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e Vacuum case
e Non vacuum case with spherical symmetry
e Exact solutions

¢ Conformal affine null Einstein equations

{ Rotating, Axisymmetric Black Holes
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Null coordinates

e Null coordinates systems are based in a family of null hypersurfaces where the null
coordinate x° labels these hypersurfaces and the angular coordinates x* (A = 2, 3) label
the set of null geodesic rays. The metric reads:

gapdx®dx® = [goodx® + 2go1dx" + 2goadx”]dx® + gagdx?dx® . (1)
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Bondi Coordinates

e In the Bondi—Sachs metric, the areal radial coordinate r parametrizes the points along
outgoing null rays:

%
ds® = — <e25 — —r*has UAUB) du? — 2e*” dudr — 2r*hagU® du dx® + r*hap dx"dx®,
()
where det(hag) = det(qgag), with gag(x€) a fixed reference metric on the unit two-sphere.

e The function B(u, r,x*) measures the deviation from an affine parametrization of the
outgoing null geodesics.

e In particular if A is an affine parameter then
O, r,x?) = %P,

e The areal coordinate r becomes singular where the expansion of null rays vanishes,
whereas the affine coordinate A is singular only at caustics.
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Affine Null Coordinates

e In an affine null formulation, the metric takes the form
ds® = —W dw? + 2e dw dX + r’hag (dx® — WAdw) (dx® — WEdw) . (3)

e The covector £, = e dw generates the null hypersurfaces w = const. The parameter
€ = —1 corresponds to a retarded null coordinate, while ¢ = 4+1 corresponds to an
advanced null coordinate.

e All metric functions r, W, WA, and hag depend on (w, A, x*).
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Characteristic initial value problem and Einstein equations in null coordinates

Using metrics of this type, there are four standard ways to set up a characteristic
initial-boundary value problem:

e timelike—null formulation,

e vertex—null formulation,

e double—null (or 2 + 2) formulation,
e affine—null formulation.

In general, the Einstein equations E., := G,, — 87 T,, = 0 can be decomposed into three
classes:
¢ Main equations:

> hypersurface equations,
> evolution equations;

e Supplementary equations (imposed only on a boundary);
e Trivial equation.
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Bondi-Sachs metric

Notably, for a Bondi-Sachs metrics, these equations adquire a hierarchical structure: Some
main equations take the schematic form of hypersurface equations

Br = Nglheo] (4)
(r4e*25hABU§),r = Nuylhep, O] (5)
V,r - NV[hCDvﬂa UC]7 (6)

while other of the main equations take the form of evolution equations
MAMB(rhAB,u),r :Nh[hCDaﬁv UC) V] (7)

Given hag on an initial null hypersurface v = 0, the main equations can be integrated radially
in sequential order to determine the initial values of

hag =B — U=V = hag, at u=0

in terms of their integration constants on the boundary,. After determining hag,, at u =0, the
hypersurface data hag can be advanced to u = Au by a finite difference procedure. It is the
algorithm underlying the PITT null code.
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Affine null metric

In contrast, for a affine null metric the vacuum field equations take the form:

r_lr,M = Hr[hCD] (8)

(r*hasW5)x = Hwlheo,r] (9)

(2(r2)’u—V(r2)’>\) = Hylhcp, r, W] (10)
A

MAMEB(rhag) ux = Hnlhcp,r, WE, V), (11)

Eq.(10) breaks the hierarchical structure due to the presence of r,.

(FaMAF-UNC, IFEG-CONICET-Argentina) e ICERM; Brown University, Providence, USA o 0 .2026 e (8/55)



Affine null Metric Il

However, as first shown by Jeff Winicour , the hierarchical
structure can be restored through the introduction of new variables:
2r
y:V_ ’U_ P ="ru (12)
Fx

and 0 = %mAmBhABAA, K= %mAmBhABTU, J = 4(r\rx — po) With these definitions, the

field equations take the form

rira = Hlheo) (13)
(r*hasWR)x = Hwlhep, 1] (14)
(y(rz),)\> = Hy[hCD,ﬁ WC] (15)
A
rJ C
K N = HJ[hCD7r7 w 7y] (16)

(%), -
X/
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Affine Null Metric 11l

Affine—null formulation of GR on intersecting null hypersurfaces

Madler studied the affine null formulation when the
boundary is null. In this case, the metric reads

ds® = —W dw? + 2¢ dw d\ + r’hap(dx? — WAdw)(dx® — WBdw), (18)

with boundary conditions at A = 0: W = W, = W4 =0, e =1.
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Affine null metric IV

