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Motivation: Study solutions which dynamically evolve in gravitational collapse (i.e.
from asymptotically flat, regular, 1-ended data).

M = {MGHD of spherically symmetric, asym. flat data on R® for (1)} /{Diff}

» Natural to parametrize the moduli space by initial data.

» Regular center excludes the Schwarzschild and Reissner-Nordstréom family
(except Minkowski space).
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REFRESHER ON SCHWARZSCHILD

Cauchy surface -
.

% -
N V3

.
.
.

Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface & = R x S not on R®.
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REFRESHER ON GRAVITATIONAL COLLAPSE

r = 0 (singularity)

r=0
(coordinate

» Penrose diagram of gravitational collapse (Oppenheimer—Snyder, '39)
» Black hole formation from regular initial data.

» Oppenheimer-Snyder collapse € 9t.
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» Darker shaded region of Schwarzschild is isometric to the vacuum region of the
Oppenheimer-Snyder collapse.

» In this sense, Schwarzschild relevant for moduli space of grav. collapse 9.
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REFRESHER ON GRAVITATIONAL COLLAPSE

» Darker shaded region of Schwarzschild is isometric to the vacuum region of the
Oppenheimer-Snyder collapse.

» In this sense, Schwarzschild relevant for moduli space of grav. collapse 9.

» Remark: No region of negative-mass Schwarzschild is relevant for the study of 9t
because elements in 9t cannot have negative Hawking mass m

2
1- 2 = g(Vr, Vr).
r
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Non-negative Hawking mass m = 7 (1 — g(Vr, Vr)) requires r > %
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Non-negative Hawking mass requires r > 7.
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Non—negatlve Hawkmg mass requires r > M

The naked singularity of extremal Reissner—Nordstrom is dynamically inaccessible!
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REISSNER-NORDSTROM FAMILY ARISES DYNAMICALLY
Theorem (K.-Unger "22).

There exist reqular, spherically symmetric data on R3 for the Einstein—Maxwell—charged scalar
field model (i.e. elements in ) whose MGHD contains the darker shaded regions of
Reissner—Nordstrom for |e|] < M, |e| = M and |e| > M.

(a) |e] < M: black hole (b) |e] = M: black hole (c) le] > M: dispersive
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» More generally, all regions of the Reissner-Nordstrom family with Hawking mass
m > 0 arise in gravitational collapse.

» If local charge-mass inequality (e.g. m > |e|) holds, then no sphere with

o2

r<

|

can arise in gravitational collapse [REALL'24, MCSHARRY-REALL-'25].

8/25



CRITICAL COLLAPSE?

by

(a) |e|] < M: black hole (b) |e] = M: black hole () le] > M: 22

9/25



CRITICAL COLLAPSE?

by

(a) |e|] < M: black hole (b) |e] = M: black hole () le] > M: 22

» This suggests that extremal black holes could arise on the black hole formation
threshold: Extremal critical collapse.

9/25



CRITICAL COLLAPSE?

by

(a) |e|] < M: black hole (b) |e] = M: black hole () le] > M: 22

» This suggests that extremal black holes could arise on the black hole formation
threshold: Extremal critical collapse.

» Need to understand global properties of solutions to the EMCSF model around
extremal Reissner-Nordstrom. This is difficult! (Dejan’s talk!)

9/25



CRITICAL COLLAPSE?

by

(a) |e|] < M: black hole (b) |e] = M: black hole () le] > M: 22

» This suggests that extremal black holes could arise on the black hole formation
threshold: Extremal critical collapse.

» Need to understand global properties of solutions to the EMCSF model around
extremal Reissner-Nordstrom. This is difficult! (Dejan’s talk!)

» More accessible in the Einstein-Maxwell-Vlasov system: Exploit localization in
physical space.
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critical solution ¥

Minkowski space

dispersive solutions

Numerics for sph. symm. Einstein-scalar field: ¥, leads to a naked singularity
[CHOPTUIK 93, ...]

Also numerics suggesting star-like objects as ¥, for Einstein—Klein-Gordon/Vlasov
[BRADY, CHAMBERS, GONCALVES, REIN, RENDALL, SCHAEFFER, EAST. . .]

It is an open problem to make any of these numerics rigorous!
(Upcoming work of [CICORTAS-RODNIANSKI] in 2 + 1D!)

Although “much newer”, extremal critical collapse is more accessible. 10/25
g



THEOREM: EXTREMAL CRITICAL COLLAPSE

We consider self-gravitating charged plasma: Einstein-Maxwell-Vlasov system
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naked singularity

Minkowski space

dispersive solutions

extremal black hole

Recently, East numerically observed both charged Vlasov stars and extremal black
holes on the threshold for the Einstein-Maxwell-Vlasov system [EasT'25].
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STABILITY OF EXTREMAL CRITICAL COLLAPSE

Conjecture.
Extremal critical collapse is a stable phenomenon.

naked singularity

owski space

dispersive solutions

(0,1]

asymptotically extremal black holes

» This is also a non-trivial statement about the interiors of black holes.
» Further difficulty: Aretakis instability associated to extremal horizons
» The black hole formation threshold is not expected to be smooth.

» Back to the Einstein-(neutral) scalar field model as in [MURATA-REALL-TANAHASHI'13]
14/25



EINSTEIN-MAXWELL-(NEUTRAL) SCALAR FIELD

Ric(g) — jR(g)g = 2(T™ + T%F),
dF =0, d«F=0, Og¢ =0,
Tﬁl\f = FuaFau - %guuFaﬁFaﬁv T;S}:J = 8u¢8u¢ - %guu8a¢8a¢

Q2 9y  Q2Q?

