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MODULI SPACE

Spherically symmetric spacetimes (M3+1, g) solving

Ricµν −
1
2

Rgµν = 2Tµν . (1)

In this talk: Classical relativity with matter fields T = TMaxwell,Tscalar field,TVlasov.

What is the moduli space?

{spherically symmetric solutions of Einstein–matter systems}/{Diff}

Motivation: Study solutions which dynamically evolve in gravitational collapse (i.e.
from asymptotically flat, regular, 1-ended data).

M = {MGHD of spherically symmetric, asym. flat data on R3 for (1)}/{Diff}

▶ Natural to parametrize the moduli space by initial data.
▶ Regular center excludes the Schwarzschild and Reissner–Nordström family

(except Minkowski space).
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REFRESHER ON SCHWARZSCHILD
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Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface Σ as depicted here.
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Σ
Cauchy surface

Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface Σ ∼= R× S2 not on R3.
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REFRESHER ON GRAVITATIONAL COLLAPSE

▶ Penrose diagram of gravitational collapse (Oppenheimer–Snyder, ’39)
▶ Black hole formation from regular initial data.
▶ Oppenheimer–Snyder collapse ∈ M.
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REFRESHER ON GRAVITATIONAL COLLAPSE
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▶ Darker shaded region of Schwarzschild is isometric to the vacuum region of the
Oppenheimer–Snyder collapse.

▶ In this sense, Schwarzschild relevant for moduli space of grav. collapse M.

▶ Remark: No region of negative-mass Schwarzschild is relevant for the study of M
because elements in M cannot have negative Hawking mass m

1 −
2m
r

= g(∇r,∇r).
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REFRESHER ON SUBEXTREMAL REISSNER–NORDSTRÖM: 0 < |e| < M
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Non-negative Hawking mass m .
= r

2 (1 − g(∇r,∇r)) requires r ≥ e2

2M .
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REFRESHER ON EXTREMAL REISSNER–NORDSTRÖM: 0 < |e| = M
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REFRESHER ON SUPEREXTREMAL REISSNER–NORDSTRÖM: 0 < M < |e|
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The naked singularity of extremal Reissner–Nordström is dynamically inaccessible!
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REISSNER–NORDSTRÖM FAMILY ARISES DYNAMICALLY

Theorem (K.–Unger ’22).
There exist regular, spherically symmetric data on R3 for the Einstein–Maxwell–charged scalar
field model (i.e. elements in M) whose MGHD contains the darker shaded regions of
Reissner–Nordström for |e| ≤ M, |e| = M and |e| > M.
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(a) |e| < M: black hole

i+

i0

I +

BH

CH
+

Σ

(b) |e| = M: black hole

i0

I +

Σ

(c) |e| > M: dispersive

▶ More generally, all regions of the Reissner–Nordström family with Hawking mass
m > 0 arise in gravitational collapse.

▶ If local charge-mass inequality (e.g. m ≥ |e|) holds, then no sphere with

r ≤
e2

M

can arise in gravitational collapse [REALL’24, MCSHARRY–REALL–’25].
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CRITICAL COLLAPSE?
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(a) |e| < M: black hole
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(b) |e| = M: black hole

i0

I +
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?r
=

0

(c) |e| > M: ??

▶ This suggests that extremal black holes could arise on the black hole formation
threshold: Extremal critical collapse.

▶ Need to understand global properties of solutions to the EMCSF model around
extremal Reissner–Nordström. This is difficult! (Dejan’s talk!)

▶ More accessible in the Einstein–Maxwell–Vlasov system: Exploit localization in
physical space.
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CARTOON PICTURE OF MODULI SPACE OF GRAV. COLLAPSE

black hole solutions

dispersive solutions

Minkowski space

subextremal black hole

Numerics for sph. symm. Einstein-scalar field: Ψλ∗ leads to a naked singularity
[CHOPTUIK ’93, . . . ]
Also numerics suggesting star-like objects as Ψλ∗ for Einstein–Klein–Gordon/Vlasov
[BRADY, CHAMBERS, GONCALVES, REIN, RENDALL, SCHAEFFER, EAST. . . ]

It is an open problem to make any of these numerics rigorous!
(Upcoming work of [CICORTAS–RODNIANSKI] in 2 + 1D!)

Although “much newer”, extremal critical collapse is more accessible.
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THEOREM: EXTREMAL CRITICAL COLLAPSE

We consider self-gravitating charged plasma: Einstein–Maxwell–Vlasov system
Rµν − 1

2 Rgµν = 2
(

gαβFανFβµ − 1
4 FαβFαβgµν +

∫
Pm

x
pµpν f dµm

x

)
,

∇αFµα = e
∫

Pm
x

pµf dµm
x ,

pµ ∂
∂xµ f − Γµ

αβpαpβ ∂
∂pµ f = −eFµ

αpα ∂
∂pµ f .