The null vectors £2 and n? have the coordinate expressions

20, = 0y , (19)
1
n?0, = —€d, — EW&\ —eWA9, . (20)
where in particular n?0,|5 = —¢d,,. The expansion rates, 6y := V,{? and 0, := V,n?, for
both null vectors are
2r
by = =7 (21)
2 211/A
. ) (r W),)\ EDA(I‘ w )
9(,,) = —e@wlnr - 2r2 r2 (22)

At the boundary B, 0(,,) — 2w

r
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Initial value problem for Vacuum Einstein equations

The initial value problem at two intersecting null hypersurfaces for the vaccum Einstein

equations split into three different groups:

(i) a hierarchical set of differential equations along the null rays on the boundary B where
A=0.

(i) a hierarchical set of hypersurface equations on the null hypersurfaces. N, where w = wg

(iii) two evolution equations to propagate the initial data from a given null hypersurface N,
to a null hypersurface Ny, 1aw-

This set of equations requires the following initial-boundary data

e Initial data on ¥, that are functions of x*, only

hag , oaB, I, Wé‘\ s Pe="Ty, Pn="rw (23)
e free data on B which are functions depending on w and x*
nag = hag.w (24)
e free data on N, which are functions depending on X and x*
oag = hag,y (25)
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Can the formalism be generalized to
include matter fields?

(FaMAF—UNC, |FEG—CON|CET—Argentina) e ICERM; Brown University, Providence, USA e 05.01.2026 e (13/55)



Including Matter: Maxwell Field and Spherical Symmetry

In , we showed that, under spherical symmetry, the affine-null
hierarchy can be restored in the presence of a Maxwell field without sources.
We introduce an electromagnetic potential A, = (A, Ax,0,0) with Faraday tensor
Fab = 2Ap, 5. In the adapted null gauge,

As = a(w, ) dw. (26)
The field equations are

Rap = 87 (Tab - %gab ch) .
with 1
Tap = _E (FachC - %gabFCchd) )

determined by F,p.
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Including matter: Maxwell Field Il

e The fundamental metric and matter variables are prescribed as independent constants on
>t

AZ:OQA , hp=r ,NQ:N ,60:6 ) (27)

Two Tuo b Twp

e The non-extremal Reissner-Nordstrom metric: Let us choose now the data on X such
that Np =0, and ©g # 0. The Bondi mass is given by:

mg(w) := lim £(1+gabrvar7b)

A— o0

w=const ) , ( 28)

ro Q Q° _
:E(l + 2No©o) + T mly, + T m = const.

The final solution is:

14 26u(r + )

- Ndw? — 2dwd + r?dQ?

ds® =

r

with r = ry — kyw.
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Schwarzschild and Israel coordinates

If @ = 0 this solution reduces to

2)2 WA\ 2
2 _ 2 2 2 2
Israel obtained this metric by analyzing the null geodesics in the standard Schwarzschild metric
representation adopting the w coordinate to the null structure. The past and future horizons in

the above metric are given by A = 0 and w = 0 respectively.

Z+ Singularity| -r=0 - 7t

Tl = 0 SSinenlanitysye
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Including a massless scalar field

The case of a scalar field was studied by Winicour, Madler, and collaborators in

. This framework was also employed to
analyze critical collapse, where affine null coordinates allow the evolution to be followed beyond
the formation of the event horizon and up to the physical singularity.

Figure extracted from PRD 110 (2024) 4, 044061 (Madler, Baake, Hosseini, Winicour)
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Including a Massless Scalar and Maxwell Field

In we extended the affine-null formulation to the
Einstein—Maxwell system coupled to a massless complex scalar field.
The field equations are

K 1 1 | p—
Exp =0 = R,p— E <ngFachd - 4gabFCchd> Y |:2(Da¢)(qu)) oty E(qu))(paq)) 5
E,:=0 = V,F +4njp,

E:=0 = DD,0, E:=0=D"D,0,

where D, = V. + igA. is the gauge-covariant derivative, and q is the scalar charge and with
current jp, = 4 (CD Dpd — ¢Db<b) . Its integral over a three-volume V defines the charge

2
1
Q= / jidy, = o 7§ F2b .y \/det(gag) dx® dx®. €))
v T Jy

function
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Including a Massless Scalar and Maxwell Field Il

Consider the metric

ds? = —V(w, \) dw? + 2e dw d ) + r’(w, \) gag dx?dx®.

