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Kehle-Unger third-law violating solutions (2022)

Einstein-Maxwell theory coupled to a massless charged scalar field.
Spherically symmetric gravitational collapse of the scalar field can
result in formation of an exactly extremal Reissner-Nordström
black hole in finite advanced time, with an intermediate phase in
which the spacetime is exactly Schwarzschild at the horizon:

1 Introduction
Following pioneering work of Christodoulou [Chr70] and Hawking [Haw71] on energy extraction from rotating
black holes, Bardeen, Carter, and Hawking [BCH73] proposed—via analogy to classical thermodynamics—
the celebrated four laws of black hole thermodynamics. In particular, letting the surface gravity  of the
black hole take the role of its temperature, an identification later vindicated by the discovery of Hawking
radiation [Haw75], they proposed a third law in analogy to “Nernst’s theorem” in classical thermodynamics.

Conjecture (The third law of black hole thermodynamics). A subextremal black hole cannot become extremal
in finite time by any continuous process, no matter how idealized, in which the spacetime and matter fields
remain regular and obey the weak energy condition.

This version is distilled from the literature, particularly from the work of Israel [Isr86; Isr92] who added
explicit mention of regularity and the weak energy condition to avoid previously known examples [DI67;
Kuc68; Bou73; FH79; SI80; Pró83] which would otherwise violate the third law. In this paper, we show
that the third law is fundamentally flawed in a manner that does not appear to be salvageable by further
reformulation. Indeed, we construct counterexamples in the Einstein–Maxwell-charged scalar field model in
spherical symmetry, a model which satisfies the dominant energy condition, arising from arbitrarily regular
initial data on a one-ended asymptotically flat hypersurface.

Theorem 1. Subextremal black holes can become extremal in finite time, evolving from regular initial data.
In fact, there exist regular one-ended Cauchy data for the Einstein–Maxwell-charged scalar field system which
undergo gravitational collapse and form an exactly Schwarzschild apparent horizon, only for the spacetime
to form an exactly extremal Reissner–Nordström event horizon at a later advanced time.

In particular, the “third law of black hole thermodynamics” is false.
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Figure 1: Penrose diagram of our counterexample to the third law arising from regular initial data on ⌃.
The northwest edge of the Schwarzschild region is exactly isometric to a section of the r = 2M hypersurface
in Schwarzschild. The outermost apparent horizon A0 is initially indistinguishable from Schwarzschild and
then jumps out in finite time to be exactly isometric to the event horizon of extremal Reissner–Nordström.
For speculations about the future boundary of the interior, see already Section 1.5.1.

Our result also clarifies some issues raised by Israel in [Isr86; Isr92] who seemingly associated a discon-
nected outermost apparent horizon with a severe lack of regularity of the spacetime metric and/or matter
fields. We stress that our examples are regular despite the disconnectedness of the apparent horizon. We
note moreover that Israel seemed to associate extremization with the black hole “losing its trapped surfaces.”
This confusion appears to be related to his implicit assumption that the apparent horizon is connected. Since
the Einstein–Maxwell-charged scalar field matter manifestly obeys the dominant energy condition, trapped
surfaces are not lost in any sense, nonetheless, the black hole becomes extremal in finite time. In the ex-
amples we construct, there exists an open set of trapped spheres inside the black hole region, which persist
for all advanced time until they encounter the Cauchy horizon or a curvature singularity inside the black
hole. However, there is a neighborhood of the event horizon which does not contain any (strictly) trapped
surfaces. For an extended discussion of these issues, see already Section 1.4.
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Bounded charge to mass ratio

The third-law violating solutions of Kehle and Unger involve a
massless charged scalar field or massless Vlasov matter: matter
with large charge to mass ratio.

What happens if the charge to mass ratio of matter is bounded?



Local mass-charge inequality

We’ll consider Einstein-Maxwell theory coupled to matter satisfying
the local mass-charge inequality of Gibbons & Hull (1981):

T
(m)
00 ≥

√
T

(m)
0i T

(m)
0i + J20 + J̃20

where indices (0, i) refer to an arbitrary orthonormal frame, T
(m)
ab is

the energy-momentum tensor of matter (excluding the Maxwell
field) and Ja, J̃a are the electric and magnetic currents of matter.

This is a strengthened version of the dominant energy condition.

For a scalar field of mass m and charge q it is equivalent to
m ≥ |q|.



