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o Collapse simulations in (single) null coordinates (5 slides)
e Type-ll charged critical collapse (3 slides)

@ Extremal charged critical collapse (4 slides)
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Single null coordinates

Any spacetime dimension, any symmetry, coordinates (u, x, '):
ds® = —2G(dudx — B du®) + R?y;(d6’ + B du)(d¢’ + &' du)

surfaces u = const are null cones

... their generators are curves of constant (u, ")

R is fixed by det; = det;(flat)

°
°

@ ... with tangent vector G109, (outgoing null)

°

@ B fixes the coordinate x incrementally in u (radial shift)
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Hierarchical structure of the Einstein eqns

Key geometric object: the ingoing null vector
=:=9,— Bd— [0
normal to the cross section x = const of the null cone u = const

Consider «;; and R or G given

(In RGX>X = I:XSG(GX,(‘);,WU) (1a)

w — (InG) « = —RS¢(...) (1b)
(R, ),x 5i(G,-..) (2)
(R R)x = Sr(f',...) (3)
(R=7ij)x = Si(ZR, ...) (4)
(Bx—=InG) = Snul-. ) (5)

’
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Two particular and three generic formulations

In all formulations, evolve «;; and matter, plus
e Bondi: R = x determines B, constrain G (needs R, > 0)

@ wave extraction, no origin (Babiuc+11, Moxon+23)
@ SUPErnovae (Siebel+02)

o affine: G =1 determines B, constrain R
e adS problems, no origin (chester+11-22)

e evolve-R: constrain G (needs R, > 0), evolve R, any B
e spherical critical collapse, B = 0 (Garfinkleos)
e mildly non-spherical critical collapse, B adapted to

self-similarity (G-Baumgarte-Hilditch24)
@ evolve-G: constrain R, evolve G, any B (G-Martei2s, this talk)
e free evolution: evolve R and G, any B

e black hole interiors, spherical symmetry, B = 0, no origin
(Burko-Ori97, Murata+13)
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Key ingredients of the code (G-Baumgarte-Hilditch24)

e Solve timestep problem Au < (Ax)? A (winicourto)
e pseudospectral in Yim(6, ©)
e at grid point i, truncate to ¢ < min(/, {max)
e CFL limit is now Au < Ax
e Make finite differencing strictly causal
e in hierarchy equations, grid point / depends only on i, i — 1, ...
e in evolution equations 0, = = + B0y + ... upwind Bdy
o (null or future spacelike) outer boundary is trivial, so is excision
@ Incremental gauge choice B
e always fix R=0at x=0
e make x = xg ingoing null “on average”: type-ll critical collapse
without mesh refinement (Garfinkieos)
e use non-spherical part of B to keep coordinates regular
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Outlook: axisymmetric type-ll critical collapse

@ New evolve-G formulation allows evolving through horizon
with arbitrary B

@ Use this to push axisymmetric type-ll critical collapse to larger
non-sphericity and higher fine-tuning
@ Long-term goal: vacuum critical collapse

@ Worry: do outgoing coordinate null cones form caustics?
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Type-Il charged critical collapse in spherical symmetry (cwas

Spherical Einstein-Maxwell-scalar
e D, =V, +iqA,
o Maxwell gauge A, =0
e initial data ¢(0, x) = p €™ Gaussian(x)
@ collapse diagnostic Hawking compactness
C=2M/R=1-|VR?>>1

conserved local mass M

R=x=0

conserved local charge @
M = M+ Q?/(2R) constant in RN
collapse threshold p, to 15 digits

tune xp to 2-4 digits

expect M(p) ~ (p — p)
Q~ (P - p*)0'883 (

0.374 and

G-Martin-Garcia96)
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Real versus complex initial data

Mass fine structure

In MemoTs(p) versus In(p — ps), expected M(p) ~ (p — pi)%-374
taken out
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-30 25 -20 -15 -10

real scalar field charged complex scalar field

In M versus In(p — p.) dashed: fit to M ~ (p — p,)038
at IOW ﬁne—tuning (Baumgarte's talk)

Universality but critical exponent modified a bit
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Non-universality in the charge?

Charge fine structure

In QemoTs Vversus In(p — p.), expected Q@ ~ (p — px)%83 (no
Change Of Sign) (G-Martin-Garcia96) taken out
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dashed: fit to Q ~ (p — p,)%8% dashed: Q opposite sign
at low fine-tuning

Critical exponent universal but not fine-structure
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Toy extremal critical collapse

General null rectangle setup (c-m2s)

@ spherical Einstein-Maxwell-scalar
@ corner data Ry, Qy, M,
@ boundary data ¢(x) and/or ¢(u)
@ double-null gauge B =10

Example of toy extremal critical collapse (kehle-Unger-Angelopoulos)
e M,=1 Q,=11 R, =100
e ¢(u,0) =0, ¢(0,x) = pGaussian(x), g =0
@ ... so ¢ real and Q = 1.1 everywhere
@ R€[0.4,100] on x =0, up to R € [100,108] on u =10
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Well supercritical case p = 1.6

@ M(u,0) =1 increases to M(u, xmax) =~ 1.245 for all u

e Q(u,x)=1.1 everywhere

o ri = M+ VM2 — Q2 ~1.83,0.66

@ snapshots at u = 98.2, 98.28 (event horizon), 98.5, 99.0, 99.6

09
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Near sub-critical p = 1.02 and near-supercritical p = 1.03

o M(u,0) =1, M(u, Xmax) ~ 1.099 (1.101) for p = 1.02 (1.03)

@ ry ~1.15,1.05 (for p = 1.03)

@ snapshots at v = 98.0, 98.97, 99.45

6 - 12
113 /
112 4 '
st ]
111 -
11+ 08
4 11.00 -
1.08 - os
1.07 -
E 0.4 1-/1.004 -
105 . 1002
0 1 4 8 02 H 1
2 0.998 -
o |- 0996
0.994 -
1E
02| 0992
P I R
0 1 2 3 4 5 6 7 8
o 04 . . . . . .
0 1 2 3 4 8 0 1 2 3 4 5 6 7
R versus x C :=2M/R versus x

8

12/13



Outlook: spherical extremal critical collapse

@ Extremal BHs at the threshold of collapse: true for
Einstein-Maxwell-VIasov (kehle-Unger22, East2s)

@ Einstein-Maxwell-charged scalar: true for toy extremal critical
collapse on null rectangle, unclear for collapse from data on R3

@ Backscatter from the scalar field that made M., Q, could yet
make trapped surfaces inside the extremal BH, so that it is
not a threshold solution

e Play with data on a regular null cone (unsuccessful so far)

@ Evolve characteristic gluing data for extremal horizon
(Kehle-Unger24, Gadioux+25) tO see if trapped surfaces form

@ Do the same in 4+1 twisting vacuum (Reall-Santos+)
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