For the charge function (30), we find Q@ = —er?ax. The nonzero components of E,, are
V(r2V

(EWW)[S] 0= ruw = % N % (r,wv,)\ - r,)xv,w)

1 V@2 _ _

2 |00 4 L 0?0 4 iga (08, 0, ) |
2 ; Py ] ,
1 602 1 — — iqa _ _

E, )T 0= rus+ —(rPVa)s— = — (P b+ PaD,) — (0D, — DD
(Ewx) o+ (V) a = 5ar e = 5 (Pu®a+ 050,) — —-(99 A)

1
0= r + Emr|¢,>\|2 -

2
0= —(Viry + 2er —)\)’/\—%%.
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Including a massless scalar and Maxwell field 111

and those of E, are
(E)S) 1 0= Qu +eVQ. + 4mg2ral®? + 2imgr? (q>q'>,w - <T><1>,W) , (31)
0=Qx+2rr?qi(®d  — P ). (32)
while E gives

10=0=(r?®,) .+ (PP w+e(rPVo ) 5 + 2igra(rd) » — icqdQ . (33)

Exr, ¢"PEag, E\, E. (34)

e supplementary equations :
Eww , Eu. (35)

e trivial equation :

(FaMAF—UNC, |FEG—CON|CET—Argentina) e ICERM; Brown University, Providence, USA e 05.01.2026 e (20/55)



CAN THE HIERARCHY BE RESTORED?
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Restoring the Hierarchy

In recent work with T. Madler and R. Gannouji , the
hierarchical structure is restored by introducing the following auxiliary fields:

p = rw, €16)
Z = Vrrx+2erp—2X\, (37b)
2r (ra® ., — p® ) + €(Z + )b
ro_ r(ra®w —pPx) +e(Z+2) A (37¢)
o
j = I'(E(D,)\ - 6/\(])) (37d)
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Restoring the hierarchy

Allowing to cast the into
1
T = —EWIC",AIZ, (38a)
Qxr = -2mr’qJ, (38b)
Q
ay = —€5, (38¢)
Kk Q2
Z, = ——— d
WA 8 r2 ) (38 )
A+ 2)0 o
Ly = _dA+2)0, — 2iga(rd) \ + i Q, (38e)
r
1 /N 2Zry Kk Q?
% = ——|= . ——
% A<r2>7)\+ R e
RE€ ,—— —
—5 (PAL+ LD ) + rgeaT (38f)
L €
d, = = _Svo,. 38
, 5 2 A (38g)
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Asymptotic initial value problem
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Local initial-boundary formulation at a world line
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Initial-boundary value problem at a null hypersurface
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Double-null CIBVP |

A solution of the Einstein-Maxwell-scalar field equations on the domain B¢(w) U 4 ¢(w) can
be found for the double-null CIBVP with the following specifications:

e On .#¢(0) specify a free (sufficiently differentiable) complex function Fe(\);
e On B¢(0) specify a free (sufficiently differentiable) complex function Np(w);
e The following fields are trivial everywhere on B¢(w)

a(w,0) = V(w,0) = V x(w,0) =0. (39)
e On the common intersection Yo = B(0) N.4"<(0) specify the values for the following fields
®(0,0), r(0,0), rw(0,0), rx(0,0), Q(0,0). (40)

where in particular r(0,0) > 0.
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Double-null CIBVP 11

This double-null CIBVP can be solved as follows:
1. Given Ng(w) and ®(0,0), determine the scalar field on the boundary B¢(w) from

® ,(w,0) = Np(w).

2. Using Ng(w), ®(w,0), and the initial values r(0,0), r(0,0), Q(0,0), and r (0, 0), solve
the boundary hierarchy to obtain r, Q, and r on B(w):

EWWIB_> O:r,ww+%’€r|N3|2v
Eylp — 0=Qu,+ 2imqr? (CTDNB — ¢/\73) , on B°.
0=2¢(rra)w—1+ 2%,

3. From r, r,, and N determine Z and L, thus fixing all boundary data for the
hypersurface equations (41a)—(41f).
4. On the initial null hypersurface w = 0, use ®(0,0) and F¢ to integrate

® 2 (0,A) = Fo(A).
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Double-null CIBVP 11