Global mass-charge inequality

If matter satisfies the local mass-charge inequality then a
strengthened version of the positive mass theorem applies.

If Σ is a complete asymptotically flat hypersurface then the ADM
mass M and electric and magnetic charges Q,P measured at
spatial infinity satisfy the “BPS bound” (Gibbons & Hull 1981)

M ≥
√

Q2 + P2

The proof involves spinors. If the inequality is saturated then there
exists a “supercovariantly constant” spinor ε in D(Σ)

∇̂aε ≡ ∇aε+
1

4
Fbcγ

bγcγaε = 0

A spacetime admitting such a spinor globally is said to be
supersymmetric. Example: extremal RN.



This immediately excludes spacetimes of the form constructed by
Kehle and Unger:
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Spacetime has M = |Q| (and P = 0) so saturates BPS bound.
Hence there exists a supercovariantly constant spinor ε. But from ε
we can construct a causal vector X a ≡ ε̄γaε which is Killing. So
spacetime is time-independent: contradiction!



But: method of Kehle and Unger can also be used to construct
larger class of solutions that are exactly extremal RN near the
horizon, but have M >

√
Q2 + P2 at spatial infinity.
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The argument just described does not exclude the existence of such
solutions in theories satisfying the local mass-charge inequality.



Compact interior
We are considering the possibility of forming an extremal RN black
hole in gravitational collapse. In such a situation, the black hole
would have compact interior, i.e., a horizon cross-section S would
have S = ∂Σ for a compact spacelike surface Σ. (The maximal
analytic extension of extremal RN does not have compact interior
because of the singularity at r = 0.)
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The main results
Theorem (third law). If matter satisfies the local mass-charge
inequality and S has the same metric, Maxwell field and extrinsic
curvature as a horizon cross-section of extremal RN then one
cannot write S = ∂Σ with Σ a compact spacelike surface, i.e., S
does not have compact interior.

Sch
warz

sc
hild

Extremal Reissner-Nordstrom

C
en

tre
 o

f s
ym

m
et

ry

Eve
nt 

ho
riz

on

Initial surface

Future null infinity

Cauchy horizon

i0

i+

C
en

tre
 o

f s
ym

m
et

ry

Eve
nt 

ho
riz

on

Initial surface

Future null infinity

Cauchy horizon

i0

i+

Extremal RN

Outgoing matter

C
en

tre
 o

f s
ym

m
et

ry

Eve
nt 

ho
riz

on

Initial surface

Future null infinity

Cauchy horizon

i0

i+

Outgoing matter

Extremal RN

Σ

S

Σ

C
en

tre
 o

f s
ym

m
et

ry

Eve
nt 

ho
riz

on

Initial surface

Future null infinity

Cauchy horizon

i0

i+

Outgoing matter

Extr
em

al 
RN

Σ

S



If matter satisfies the local mass-charge inequality then an
extremal RN black hole cannot form in gravitational collapse.

Hence a non-extremal black hole cannot become extremal if the
initial black hole was formed from collapse.

What if the initial black hole was not formed in collapse e.g. if we
start with a a two-sided non-extremal black hole? Could we make
it extremal by throwing in charged matter?



Israel: “non-extremal” means “there exists a trapped surface”

Theorem (McSharry-HSR 2025) Let Σ be a compact spacelike
surface with ∂Σ = S ∪ T where T is an outer trapped surface.
Assume that matter satisfied the local mass-charge inequality on
Σ. Then S cannot be a surface with the same metric, Maxwell
field and extrinsic curvature as a horizon cross-section of extremal
RN . In other words, this is impossible:
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Anti-de Sitter black holes

d = 4 Einstein-Maxwell theory with negative cosmological constant
and charged matter satisfying local mass-charge inequality.

Supercovariant derivative modified: now acts on charged spinor
field.

Extremal RN-AdS is not supersymmetric but there exists a
1-parameter family of supersymmetric (⇒ extremal)
Kerr-Newman-AdS black holes (Kostalecky-Perry 1995).

McSharry-HSR 2025: we proved that the third law holds for these
black holes.

Extremal BTZ is also supersymmetric so our methods can be used
to prove a third law, for matter satisfying DEC (to appear).



Vacuum black holes

Our results suggest that whether or not the third law is violated
might depend on the matter model.

