

Simulations of the Einstein-Maxwell-charged scalar system in null coordinates

Carsten Gundlach and Laetitia Martel

University of Southampton

Extremal Black Holes and the Third Law of Black Hole
Thermodynamics, ICERM, 8 January 2026

- Collapse simulations in (single) null coordinates (5 slides)
- Type-II charged critical collapse (3 slides)
- Extremal charged critical collapse (4 slides)

Single null coordinates

Any spacetime dimension, any symmetry, coordinates (u, x, θ^i) :

$$ds^2 = -2G(du dx - B du^2) + R^2 \gamma_{ij}(d\theta^i + \beta^i du)(d\theta^j + \beta^j du)$$

- surfaces $u = \text{const}$ are null cones
- ... their generators are curves of constant (u, θ^i)
- ... with tangent vector $G^{-1}\partial_x$ (**outgoing null**)
- R is fixed by $\det \gamma_{ij} \equiv \det \gamma_{ij}(\text{flat})$
- B fixes the coordinate x incrementally in u (radial shift)

Hierarchical structure of the Einstein eqns

Key geometric object: the **ingoing null vector**

$$\Xi := \partial_u - B\partial_x - \beta^i\partial_i$$

normal to the cross section $x = \text{const}$ of the null cone $u = \text{const}$

Consider γ_{ij} and R or G given

$$\left(\ln \frac{G}{R_{,x}} \right)_{,x} = \frac{R}{R_{,x}} S_G(\partial_x, \partial_i, \gamma_{ij}) \quad (1a)$$

$$R_{,xx} - (\ln G)_{,x} R_{,x} = -R S_G(\dots) \quad (1b)$$

$$(R^4 \gamma_{ij} \beta^j)_{,x} = S_i(G, \dots) \quad (2)$$

$$(R \Xi R)_{,x} = S_R(\beta^i, \dots) \quad (3)$$

$$(R \Xi \gamma_{ij})_{,x} = S_{ij}(\Xi R, \dots) \quad (4)$$

$$(B_{,x} - \Xi \ln G)_{,x} = S_{\mathcal{H}}(\dots) \quad (5)$$

Two particular and three generic formulations

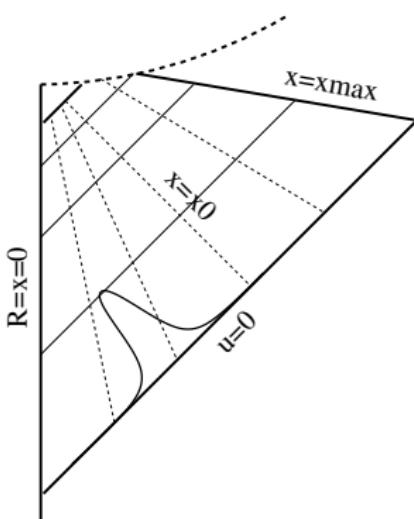
In **all** formulations, evolve γ_{ij} and matter, plus

- **Bondi:** $R = x$ determines B , constrain G (needs $R_{,x} > 0$)
 - wave extraction, no origin (Babiuc+11, Moxon+23)
 - supernovae (Siebel+02)
- **affine:** $G = 1$ determines B , constrain R
 - adS problems, no origin (Chesler+11-22)
- **evolve- R :** constrain G (needs $R_{,x} > 0$), evolve R , **any B**
 - spherical critical collapse, $B = 0$ (Garfinkle95)
 - mildly non-spherical critical collapse, B adapted to self-similarity (G-Baumgarthe-Hilditch24)
- **evolve- G :** constrain R , evolve G , **any B** (G-Martel25, this talk)
- **free evolution:** evolve R and G , **any B**
 - black hole interiors, spherical symmetry, $B = 0$, no origin (Burko-Ori97, Murata+13)

- Solve timestep problem $\Delta u \lesssim (\Delta x)^2 \Delta \theta$ (Winicour+94)
 - pseudospectral in $Y_{\ell m}(\theta, \varphi)$
 - at grid point i , truncate to $\ell \leq \min(i, \ell_{\max})$
 - CFL limit is now $\Delta u \lesssim \Delta x$
- Make finite differencing strictly causal
 - in hierarchy equations, grid point i depends only on $i, i-1, \dots$
 - in evolution equations $\partial_u = \Xi + B\partial_x + \dots$ upwind $B\partial_x$
 - (null or future spacelike) outer boundary is trivial, so is excision
- Incremental gauge choice B
 - always fix $R = 0$ at $x = 0$
 - make $x = x_0$ ingoing null “on average”: type-II critical collapse without mesh refinement (Garfinkle95)
 - use non-spherical part of B to keep coordinates regular

- New evolve- G formulation allows evolving through horizon with arbitrary B
- Use this to push axisymmetric type-II critical collapse to larger non-sphericity and higher fine-tuning
- Long-term goal: vacuum critical collapse
- Worry: do **outgoing** coordinate null cones form caustics?