5. Given initial data ¢(0, A) on .#"¢(0) (w = 0), integrate hierarchically the hypersurface
equations (41a)-(41f) to obtain

r+Q—a—72—L—V atw=0,

using Fo(\) and the boundary data at w = 0.
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Double-null CIBVP llI

Namely,
1
rax = _55r|¢,>\|27 (41a)
Qxr = -2mr’qJ, (41b)
oy = —6%, (41c)
Kk Q2
Z7)\ - —Qﬁ B (41d)
A+ Z2)0 )
Ly = 7@ — 2iqa(r®) » + 9 Q , (41e)
% _ o 1x 2Zry  ® @
AX T A\ r2 A r3 2m r*
—H—i (CIT,\E—!—Z(D,,\) + kgeaJ (41f)
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Double-null CIBVP IV

6. Compute ¢ (0, A) algebraically from r, £, V, and & y via

_L£ ¢

w=— Vo,
’ r 2 A

and integrate in w to obtain ®(Aw, \) on A ¢(Aw).
7. Use ®(Aw, \) as new characteristic data on .4 ¢(Aw) and repeat step 4 at w = Aw.
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Symmetry considerations

Let us consider possible timelike Killing vectors .
An ansatz for the Killing vector £ left invariant under spatial rotations is & = £€%0,, + €20y with
the components £ and £* only dependent on w and A. The general solution is

& =AwW)ow + [-Aw(W)X+ B(w)] 0 , (42)
where A and B are free functions. It is convenient to introduce the scalar function

z = A(w)\ — /W B(w)dw (43)

which is invariant under the action of the vector field £ that is the Lie derivative
fgz = 5"’632 = 0.

(FaMAF—UNC, |FEG—CON|CET—Argentina) e ICERM; Brown University, Providence, USA e 05.01.2026 e (32/55)



Finally, inserting into the remaining Killing equations gives us

V= ] s , (44)

in which V/(-) is an arbitrary differentiable function.
Some choices for A and B are

4(w+k)V (2)

w!

Selective choices for A and B to build a Killing vector
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Exact solution of the hierarchical system

w2
=me—w+ s——— )\, 4
r=me—w+ 2(me—w)2/\ (45a)
4m A% w3 + (me + 2w)(me — w)?
= . 4
(me — w)® 2 (45b)

e The future horizon is at w = 0 while the past horizon is located at

_ 2(w — me)z.

w

A(w)
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Conformal completion

e Conformal compactification provides a natural framework for studying global aspects of
Einstein’s equations, as it gives a precise definition of infinity.

e On the other hand, in numerical work, infinities are often treated using compactified
coordinates in physical spacetime and regularized fields.

QUESTIONS:

e Can the conformal equations be written in a simple hierarchical form?

e Are these conformal equations equivalent to the regularized equations obtained in
compactified physical space?

Yes:

Let M = M UZ be the conformal completion of the physical spacetime M, where T = OM is
null infinity. .

There exists a smooth conformal factor Q2 on M such that 2 >0in M, Q=0and V,Q #0
onZ.

The unphysical fields are defined by
8ab = Q2gaba ¢ = Q_la)y

with Q otherwise arbitrary.
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Regularity at null infinity

Unphysical coordinates are denoted by x?, and V, is the Levi—Civita connection of g,,. The
physical and unphysical Ricci tensors satisfy

f\’)ab = R, + (46)

2V.V,Q VeV 3VQV.Q
Q B\ Q2 '

Using the physical field equations, the conformal Einstein—scalar system on (M, gap, Q)
becomes

0=—kr(V.QP)(V,QP)+ Rop + Q Q RE

0=03V.,V + Q?d V,VQ — 2Qd VQ V.Q.

2V,VQ2 (VCVCQ 3VCQVCQ)
—a T8 - )
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Affine—null conformal compactification

The spherically symmetric affine—null physical metric reads

ds3y = —W di? — 2did) + r’qapdx*dx5. (47)
With \ € [0,0), choose the conformal factor
~ 1
Q) = =
9 1+ A

The unphysical metric g,, = Q28,5 becomes

+ | >

w
dsfw_—~2dﬁ2—2dﬁd<1

2
r
= |+ = dx*dx5B.
1+ A) <1+)\) a8
This naturally defines conformal coordinates

x? = (u,x,x*) = 17,4,5/\ , x € [0,1],
1+ A

sothat A= %= and Q=1 — x.
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Affine-null conformal compactification Il

In conformal coordinates x?, the affine parameter satisfies X =0 at the vertex, and future
null infinity is located at x = 1.

e The unphysical metric in coordinates x? takes the form
ds? = —(1 — X)W du? — 2 du dx + R*qap dx*dx5, (48)
where the conformally regular variables are defined by
R:=(1-x)r, W:=(1-x)W.
e The physical and conformal scalar fields are related by

=(1-x)0.