However, Kehle and Unger conjecture that it should be possible to
form a black hole that is exactly extremal Kerr after a finite
advanced time, starting from regular vacuum initial data
(gravitational collapse of gravitational waves).

If correct, this implies that the third law is false for any matter
model.

They proved (2023) that regular vacuum initial data can give a
spacetime that is exactly a slowly-rotating (|a| � M) non-extremal
Kerr black hole after a finite advanced time.

Constructing third law violating solutions in 4d vacuum looks
difficult.



5d vacuum gravity (Crump, Gadioux, Santos & HSR)

In 5d vacuum gravity the analogue of Kerr is the Myers-Perry
solutions, parameterized by M, J1, J2 where Ji are angular
momenta in two orthogonal 2-planes.

Generically the isometry group is R× U(1)× U(1) and the
solution depends on two coordinates, just like Kerr.

However if J1 = ±J2 then the isometry group is R× SU(2)× U(1)
and the metric depends on only one coordinate:

−f (r)dt2 + g(r)dr2 +
r2

4

[
σ21 + σ22 + h(r)(σ3 + Ω(r)dt)2

]
where σi are left-invariant 1-forms on SU(2) ∼ S3.

This belongs to much larger class of dynamical spacetimes with
SU(2) isometry group (with S3 orbits), depending on only 2
coordinates (e.g. Bizon, Chmaj & Schmidt 2005).



We’ll seek third-law violating solutions within the class of
SU(2)-symmetric spacetimes.

These describe a Schwarzschild black hole evolving to an extremal
MP black hole. Can also construct solutions describing
gravitational collapse to form extremal MP.

We start from an Ansatz for a subset of SU(2)-symmetric
spacetimes for which the equations of motion are qualitatively
similar to those of Kehle & Unger for the Einstein-Maxwell-charged
scalar system:

Charged scalar Φ ↔ some deformation of S3

Maxwell 1-form ↔ twist 1-form describing rotation of S3

Quasilocal charge Q ↔ quasilocal angular momentum J

We try to construct solutions using characteristic gluing (Aretakis,

Czimek & Rodnianski 2023-25)



Characteristic gluing

Einstein-Maxwell-charged scalar in spherical symmetry.

Kehle & Unger construct solutions by specifying data along pairs
of characteristic (i.e. null) surfaces and solving forwards/backwards
in time. Simplest example describes formation of RN, either
subextremal or extremal:

Corollary 1 (Exact Reissner–Nordström arising from gravitational collapse). For any regularity index k 2 N
and charge to mass ratio q 2 [�1, 1], there exist spherically symmetric, asymptotically flat Cauchy data for
the Einstein–Maxwell-charged scalar field system, with ⌃ ⇠= R3 and a regular center, such that the maximal
future globally hyperbolic development (M4, g) has the following properties:

• All dynamical quantities are at least Ck-regular.

• Null infinity I+ is complete.

• The black hole region is non-empty, BH .
= M \ J�(I+) 6= ;.

• The Cauchy surface ⌃ lies in the causal past of future null infinity, ⌃ ⇢ J�(I+). In particular, ⌃
does not intersect the event horizon H+ .

= @(BH). Furthermore, ⌃ contains no trapped or antitrapped
surfaces.

• For sufficiently late advanced times v � v0, the domain of outer communication, including the event
horizon, is isometric to that of a Reissner–Nordström solution with charge to mass ratio q. For v � v0,
the event horizon of the spacetime can be identified with the event horizon of Reissner–Nordström.

I +

H
+

RN e/M = q

Mink ⌃

r
=

0

i0

i+

BH

Figure 3: Penrose diagram for Corollary 1. The textured line segment is where the data constructed in
Theorem 2 live.

Note that in the case |q| = 1, this does not yet furnish a counterexample to the third law of black hole
thermodynamics, as the spacetime does not necessarily contain a subextremal apparent horizon. For the
counterexample we must defer to Theorem 1 in Section 1.4.4 below.

However, in our proof of Corollary 1, forming an extremal black hole with |q| = 1 is no different from any
subextremal charge to mass ratio |q| < 1 (see already Section 1.4.5). In particular, in contrast with what has
been suggested by numerical simulations [TA14; CIP21], there is no universal upper bound (strictly less than
unity) for |q|. Given that we have now proved that extremal Reissner–Nordström can arise in gravitational
collapse, it would be interesting to rethink the numerical approach to this problem and develop a scheme
to construct such solutions numerically. Because our construction is fundamentally teleological (see already
Section 5.1), it might be challenging to directly find suitable data on ⌃ by trial and error.