Theorem (K.–Unger ’24).
There exists a smooth 1-parameter family of solutions {Dλ}λ∈[0,1] and a critical value
λ∗ ∈ (0, 1) such that:
▶ If 0 ≤ λ < λ∗, the solution disperses to Minkowski space and no black hole forms.
▶ If λ = λ∗, an extremal black hole forms.
▶ If λ∗ < λ ≤ 1, a subextremal black hole forms.

There exist extremal black holes on the black hole formation threshold!
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▶ If λ∗ < λ ≤ 1, a subextremal black hole forms.

There exist extremal black holes on the black hole formation threshold!
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CARTOON PICTURE OF MODULI SPACE

black hole solutions

dispersive solutions

Minkowski space

subextremal black hole

Interpolating family (Ψλ)λ∈[0,1]

naked singularity

subextremal black hole

extremal black hole

Recently, East numerically observed both charged Vlasov stars and extremal black
holes on the threshold for the Einstein–Maxwell–Vlasov system [EAST’25].

13 / 25



CARTOON PICTURE OF MODULI SPACE

black hole solutions

dispersive solutions

Minkowski space

subextremal black hole

Interpolating family (Ψλ)λ∈[0,1]

naked singularity

subextremal black hole

extremal black hole

Recently, East numerically observed both charged Vlasov stars and extremal black
holes on the threshold for the Einstein–Maxwell–Vlasov system [EAST’25].

13 / 25



STABILITY OF EXTREMAL CRITICAL COLLAPSE

Conjecture.
Extremal critical collapse is a stable phenomenon.

black hole solutions

dispersive solutions

Minkowski space

subextremal black hole

Interpolating family (Ψλ)λ∈[0,1]

naked singularity

subextremal black hole

asymptotically extremal black holes

▶ This is also a non-trivial statement about the interiors of black holes.
▶ Further difficulty: Aretakis instability associated to extremal horizons
▶ The black hole formation threshold is not expected to be smooth.
▶ Back to the Einstein-(neutral) scalar field model as in [MURATA–REALL–TANAHASHI’13]
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EINSTEIN–MAXWELL–(NEUTRAL) SCALAR FIELD

Ric(g)− 1
2 R(g)g = 2(TEM + TSF),

dF = 0, d ⋆ F = 0, □gϕ = 0,

TEM
µν

.
= FµαFα

ν − 1
4 gµνFαβFαβ , TSF

µν
.
= ∂µϕ∂νϕ− 1

2 gµν∂αϕ∂
αϕ.

∂u∂vr = −
Ω2

4r
−

∂ur∂vr
r

+
Ω2Q2

4r3
,

∂u∂vlog Ω
2 =

Ω2

2r2
+

2∂ur∂vr
r2

−
Ω2Q2

r4
− 2∂uϕ∂vϕ,

and Raychaudhuri’s equations

∂u

(
∂ur
Ω2

)
= −

r
Ω2

(∂uϕ)
2, ∂v

(
∂vr
Ω2

)
= −

r
Ω2

(∂vϕ)
2.

∂u∂vϕ = −
∂vr∂uϕ

r
−

∂ur∂vϕ

r
.

It is useful to eliminate Ω for ϖ and have

(ϕ, r, ϖ,Q)

as unknowns. Here

ϖ
.
= m +

Q2

2r
, Q = const.

This is the renormalized Hawking/Dougan–Mason mass in spherical symmetry.
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DEFINITION OF THE MODULI SPACE M
Fix M0 > 0 once and for all. Characteristic data posed on C = Cin ∪ Cout:
Cin = [1, 99M0]× {1}, Cout = {1} × [1,∞).

C out

C
in

(1, 1)

Initial data gauge: ∂vr = 1 on Cout and ∂ur = −1 on Cin.
Free data:
▶ (r◦, ϖ◦, ρ◦), ρ◦ = Q◦/ϖ◦ on the bifurcation sphere (1, 1).
▶ ϕ◦ on C = Cin ∪ Cout
▶ Initial data

Ψ
.
= (ϕ◦, r◦, ϖ◦, ρ◦) ∈ C2

w(C)× R× R× R = X× R = Z

We restrict to
Ψ ∈ M

.
= BX

ε (x0)× [−10, 10]ρ◦ ⊂ Z

where
x0 = (0, 100M0,M0).

Any Ψ ∈ M gives rise to a unique MGHD in the future of Cin ∪ Cout.

Setup inspired by [MURATA–REALL–TANAHASHI ’13].
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THE REISSNER–NORDSTRÖM FAMILY (x0, ρ)ρ∈[−10,10]

i+

I +
BH

CH
+

(a) MGHD of Ψ = (x0, 9/10)

i+

I +
BH

CH
+

(b) MGHD of Ψ = (x0, 1)

I +

(c) MGHD of Ψ = (x0, 11/10)

Critical collapse in the Reissner–Nordström family.
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ILLUSTRATION OF THE MODULI SPACE M

ρ = 0

ρ = −1

ρ = 1

ρ = 2/5

▶ The vertical axis is Ψ = (x0, ρ◦), where ρ◦ ∈ [−10, 10] and x0 = (0, 100M0,M0).