As in the physical affine-null formulation, the Einstein equations do not admit a natural
hierarchical structure.
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(49a)
K 2
0 = Rt 573[(1 — )b, — ¢} , (49b)
_ 1 2 o2 (1-x)?[ R*W 2(R?).u
0 = gqas {—2 [(1 = Xx)(R?) WV —2x — 2(R?) 4] = = + Tt
R?) R2W
= - 2 x — 2 x).u 2 1-— (0} % ( M 1— ()
0 (R?® ) x — (R?® ) + [R*(1 — X)W ,],X+{(1_X) (1—x) |T— i
In order to restore a hierarchy, we start by introducing the field
R 2R .
y = (1x)(1_x)XW1_X, (50)
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This casts g*BEag = 0 into

RY X
0 = 2 —_— . 51
(1 -x 1- X> x (51)
implying
x4+ (1 —x)Zo(uv)
= 52
y o) (52
with Zy(u) being a function of integration. Next, definition of
WI(L = x)®] .«
L=2ROy — ——
T (1-x)Rx+R (53)
gives a first order evolution equation for the unphysical scalar field ®, i.e.
1 (L
®u=3 {R +W[(1—x)¢],x}, (54)

and casts the main equation for ® into a hypersurface equation.
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After a lengthy and tedious calculation we arrive at

0 =R+ T2~ )]} (559)
RN (DL 50
1—x)P] L 2[R+ (1—x)R]Z
S (L RN L S
X2
- % <722) ) (55C)
0 =3 { % +WIA- 0L}, (55¢)

which is regular at the boundary Z, i.e. it has no singularities at x = 1. The system (55) is
completed with E,, |z = 0 and evaluated a some value x € [0, 1), which are
needed to fix the boundary values for the hypersurface fields R, Z, £ and W.
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What about rotating spacetimes in this
framework?
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Rotating, Axisymmetric Black Holes

A generic line element for an affine-null metric defined with respect to a family of outgoing null
hypersurfaces u = const is

gapdx?dx? = —Wdu? — 2dud\ + R?hap(dx? — WAdu)(dx® — WEdu). (56)
hag is transverse-traceless and has only two degrees of freedom:

sin 0

A B 2 2
hABdX dx = (e Tdo + eT'Y

d¢2> cosh(26) + 2sin @sinh(26)ddde . (57)
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In this situation, the vacuum Einstein equations R,, = 0 split into:

e supplementary equations S; = 0, with
Si = (Ruua Ru97 Ruqﬁ)a

e one trivial equation R,y = 0,
e six main equations.

We assume axisymmetry and stationarity, with Killing vectors 0, and dyg, implying u- and
¢-independent metric functions. The associated Komar charges are the mass

N 2 An/B\ p2 42
Km—S—TAILmOOf(V\/,A—R hag W W,A)R d2q,

and the angular momentum

1
K= =55 im_§ (R*haoWE)

with d?q =sin 8 df do.
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Slowly rotating and axyssimetric black holes

Let us assume there is a smooth one parameter family of stationary and axially symmetric
metrics gap(€), where ¢ is a small parameter such that e = 0 is a corresponds to a (static)
spherically symmetric spacetime solution of the vacuum Einstein equations. Then there is an
expansion of the metric fields like

R(X0) = r(A)+ Ry 0)e + Rp(N, 0)e® + Rz (A, 0)e® + O(e*), (58a)
W(X,0) = V(A)+ Wy(\ 0)e + Wy (X 0)® + Wig (A, 0)e® + O(e*),  (58b)
WA, 0) = WE(A0)e + WA, 0)e® + W5 (A, 0)® + O(e*), (58¢)
7(/\7 9) = 7[1]()‘7 0)5 + 7[2](>‘7 9)52 + 7[3](>‘7 9)53 + 0(64)a (58d)
5(N,0) = Spy(A,0)e + Spy(A, 0)® + 5p3(A, 0)e® + O(e?). (58e)
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Slowly rotating, axisymmetric black holes Il

In we recovered the slowly rotating limit of the Kerr metric in

affine null coordinates using a Master equation for § and v and the expansions:
R(\,0)=r()) + R[1]e + R[2]e2 + ... Wy(A,6) = Wellle + We[3]e3+...
W(A,0)=V(QA) + W[1]e + W[2]€2 + ... 5(A,0) = 8[1]e + &[3]e3 + ...