The formation of black holes is a very well studied problem in spherical symmetry. We mention here only
the Einstein-scalar field model, for which Christodoulou [Chr91] first showed that concentration of the scalar
field can lead to formation of a black hole. This result played a decisive role in Christodoulou’s proof of weak
cosmic censorship in spherical symmetry [Chr99]. Dafermos constructed solutions of the Einstein-scalar field
system which collapse to the future but are complete and regular to the past [Daf09]. For work on other
matter models, see for example [And14; AL22].

Outside of spherical symmetry (for the Einstein vacuum equations), formation of black holes was studied
by Christodoulou in the seminal monograph [Chr09]. Christodoulou constructed characteristic data for the
Einstein vacuum equations containing no trapped surfaces, but whose evolution contains trapped surfaces in
the future. Li and Yu [LY15] showed how to combine Christodoulou’s construction with the spacelike gluing
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Double null coordinates (U,V ).

The free data is Φ(V ) on the dotted line. Must be chosen to
ensure matching of Q and sufficient differentiability across the
horizon.

Q and ∂jUΦ satisfy transport eqs along dotted line so uniquely
determined by either their Minkowski (above) or RN (below)
values. Hence these will agree everywhere along the dotted line if
they agree at the corners. For a C k solution this must be true for
j ≤ k so have 2k + 1 real equations.



Summary: to achieve C k gluing we need to choose Φ(V ) such that
2k + 1 equations hold.

Kehle & Unger make an Ansatz for Φ(V ) containing 2k + 1 real
parameters αi

For large eM (e = scalar charge), matching of Q defines a sphere
S2k in R2k+1. The remaining equations are odd under αi → −αi

(arises from Φ→ −Φ symmetry). The Borsuk-Ulam theorem then
guarantees existence of a solution for any k .

The proof doesn’t tell us anything about the form of the solution!



Numerics for RN (Gadioux, Santos & HSR 2025)

Profile solving C 1 gluing constraints for 4 different Ansätze:
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Figure 8: Left: Profiles ⇢ providing solutions to the C1 gluing problem for the even (solid black), odd (dashed blue),
polynomial (dash-dotted red) and modified (� = 0.46, dotted black) Ansätze for q = 1 and ⇤ = m = 0. The value of eM
used was (approximately) the smallest that allowed q = 1 to be reached, namely 360, 1455, 39.3 and 120, respectively. Right:
Profiles for the even Ansatz with eM = 360, for q = 0.1, 0.6, 0.9, 0.99, 0.999 and 1 (thickest to thinnest).

Q2 is the same for all of our Ansätze.
Note that our Ansätze for C0 gluing are not special cases of our Ansätze for C1 gluing so we cannot compare

directly our results for C0 gluing to our results for C1 gluing. However, we can instead use a C1 Ansatz to perform
C0 gluing. Each point of Q2 then corresponds to a candidate solution for C0 gluing and the maximum value of I
then dictates the maximum value of Q/(er2

+) for which C0 gluing is possible, equivalently the minimum value of
eM for which C0 gluing is possible for given q and ⇤M2. This maximum value gives 1/Imax ⇡ 122, 385 and 4.8
for the even, odd and polynomial Ansätze, respectively. For ⇤ = 0 and q = 1 this is the minimum value of eM
for which a candidate solution for C0 gluing exists with this Ansatz. The limiting condition sup @Ur behaves in a
qualitatively identical way to that in C0 gluing, as in the first panel of Figure 4. In particular, whenever m = 0,
we have sup @Ur < 0 for all points in the restricted parameter space. Thus all points of Q2 correspond to valid
solutions of C0 gluing.

3.3.2 Massless scalar field

The colour on the right plot of Figure 7 shows how close each point is to satisfying the gluing condition for @U�,
with q = 1 and ⇤ = m = 0. In this example the gluing condition is satisfied by a single point (and its image under
↵ ! �↵), lying in the red region. Hence there exists a single candidate solution in this case (modulo the reflection
symmetry). This is typical: we have not found any examples of C1 gluing for which there exist multiple solutions
(with a massless scalar field). In our example, the red region does not lie near the black dots at the boundary of
the restricted parameter space. This implies that, as we decrease eM , a candidate solution continues to exist until
the red region reaches the boundary of the restricted parameter space. For smaller eM no candidate solution exists.
As mentioned above, with a massless scalar field we find that sup @Ur < 0 everywhere in the restricted parameter
space, so all candidate solutions are also valid solutions of C1 gluing.

