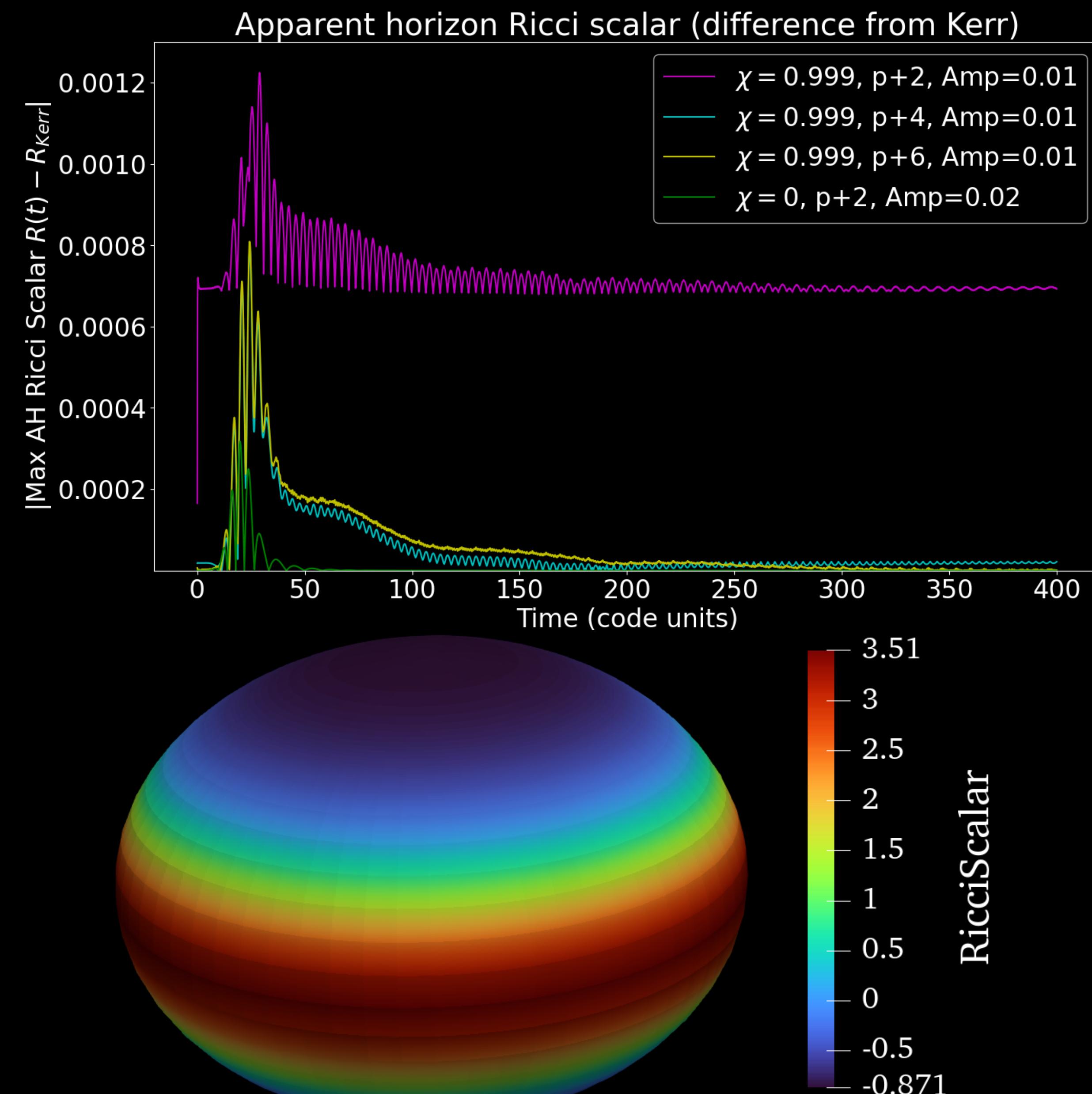
SpECTRE status

Perturbed black hole

- Initial data: solve constraints for $\chi = 0.999$ Kerr-Schild black hole + incoming $\ell = m = 2$ even Teukolsky wave Teukolsky, Phys. Rev. D **26**, 745 (1982)
 - Gaussian with width $w = 4M$ & amplitude $A = 0.01$ or 0.02 centered at $r_0 = 20M$



