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Single null coordinates

Any spacetime dimension, any symmetry, coordinates (u, x , θi ):

ds2 = −2G (du dx − B du2) + R2γij(dθ
i + βi du)(dθj + βj du)

surfaces u = const are null cones

... their generators are curves of constant (u, θi )

... with tangent vector G−1∂x (outgoing null)

R is fixed by det γij ≡ det γij(flat)

B fixes the coordinate x incrementally in u (radial shift)
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Hierarchical structure of the Einstein eqns

Key geometric object: the ingoing null vector

Ξ := ∂u − B∂x − βi∂i

normal to the cross section x = const of the null cone u = const

Consider γij and R or G given

(
ln

G

R,x

)
,x

=
R

R,x
SG (∂x , ∂i , γij) (1a)

R ,xx − (lnG ),x R ,x = −RSG (...) (1b)

(R4γijβ
j
,x),x = Si (G , ...) (2)

(R ΞR),x = SR(β
i , ...) (3)

(R Ξγij),x = Sij(ΞR, ...) (4)

(B,x − Ξ lnG ),x = SH(...) (5)
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Two particular and three generic formulations

In all formulations, evolve γij and matter, plus

Bondi: R = x determines B, constrain G (needs R,x > 0)

wave extraction, no origin (Babiuc+11, Moxon+23)

supernovae (Siebel+02)

affine: G = 1 determines B, constrain R

adS problems, no origin (Chesler+11-22)

evolve-R: constrain G (needs R,x > 0), evolve R, any B

spherical critical collapse, B = 0 (Garfinkle95)

mildly non-spherical critical collapse, B adapted to
self-similarity (G-Baumgarte-Hilditch24)

evolve-G : constrain R, evolve G , any B (G-Martel25, this talk)

free evolution: evolve R and G , any B

black hole interiors, spherical symmetry, B = 0, no origin
(Burko-Ori97, Murata+13)
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Key ingredients of the code (G-Baumgarte-Hilditch24)

Solve timestep problem ∆u ≲ (∆x)2∆θ (Winicour+94)

pseudospectral in Yℓm(θ, φ)
at grid point i , truncate to ℓ ≤ min(i , ℓmax)
CFL limit is now ∆u ≲ ∆x

Make finite differencing strictly causal

in hierarchy equations, grid point i depends only on i , i − 1, ...
in evolution equations ∂u = Ξ+ B∂x + ... upwind B∂x
(null or future spacelike) outer boundary is trivial, so is excision

Incremental gauge choice B

always fix R = 0 at x = 0
make x = x0 ingoing null “on average”: type-II critical collapse
without mesh refinement (Garfinkle95)

use non-spherical part of B to keep coordinates regular
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Outlook: axisymmetric type-II critical collapse

New evolve-G formulation allows evolving through horizon
with arbitrary B

Use this to push axisymmetric type-II critical collapse to larger
non-sphericity and higher fine-tuning

Long-term goal: vacuum critical collapse

Worry: do outgoing coordinate null cones form caustics?
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Type-II charged critical collapse in spherical symmetry (G-M25)

u
=
0

x=xmax

x
=
x
0

R
=

x
=

0

Spherical Einstein-Maxwell-scalar

Da = ∇a + iqAa

Maxwell gauge Ax = 0

initial data ϕ(0, x) = p e iωx Gaussian(x)

collapse diagnostic Hawking compactness
C = 2M/R = 1− |∇R|2 > 1

conserved local mass M

conserved local charge Q

M := M + Q2/(2R) constant in RN

collapse threshold p∗ to 15 digits

tune x0 to 2-4 digits

expect M(p) ∼ (p − p∗)
0.374 and

Q ∼ (p − p∗)
0.883

(G-Mart́ın-Garćıa96)
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Real versus complex initial data

Mass fine structure

lnMFMOTS(p) versus ln(p − p∗), expected M(p) ∼ (p − p∗)
0.374

taken out
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Universality but critical exponent modified a bit
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Non-universality in the charge?

Charge fine structure

lnQFMOTS versus ln(p − p∗), expected Q ∼ (p − p∗)
0.883 (no

change of sign) (G-Mart́ın-Garćıa96) taken out

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-30 -25 -20 -15 -10

charged scalar field (as before)

dashed: fit to Q ∼ (p − p∗)
0.824

at low fine-tuning

-5

-4

-3

-2

-1

 0

 1

-30 -25 -20 -15 -10

charged scalar field (q times 10)

dashed: Q opposite sign

Critical exponent universal but not fine-structure

9 / 13



Toy extremal critical collapse

General null rectangle setup (G-M25)

u
=
0

x
=
0

x
=
x
m

ax
spherical Einstein-Maxwell-scalar

corner data R∗, Q∗, M∗

boundary data ϕ(x) and/or ϕ(u)

double-null gauge B = 0

Example of toy extremal critical collapse (Kehle-Unger-Angelopoulos)

M∗ = 1, Q∗ = 1.1, R∗ = 100

ϕ(u, 0) = 0, ϕ(0, x) = p Gaussian(x), q = 0

... so ϕ real and Q = 1.1 everywhere

R ∈ [0.4, 100] on x = 0, up to R ∈ [100, 108] on u = 0
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Well supercritical case p = 1.6

M(u, 0) = 1 increases to M(u, xmax) ≃ 1.245 for all u
Q(u, x) = 1.1 everywhere
r± = M±

√
M2 − Q2 ≃ 1.83, 0.66

snapshots at u = 98.2, 98.28 (event horizon), 98.5, 99.0, 99.6
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Near sub-critical p = 1.02 and near-supercritical p = 1.03

M(u, 0) = 1, M(u, xmax) ≃ 1.099 (1.101) for p = 1.02 (1.03)

r± ≃ 1.15, 1.05 (for p = 1.03)

snapshots at u = 98.0, 98.97, 99.45
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Outlook: spherical extremal critical collapse

Extremal BHs at the threshold of collapse: true for
Einstein-Maxwell-Vlasov (Kehle-Unger22, East25)

Einstein-Maxwell-charged scalar: true for toy extremal critical
collapse on null rectangle, unclear for collapse from data on R3

Backscatter from the scalar field that made M∗,Q∗ could yet
make trapped surfaces inside the extremal BH, so that it is
not a threshold solution

Play with data on a regular null cone (unsuccessful so far)

Evolve characteristic gluing data for extremal horizon
(Kehle-Unger24, Gadioux+25) to see if trapped surfaces form

Do the same in 4+1 twisting vacuum (Reall-Santos+)
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