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The Penrose singularity theorem (1965)

Does angular momentum halt the collapse process?

No. Anything close to the Oppenheimer-Snyder toy model has a
trapped surface: a surface from which even the outgoing light rays
are drawn closer to each other.

The attractive property of gravity makes this convergence of the
light rays ever larger, until it becomes infinite.

Something catastrophic happens (though Penrose doesn’t tell us
what)



BKL picture of singularities

What are singularities like? Belinskii, Khalatnikov and Lifschitz
(1970) conjecture that (1) matter doesn’t matter and (2) time
derivatives are more important than space derivatives.

FLRW cosmologies
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Homogeneous, anisotropic cosmology

ds2 = −dt2 + α2dx2 + β2dy2 + γ2dz2

P = wρ

a3 = αβγ

ρ ∝ a−3(1+w)



Impose Einstein field equations
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So matter doesn’t matter (unless it has w = 1 like a scalar field).

The idea for the conjecture that time derivatives are more
important comes from the notion that cosmological horizons get
small near the singularity.

Is this conjecture right? (See Rodnianski and Speck, also Oliynyk
and Beyer) But also do numerical simulations and see.
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Tetrad methods

The spacetime is described in terms of a coordinate system (t, x i )
and a tetrad (e0, eα) where both the spatial coordinate index i and
the spatial tetrad index α go from 1 to 3.

The commutators of the tetrad components are decomposed as
follows:

[e0, eα] = u̇αe0 − (Hδα
β + σα

β)eβ

[eα, eβ] = (2a[αδβ]
γ + ϵαβδn

δγ)eγ ,

where nαβ is symmetric, and σαβ is symmetric and trace free.



Scale invariant variables

The scale invariant tetrad variables are defined by ∂∂∂0 ≡ e0/H and
∂∂∂α ≡ eα/H while scale invariant versions of the other gravitational
variables are given by

{Eα
i ,Σαβ,A

α,Nαβ} ≡ {eαi , σαβ, aα, nαβ}/H.

Note that the relation between the scale invariant tetrad variables
and the coordinate derivatives is

∂∂∂0 = N−1∂t (1)

∂∂∂α = Eα
i∂i , (2)

where N = NH is the scale invariant lapse.



Time coordinate

The time coordinate t is chosen so that

e−t = 3H.

Here t and H are dimensionless quantities. Surfaces of constant
time are constant mean curvature surfaces and the singularity is
approached as t → −∞.

C abcdCabcd = e−4tF (Σαβ,Nαβ, . . . )



Vacuum Einstein equations yield evolution equations for
the scale invariant variables

∂tEα
i = Eα

i −N (Eα
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βEβ
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as well as constraint equations

0 = ϵαβλ[∂∂∂αEβ
i − AαEβ

i ]− NλγEγ
i ,

0 = ∂∂∂αN
αγ + ϵαβγ∂αAβ − 2AαN

αγ ,

0 = ∂∂∂βΣα
β − 3Σα

βAβ − ϵαβγN
βδΣδ

γ ,

0 = 1 + 2
3∂∂∂αA

α − AαAα − 1
6N

αβNαβ + 1
12(N

γ
γ)

2 − 1
6Σ

αβΣαβ.

and an elliptic equation for N

−∂∂∂α∂∂∂αN + 2Aα∂∂∂αN +N (3 + ΣαβΣ
αβ) = 3



results of the simulations

Spatial derivatives become negligible compared to time derivatives
in the simulations, not because they are small but because they are
multiplied by Eα

i which is becoming small as the singularity is
approached.

In the vacuum case there is a series of epochs of approximately
constant Σαβ and approximately zero Nαβ. These epochs are
punctuated by short transitions in which Nαβ grows and then
decays all while Σαβ takes on new constant values. This is just
what one would expect from the properties of general
homogeneous, anisotropic cosmologies.

In the case of free scalar field matter, things are similar, except
that there is a last transition after which the singularity is
approached with Σαβ constant and Nαβ zero.