OByr = ——
uor 4r r 413 7
02 20,0, Q2Q?
8, Bplog O = 5zt Mrz LA w — 28,08,

and Raychaudhuri’s equations
Our r Ot r
O (é) =~z (@0, % (QLZ) =~ (000).
0orOudp  Ourdod

0uOp = ————
r r
It is useful to eliminate € for w and have
(¢7 r7 w7 Q)
as unknowns. Here
QZ
w=m+ —, Q= const.
2r

This is the renormalized Hawking/Dougan-Mason mass in spherical symmetry.
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DEFINITION OF THE MODULI SPACE 9t
Fix My > 0 once and for all. Characteristic data posed on C = C;, U Cout:
Ci = [1,99Mp] x {1}, Cout = {1} x [1,00).

(L1
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DEFINITION OF THE MODULI SPACE 9t
Fix My > 0 once and for all. Characteristic data posed on C = C;, U Cout:
Ci = [1,99Mp] x {1}, Cout = {1} x [1,00).

\(,;
™
(1,1)
Initial data gauge: 0,7 = 1 on Cout and 0yr = —1 on Cjp.

Free data:

» (ro, ™o, Po), po = Qo/wo on the bifurcation sphere (1, 1).

» ¢o on C = Cin U Cout

» Initial data

U = (¢o, 70,0, p0) ECL(CO)XxRXxRXR=XXxR=3
We restrict to
W € M = BX(xg) x [~10,10],, C 3
where
xo = (0,100My, My).

Any ¥ € 91 gives rise to a unique MGHD in the future of C;, U Cout.

Setup inspired by [MURATA-REALL-TANAHASHI '13].
16/25



THE REISSNER-NORDSTROM FAMILY (X0, ) pe[—10,10]
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THE REISSNER-NORDSTROM FAMILY (X0, ) pe[—10,10]

(a) MGHD of ¥ = (xq,9/10) (b) MGHD of ¥ = (xp, 1) (¢) MGHD of ¥ = (xg, 11/10)

Critical collapse in the Reissner-Nordstrom family.
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ILLUSTRATION OF THE MODULI SPACE 91

» The vertical axis is ¥ = (xp, po), where po € [—10,10] and xo = (0, 100My, Mp).
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ILLUSTRATION OF THE MODULI SPACE 91

» The vertical axis is ¥ = (xp, po), where po € [—10,10] and xo = (0, 100My, Mp).
» Perturbing in the horizontal axis is also making ¢o # 0.
» This is only a (small) open subset of the full moduli space which itself is a subset

of the Banach space 3.

p=1
p=2/5
p=0
p=-1
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A PRIORI DICHOTOMY

Mplack = {¥ € M : MGHD of ¥ contains a black hole region.}
Maispersive = {¥ € M : MGHD of ¥ is asymptotically flat. }
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A PRIORI DICHOTOMY

Mplack = {¥ € M : MGHD of ¥ contains a black hole region.}
Maispersive = {¥ € M : MGHD of ¥ is asymptotically flat. }

Theorem (Dafermos '05).
M = Mpjack U Maisp
This is a general result exploiting the

» monotonicities of Raychaudhuri’s equations,

» the semilinearity and subcriticality of Einstein equations in spherical symmetry in
an initial data gauge (no teleological gauge) and away from the center.
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1. Asymptottc stability and foliation by stable manifolds of Myack
Mplack 8 foliated by Ct hypersurfaces M7, indexed by o € [—1,1].

stab”
Mo = {¥ € Mplack : Z(V) =0}
where & : Myjack — [—1, 1] is the final signed charge-to-mass ratio of the black hole

formed from V.
2. Threshold property of Dﬁstab U Dﬁsmlb

The black hole threshold Oy, is characterized by:

OMpjack = My, UM,

stal stab ’

the set of asymptotically extremal black holes.
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The final area, temperature, and event horizon location satisfy “universal scaling laws”
with index 1/2.

. Aretakis instability at the threshold

The Aretakis instability is present for generic data in mt b and a transient horizon
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instability is exhibited near mE
stab

The theorem can be viewed as the spherically symmetric analog of a conjecture
[DAFERMOS-HOLZEGEL-RODNIANSKI-TAYLOR ‘21]. See Mihalis’ talk.

Asymptotic stability in the subextremal case proved before by [DR05],[Luk-On'19].
Builds on large body of works of [ANGELOPOULOS-ARETAKIS-GAJIC].
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ILLUSTRATION OF MAIN THEOREM
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TRICHOTOMY

U € Myjsp: no black hole VU eMg,:lo| =1 v emd o€ (=11

trapped region
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Scaling of #" measured numerically in this setting by [MURATA-REALL-TANAHASHI'13].
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where for an open and dense subset of 9Myjack, Ho[¢] # 0.

2. Let {¥p},e(0,1] C M be a family crossing the threshold and 8 = B(Wp) is the
inverse temperature of the black hole formed from ¥,,. Then

Y(rg) |+ (0) = e 4T/ BHS[¢] + O(ev™'19),

Y2(r9) ¢+ ()| 2 [H3[@]|o + O(e0®) for v < 5,
where for generic curves {¥y},¢(0,1], Hg (9] # 0.

Numerical evidence for this transient instability timescale given in
[MURATA-REALL-TANAHASHI'13].
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po = +1
+2/5
9:nstab Po = _|_§
xeXx
x = x— 0
Po =
-1
E)ﬁstab
po=-—1

Thank you for your attention!
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