All of our Ansätze exhibit qualitatively the same behaviour. For q = 1 and ⇤ = m = 0 we find that the minimum
value of eM for which a valid solution of C1 gluing exists is (eM)min = 360, 1445, 39.3 and 120 for the even, odd,
polynomial and modified Ansätze respectively. The optimal parameter for the modified Ansatz is now � ⇡ 0.46.
As would be expected, these are somewhat larger than the minimum values required when a C1 Ansatz is used for
C0 gluing, as determined above. Notice that the polynomial Ansatz has a less constraining bound on eM than the
modified Ansatz, unlike in the C0 case. This is because the latter Ansatz now is formed of three bumps, which
increases the size of the derivative term |@V �|2 in the Raychaudhuri equation (5a) but adds little charge to the
system.

In Figure 8 we plot examples of scalar field profiles for the C1 problem. The first panel shows profiles that glue
to an extremal black hole with the smallest possible eM , for each Ansatz. As in Section 3.2, we find that profiles
that are larger in amplitude near the Minkowski region, where r is smaller, and lower nearer V = 1, are favoured.
As q is varied for constant eM , we find, as expected, that the amplitude of the profile must grow with q. This
is illustrated in the second panel of Figure 8. In the case of the even, odd and modified Ansätze, for example,
each bump’s amplitude increases, although not all by the same amount, i.e. in the notation of Section 3.1, ↵̂ also
changes, but only slightly. The same is true for the polynomial Ansatz: the shape remains qualitatively similar over

14

Can also include a mass parameter m for the scalar field: the
largest m/e for which we achieve C k gluing is about 0.2, 0.04,
0.01 for k = 0, 1, 2, in agreement with my result (that gluing is
impossible for m/e ≥ 1).



Back to 5d gravity

The Kehle-Unger proof exploits the presence of a free parameter e
(eM is taken large), and also the Φ→ −Φ symmetry. We don’t
have these in our 5d gravity system. So we use numerics to look
for a solution of gluing.

In the RN case we could increase e until we found a numerical
solution - not possible here!

Numerically, the difficulty of C k gluing increases with k.



Third law violation in 5d vacuum gravity
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C 2 gluing of Schwarzschild to extremal Myers-Perry. Violation of
third law!



Gravitational collapse to extremal MP
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Gluing of Minkowski to extremal Myers-Perry. Formation of
extremal MP in gravitational collapse of gravitational waves.

Solution loses 2 derivatives at origin: need C 4 gluing for C 2

solution. We’re nearly there...



Discussion

The third law can be violated for Einstein-Maxwell theory coupled
to matter with a large charge to mass ratio.

I’ve proved that the third law holds for supersymmetric black holes
if matter satisfies the local mass-charge inequality. This covers
extremal Reissner-Norstrom (if Λ = 0) or supersymmetric
Kerr-Newman-AdS (if Λ < 0).

I think this should generalize to supersymmetric black holes for
various other theories in various dimensions (e.g. extremal BTZ).

Could a black hole formed in collapse approach a supersymmetric
black hole asymptotically, i.e., at infinite advanced time?

Is the result sharp? If the local mass-charge inequality is violated
(in a sensible matter model) then do there exist third law violating
solutions? (Kehle student: yes, for massive charged dust.)



We’ve used numerical methods to determine the gluing solution on
the horizon, for third law violating solutions of
Einstein-Maxwell-scalar or 5d vacuum gravity. It should be possible
to construct the solutions away from the horizon using numerics.

We’ve shown that third law is violated in 5d vacuum gravity.
Seems likely that same is true in 4d, as conjectured by Kehle and
Unger. Constructing these solutions using gluing will be much
harder than in 5d but is worth investigating numerically.



If third law is violated in 4d vacuum gravity then extremal Kerr will
violate third law even in theories where extremal RN does not, i.e.,
third law violated by non-susy black holes but not by susy holes.

A different version of the third law asserts that entropy should
vanish at zero temperature. Violated classically but recent work
(Iliesu, Turiaci, Murthy, . . . ) suggests that quantum effects might
enforce this version of the third law for non-susy holes but not for
susy ones, i.e., the opposite of the above situation!