What changes are needed in the asymptotically flat case?

There is a null singularity (see Israel and Poisson, Ori, Dafermos
and Luk)

No CMC slicing and no scale invariant variables: try harmonic time
slicing and unrescaled tetrad variables.

No symmetry so we need parallel code (PAMR)



The evolution equations for the tetrad quantities are as follows:

e0(eα
i ) = −(Hδα

β + σα
β)eβ

i

e0(N) = 3HN

e0(u̇α) = 3eα(H) + 2Hu̇α − σα
β u̇β

e0(H) = 1
3eα(u̇

α) − H2 + 1
3 u̇α(u̇

α − 2aα) − 1
3σαβσ

αβ

e0(aα) = 3eα(H) − 3
2eβ(σα

β) − H(u̇α + aα)

+ σα
β
(
1
2 u̇β + 5aβ

)
+ 2ϵαβγn

βδσδ
γ

e0(n
αβ) = −ϵγδ(αeγ(σδ

β)) − Hnαβ + 2n(αλσ
β)λ − ϵγδ(αu̇γσδ

β)

e0(σαβ) = e<α(u̇β>) − e<α(aβ>) − 3Hσαβ + u̇<αu̇β>

+ a<αu̇β> + ϵγδ(αe
γ(nβ)

δ) + ϵγδ(αnβ)
δ(u̇γ − 2aγ)

− 2n<α
γnβ>γ + nn<αβ>



The constraint quantities are

Cu1 = u̇α − N−1eα(N)

Ccom = ϵαβλ
(
eα(eβ

i )− aαeβ
i
)
− nλγeγ

i

Cu2 = ϵαβλ (eβ(u̇α) + aαu̇β) + nλγ u̇γ

CJ = eα(n
αδ) + ϵαβδeα(aβ)− 2aαn

αδ

CC = eβ(σα
β)− 2eα(H)− 3σα

βaβ − ϵαβγn
βδσδ

γ

CG = 4eα(aα) + 6H2 − 6aαaα − nαβnαβ + 1
2n

2 − σαβσ
αβ



spacelike singularities and null singularities
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Figure: Extended Schwarzschild spacetime
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Figure: (part of) Reissner-Nordstrom spacetime
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Figure: perturbed Reissner-Nordstrom spacetime



Reissner-Nordstrom: appropriate foliation

(DG, CQG 42, 195005 (2025) and arxiv:2503.20969)

What is a foliation appropriate for numerical simulations and that
asymptotically approaches the inner horizon?

ds2 = −Fdt2 + F−1dr2 + r2(dθ2 + sin2θdϕ2) (3)

F = (r − r+)(r − r−)/r
2 (4)

null coordinate v

v = t +

∫
F−1dr (5)

ds2 = −Fdv2 + 2dvdr + r2(dθ2 + sin2θdϕ2) (6)



Harmonic time function T

T = v − r − 2M ln(r − r−) (7)

Inner horizon approached as T → ∞.

How do we characterize the limiting behavior as the inner horizon
is approached?

By using a rescaled tetrad.



Tetrad (e0, e1, e2, e3)

e0 is normal to constant T hypersurfaces.

e1 is in radial direction orthogonal to e0

e2 is in θ direction

e3 is in ϕ direction



Define H to be 1/3 of mean curvature

Define rescaled tetrad

(E0,E1,E2,E3) = (e0, e1, e2, e3)/H

For spacelike singularities, E0 tends to a nonzero quantity as
T → ∞ but E1,E2 and E3 all vanish in this limit

In contrast, for our tetrad, E0 and E1 tend to nonzero limits which
are null as T → ∞ while E2 and E3 vanish in this limit



Conclusions

We have a well tested numerical method for simulating spacelike
singularities in the compact Cauchy surface case.

This method has been adapted and appropriately modified to
tackle the case of black hole interiors.

Now we need to do the simulations and see what happens.