$r\Psi_4$ (outgoing gravitational waves)

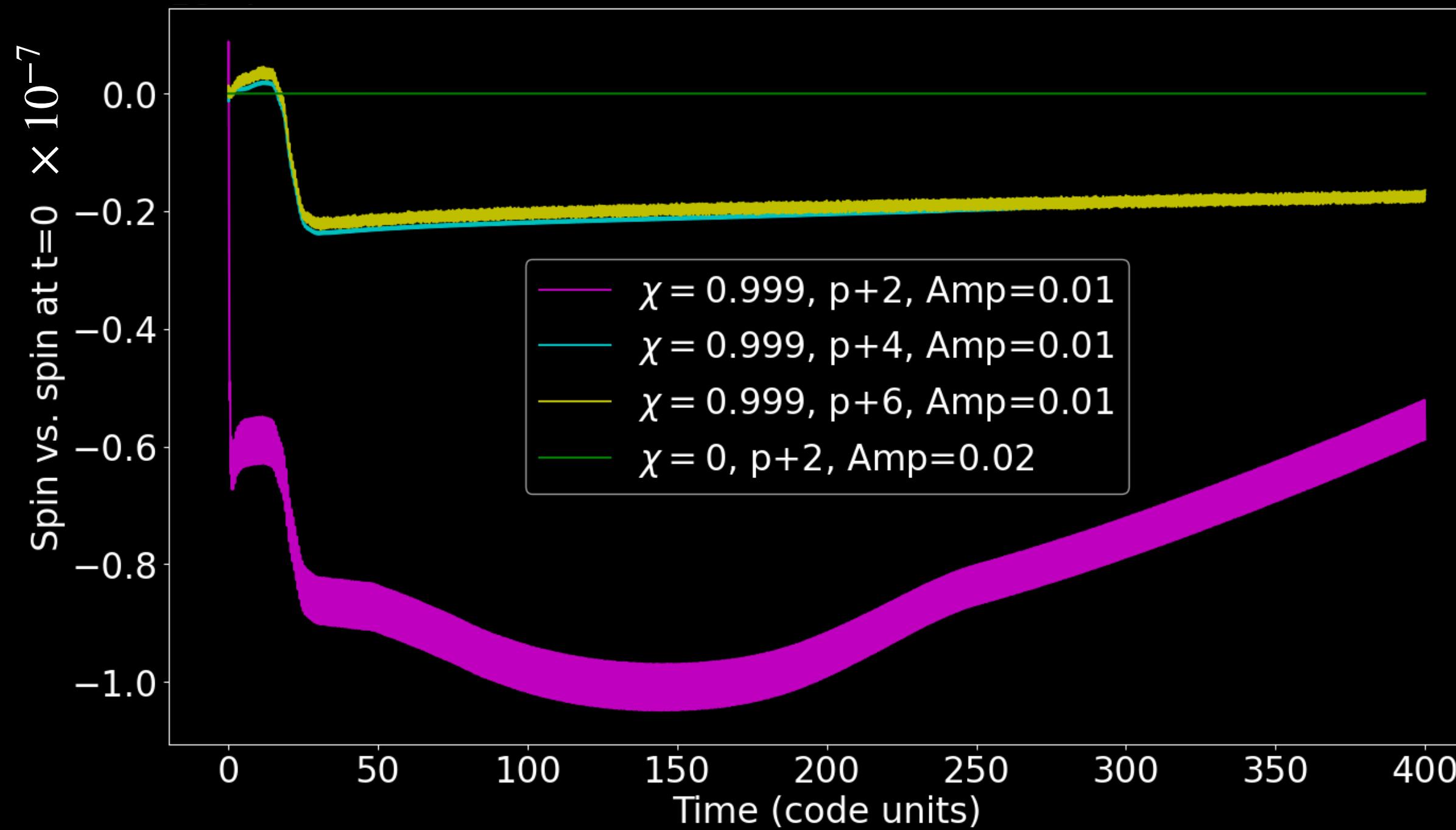
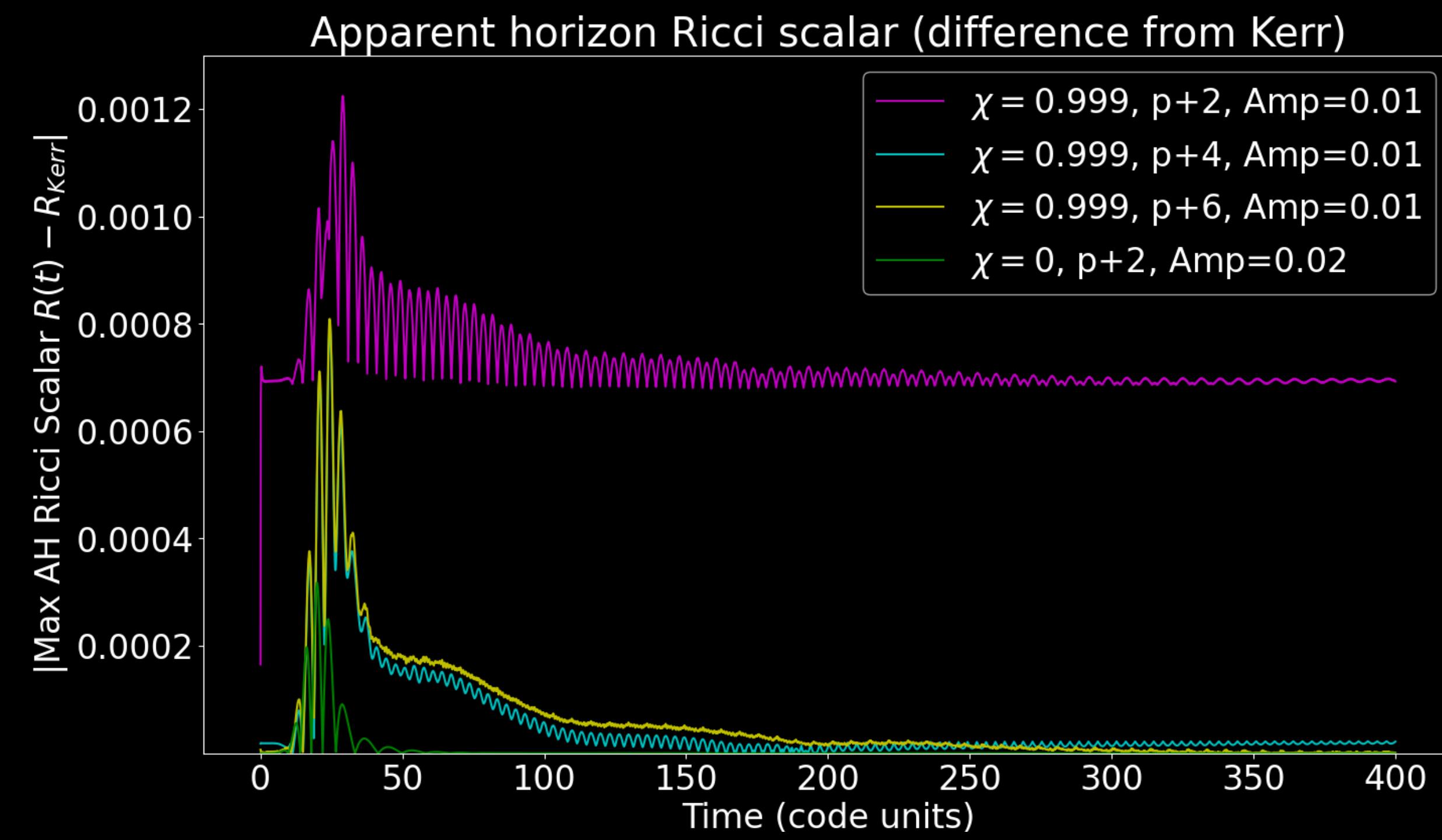