▶ Perturbing in the horizontal axis is also making ϕ◦ ̸= 0.
▶ This is only a (small) open subset of the full moduli space which itself is a subset

of the Banach space Z.
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A PRIORI DICHOTOMY

Mblack
.
= {Ψ ∈ M : MGHD of Ψ contains a black hole region.}

Mdispersive
.
= {Ψ ∈ M : MGHD of Ψ is asymptotically flat.}

Theorem (Dafermos ’05).

M = Mblack ⊔Mdisp

This is a general result exploiting the
▶ monotonicities of Raychaudhuri’s equations,
▶ the semilinearity and subcriticality of Einstein equations in spherical symmetry in

an initial data gauge (no teleological gauge) and away from the center.
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MAIN THEOREM

Theorem (Angelopoulos–K.–Unger, upcoming).
1. Asymptotic stability and foliation by stable manifolds of Mblack

Mblack is foliated by C1 hypersurfaces Mσ
stab, indexed by σ ∈ [−1, 1].

Mσ
stab = {Ψ ∈ Mblack : P(Ψ) = σ}

where P : Mblack → [−1, 1] is the final signed charge-to-mass ratio of the black hole
formed from Ψ.

2. Threshold property of M1
stab ⊔M−1

stab
The black hole threshold ∂Mblack is characterized by:

∂Mblack = M1
stab ⊔M−1

stab,

the set of asymptotically extremal black holes.

3. Universality and scaling laws with scaling index 1/2
The final area, temperature, and event horizon location satisfy “universal scaling laws”
with index 1/2.

4. Aretakis instability at the threshold
The Aretakis instability is present for generic data in M±1

stab and a transient horizon
instability is exhibited near M±1

stab.
▶ The theorem can be viewed as the spherically symmetric analog of a conjecture

[DAFERMOS–HOLZEGEL–RODNIANSKI–TAYLOR ’21]. See Mihalis’ talk.
▶ Asymptotic stability in the subextremal case proved before by [DR05],[LUK–OH’19].

Builds on large body of works of [ANGELOPOULOS–ARETAKIS–GAJIC].
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with index 1/2.

4. Aretakis instability at the threshold
The Aretakis instability is present for generic data in M±1

stab and a transient horizon
instability is exhibited near M±1

stab.
▶ The theorem can be viewed as the spherically symmetric analog of a conjecture

[DAFERMOS–HOLZEGEL–RODNIANSKI–TAYLOR ’21]. See Mihalis’ talk.
▶ Asymptotic stability in the subextremal case proved before by [DR05],[LUK–OH’19].

Builds on large body of works of [ANGELOPOULOS–ARETAKIS–GAJIC]. 20 / 25
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TRICHOTOMY
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UNIVERSAL SCALING LAWS

If Ψ ∈ Mblack, define:
▶ M (Ψ) final mass
▶ A (Ψ) final area
▶ K (Ψ) final surface gravity (= 2πT (Ψ) temperature)
▶ U (Ψ) u-coordinate of H+

Let {Ψp}p∈[0,1] be a smooth one-parameter family of data sets in M which crosses
∂Mblack such that Ψp ∈ Mblack for p ∈ [0, p∗] and Ψp∗ ∈ ∂Mblack. Then

A (Ψp)− A (Ψp∗ ) =
√

2c8πM (Ψp∗ )
2|p − p∗|1/2 + o(|p − p∗|1/2),

K (Ψp) =

√
2c

M (Ψp∗ )
|p − p∗|1/2 + o(|p − p∗|1/2),

U (Ψp)− U (Ψp∗ ) = −
√

2c(1 + O(ε0))M (Ψp∗ )|p − p∗|1/2 + o(|p − p∗|1/2)

as p ↗ p∗, where c .
=

∣∣ d−

dp−

∣∣∣
p=p∗

P(Ψp)
∣∣.

Scaling of K measured numerically in this setting by [MURATA–REALL–TANAHASHI’13].
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NONLINEAR ARETAKIS INSTABILITY AND TRANSIENT INSTABILITIES

1. If Ψ ∈ ∂Mblack = M±1
stab, then

lim
v→∞

Y(rϕ)|H+ = H0[ϕ]

lim
v→∞

v−1 · Y2(rϕ)|H+ = −2M−2H0[ϕ],

where for an open and dense subset of ∂Mblack, H0[ϕ] ̸= 0.

2. Let {Ψp}p∈[0,1] ⊂ M be a family crossing the threshold and β = β(Ψp) is the
inverse temperature of the black hole formed from Ψp. Then

Y(rϕ)|H+ (v) = e−4πv/βH♭
0 [ϕ] + O(εv−1+δ),

|Y2(rϕ)|H+ (v)| ≳ |H♭
0 [ϕ]|v + O(εvδ) for v ≤ β,

where for generic curves {Ψp}p∈[0,1], H♭
0 [ϕ] ̸= 0.

Numerical evidence for this transient instability timescale given in
[MURATA–REALL–TANAHASHI’13].
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Thank you for your attention!
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