Spherical Einstein-Maxwell-scalar

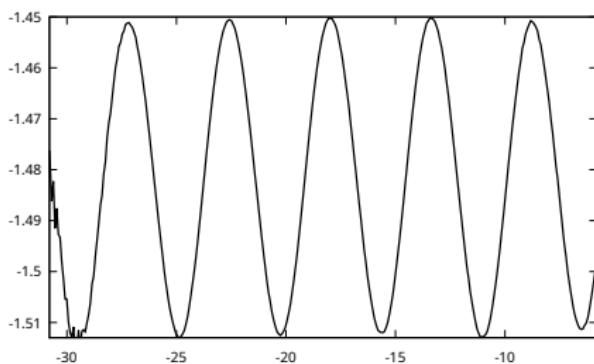


- $D_a = \nabla_a + i\mathbf{q}A_a$
- Maxwell gauge $A_x = 0$
- initial data $\phi(0, x) = p e^{i\omega x}$ Gaussian(x)
- collapse diagnostic Hawking compactness $C = 2M/R = 1 - |\nabla R|^2 > 1$
- conserved local mass M
- conserved local charge Q
- $\mathcal{M} := M + Q^2/(2R)$ constant in RN
- collapse threshold p_* to 15 digits
- tune x_0 to 2-4 digits
- expect $M(p) \sim (p - p_*)^{0.374}$ and $Q \sim (p - p_*)^{0.883}$ (G-Martín-García96)

Real versus complex initial data

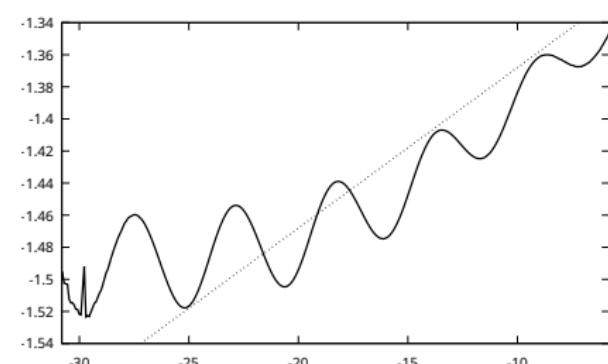
Mass fine structure

$\ln M_{\text{FMOTS}}(p)$ versus $\ln(p - p_*)$, expected $M(p) \sim (p - p_*)^{0.374}$
taken out



real scalar field

$\ln M$ versus $\ln(p - p_*)$



charged complex scalar field

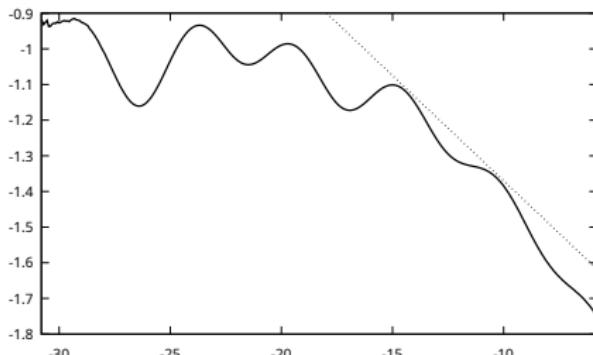
dashed: fit to $M \sim (p - p_*)^{0.384}$
at low fine-tuning (Baumgarte's talk)

Universality but critical exponent modified a bit

Non-universality in the charge?