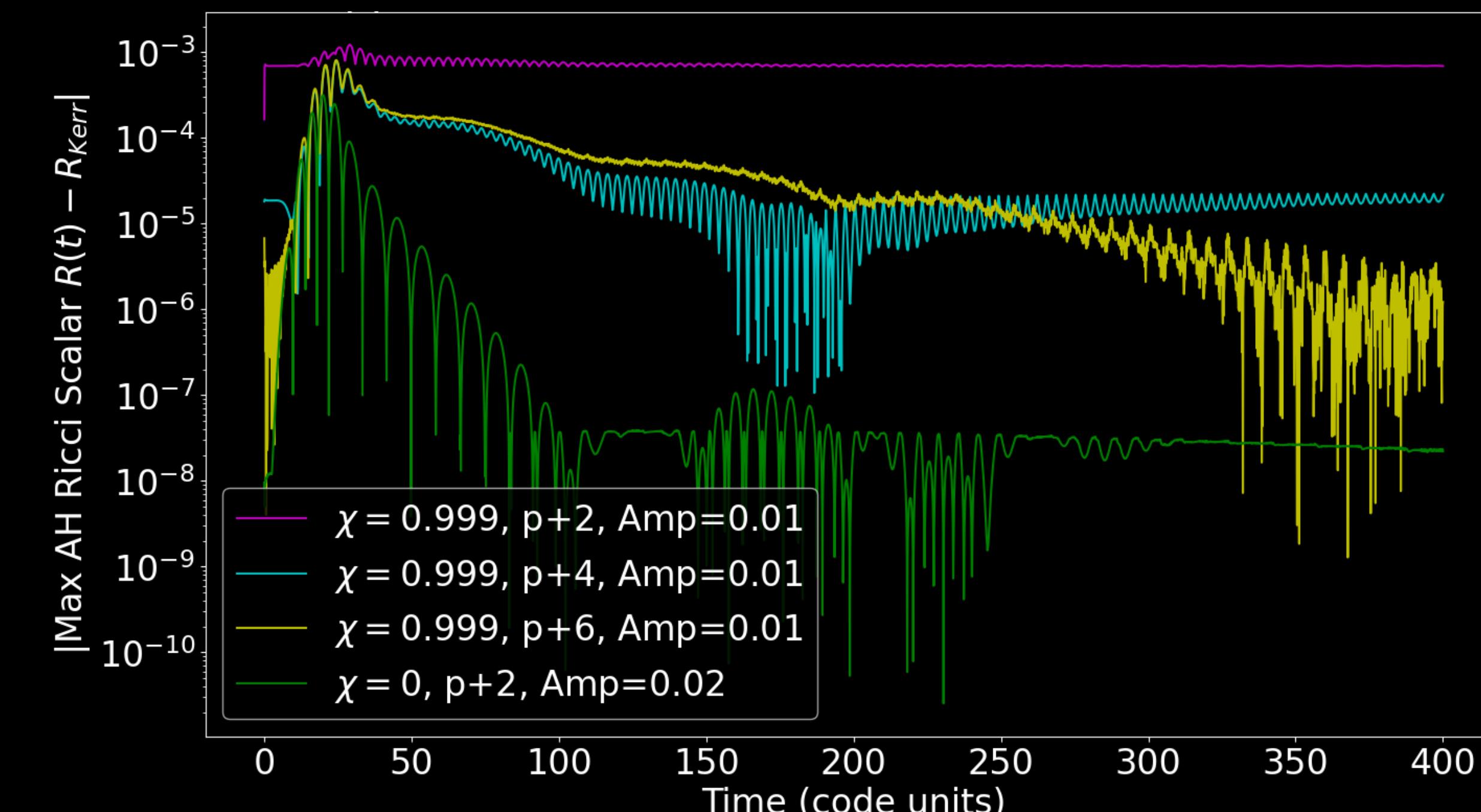