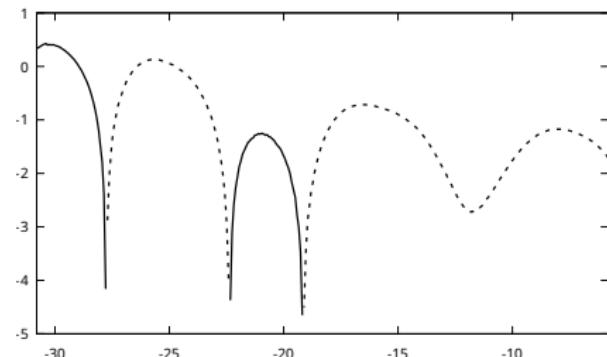
Charge fine structure

$\ln Q_{\text{FMOTS}}$ versus $\ln(p - p_*)$, expected $Q \sim (p - p_*)^{0.883}$ (no change of sign) (G-Martín-García96) taken out



charged scalar field (as before)
dashed: fit to $Q \sim (p - p_*)^{0.824}$
at low fine-tuning

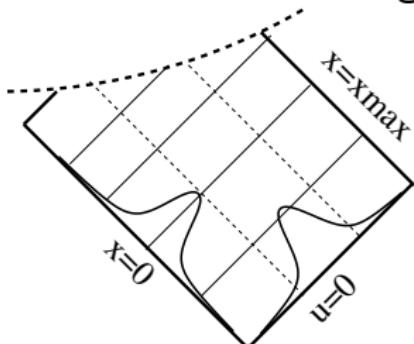
Critical exponent universal but not fine-structure



charged scalar field (q times 10)
dashed: Q opposite sign

Toy extremal critical collapse

General null rectangle setup (G-M25)



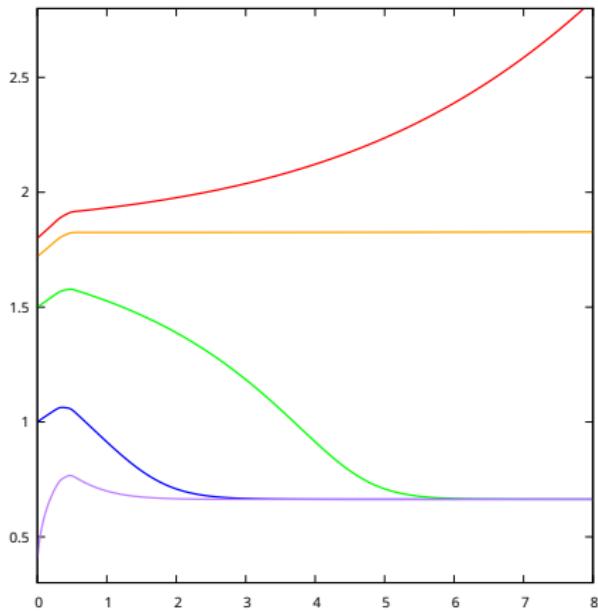
- spherical Einstein-Maxwell-scalar
- corner data R_* , Q_* , \mathcal{M}_*
- boundary data $\phi(x)$ and/or $\phi(u)$
- double-null gauge $B = 0$

Example of toy extremal critical collapse (Kehle-Unger-Angelopoulos)

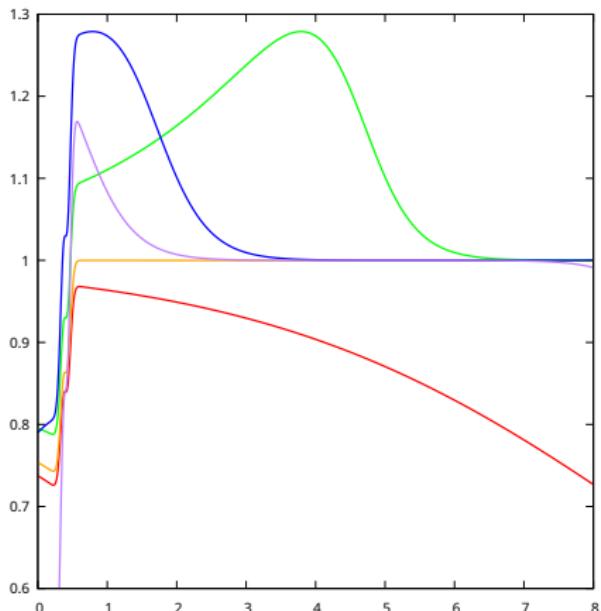
- $\mathcal{M}_* = 1$, $Q_* = 1.1$, $R_* = 100$
- $\phi(u, 0) = 0$, $\phi(0, x) = p \text{ Gaussian}(x)$, $\textcolor{red}{q} = 0$
- ... so ϕ real and $Q = 1.1$ everywhere
- $R \in [0.4, 100]$ on $x = 0$, up to $R \in [100, 108]$ on $u = 0$

Well supercritical case $p = 1.6$

- $\mathcal{M}(u, 0) = 1$ increases to $\mathcal{M}(u, x_{\max}) \simeq 1.245$ for all u
- $Q(u, x) = 1.1$ everywhere
- $r_{\pm} = \mathcal{M} \pm \sqrt{\mathcal{M}^2 - Q^2} \simeq 1.83, 0.66$
- snapshots at $u = 98.2, 98.28$ (event horizon), 98.5, 99.0, 99.6



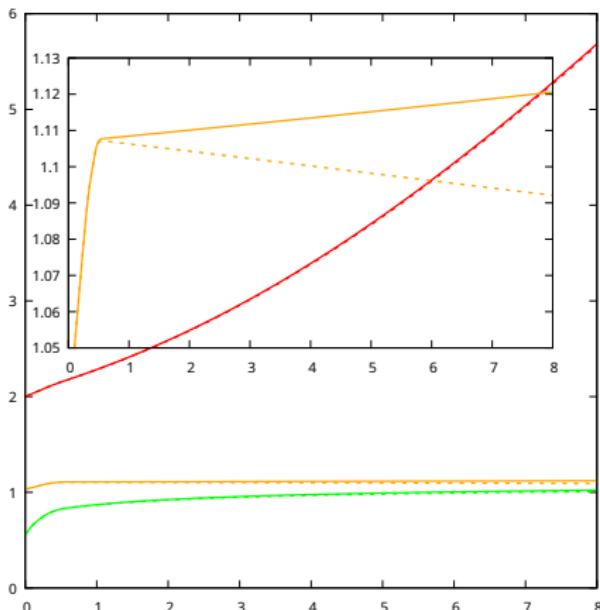
R versus x



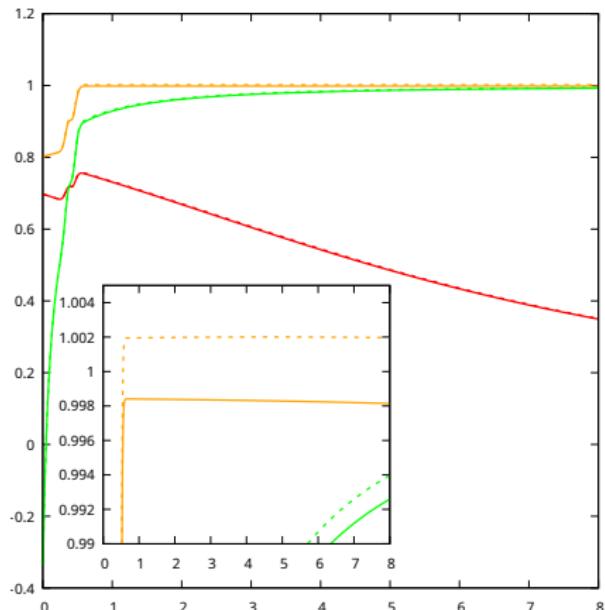
$C := 2M/R$ versus x

Near sub-critical $p = 1.02$ and near-supercritical $p = 1.03$

- $\mathcal{M}(u, 0) = 1$, $\mathcal{M}(u, x_{\max}) \simeq 1.099$ (1.101) for $p = 1.02$ (1.03)
- $r_{\pm} \simeq 1.15, 1.05$ (for $p = 1.03$)
- snapshots at $u = 98.0, 98.97, 99.45$



R versus x



$C := 2M/R$ versus x

Outlook: spherical extremal critical collapse

- Extremal BHs at the threshold of collapse: true for Einstein-Maxwell-Vlasov (Kehle-Unger22, East25)
- Einstein-Maxwell-charged scalar: true for toy extremal critical collapse on null rectangle, unclear for collapse from data on \mathbb{R}^3
- Backscatter from the scalar field that made \mathcal{M}_*, Q_* could yet make trapped surfaces inside the extremal BH, so that it is **not** a threshold solution
- Play with data on a regular null cone (unsuccessful so far)
- Evolve characteristic gluing data for extremal horizon (Kehle-Unger24, Gadioux+25) to see if trapped surfaces form
- Do the same in 4+1 twisting vacuum (Reall-Santos+)