Horizon curvature at time $t=0$
(SpECTRE p+4)

SpECTRE status

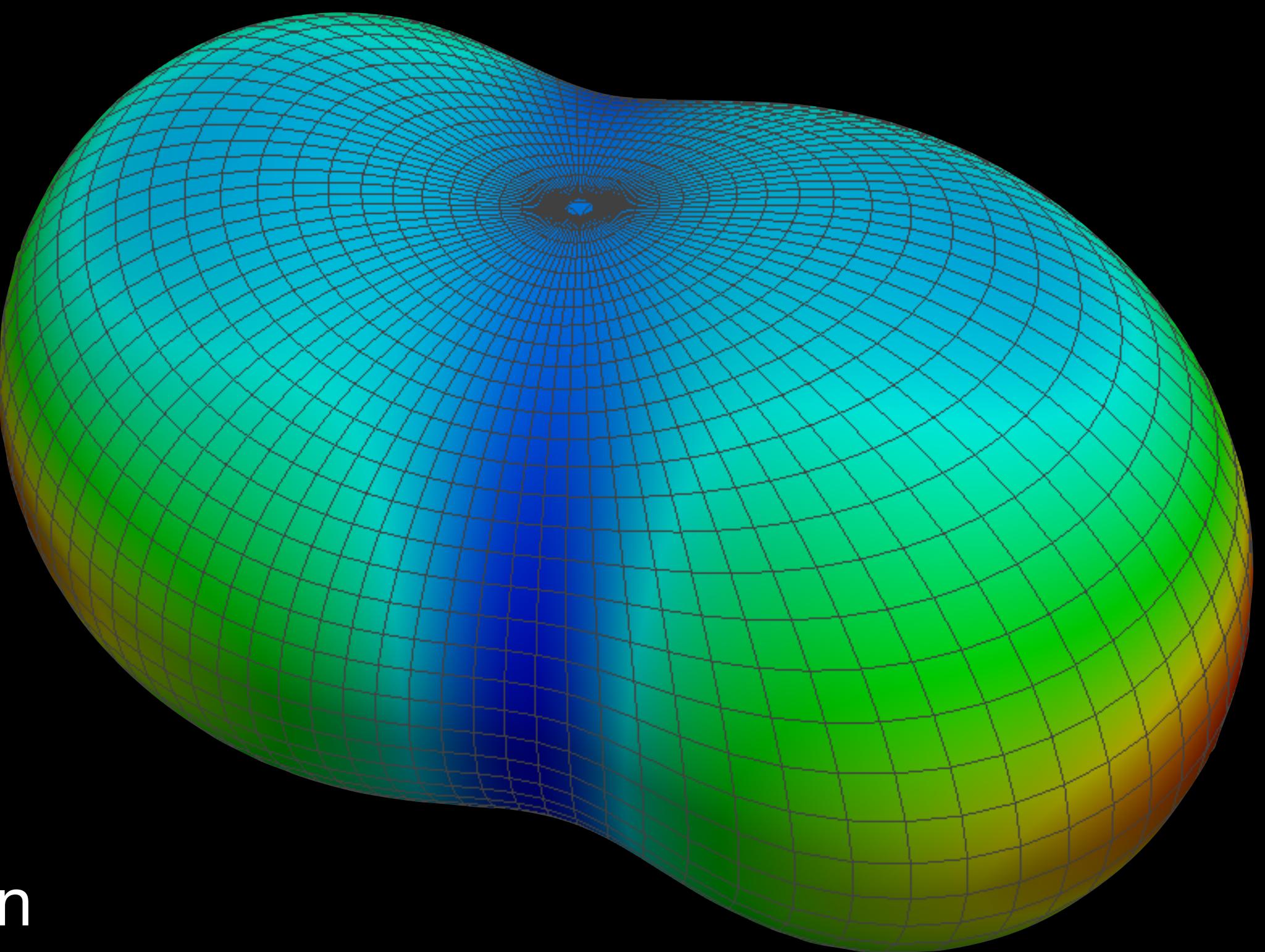
Perturbed black hole

- Initial data: solve constraints for $\chi = 0.999$ Kerr-Schild black hole + incoming $\ell = m = 2$ even Teukolsky wave
Teukolsky, Phys. Rev. D **26**, 745 (1982)
 - Gaussian with width $w = 4M$ & amplitude $A = 0.01$ or 0.02 centered at $r_0 = 20M$



Conclusion

- Possible but challenging to simulate merging black holes with nearly extremal spins with full 3+1 numerical relativity
- Future work
 - Evolve higher mass ratios with nearly-extremal spin
 - Precessing, nearly-extremal spins
 - Evolve nearly-extremal spins with next-generation codes
 - Achieve high accuracy future detectors will need
 - Perturbed nearly extremal black holes: improve accuracy, higher spin, higher amplitude



GL+ Class. Quantum Grav. 32, 065007 (2015)