K (€) = Km(-¢)
Ky (e) = _KL( €)

ﬁ[ Perturbatlon Parameter ¢ ]ﬁ

[ Even Parity (Mass K, Odd Parity (Angular Momentum KL)]
R, W, y, Wy (even orders only EZ") &, Wq (odd orders only g2n+1)

[Parity Symmetry Imposition]

Key Consequence
This decouples the equations at each order,
revealing an underlying hierarchy
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3m?sin* 0

_ oy 4 6
R(X,0) = X 2005 2 + 0(a°)

B 2m 2m 3m  3m*\ ., | »
wie) = 1 /\+{)\3+( )\3+)\4)sm H}a

2m 10m 3m?\ ., 35m  21m?*  9m*\ ., ] . 6
+ [_>\5+ <)\5_)\6>sm I5F <_4)\5 e 10w ) 0| @ +0(@)

3m 5m 35m  3m?) . ,
Wo(x60) = { T a2+ [}\6 — (4)\6 + 10)\7> sin? 9] 34} sin 6 cos 0 + O(a®)

2m 4m 5m  m?
W¢()\79) = Fa—i_ |:_)\5 ()\5 )\6>sm 9:| a’ + O( )
msin0\ , [9Imsin®0 2lm  m?
’Y()\,g) = (_ 2A3 ) a |:4)\5 <— 8)\5 4A6> sin 9:| a + O( )
5mcosfsin® 6 5
6()\,0) = 7Ta + O(a )
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Regular coordinates for rotating and axisymmetric black holes

e From the explicit metric, the location of the past horizon
A= Au(0)

can be determined, and the metric is regular there (see for
the explicit expression).
e As expected in a Bondi frame, the future horizon is not covered by this coordinate chart.

Key question

Does there exist a Israel like coordinate system which covers not only the exterior region but
also a neighbourhood of both horizons?
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Regular coordinates for rotating and axisymmetric black holes Il

We start with the stationary and axisymmetric metric expressed in a Bondi-like coordinate
system (with affine parameter A:

Xu = (u7 >\’ 0’ ¢)’ A7 B 6 {0?¢}’

and metric
ds? = gy, du® — 2 dud\ + 2 gua du dx? + gap dx?dx5, (60)
We assume all components depend only on (), 6):
&uv = 8uw(X,0) (no u or ¢ dependence). (61)
Let a past Killing horizon B be the null hypersurface given by the level set
f(x*)=X=Ap(0) =0, (62)
for a smooth function Ay(#), and let the Killing generator:
X° = 0u + Qp Oy, Xa = 8au + QH 8ap- ()
On a past Killing horizon one has the standard horizon identities
X° = Guu + 218us + Q%846 =0 on B, 0/\x2}8 = —2Ky, (64)
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Regular coordinates for rotating and axisymmetric black holes Ill

8,\X2|B = —2kpy follows from the definition of surface gravity given by
Vax® = 26HXa| (65)
therefore by contraction with ¢2 = 0y
CV.° = 2/1H€axa|8; (66)
but X207 = XA = 8au + Qugrp = — 1.

Moreover, comparing x, with the horizon normal s, = V,f = (0,1, —9pAy,0), i.e. xa = aV,f
we obtain:

8up + Qngys = 0, 09 AH = 8uo + Q1gsy on B. (67)
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Regular coordinates for rotating and axisymmetric black holes IV

Define new coordinates (w, y, ©, ®) by

A= /\H(e) — Ky WY, w = —eil{'Hu7 ¢ = ¢+QHu, 0 =240. (68)

In these new coordinates, the Killing vector field x? reads x? = ky(yd, — wd,,). Define
Fs(A0) = gup(N,0) + Qugps(A, 0), (69)
Fo(X,0) = 0gAn(0) — guo(A,0) — Qn 8oy (A, 0). (70)

With the change of variables (68), the mixed coefficient reads
X(AH(©) — kHwy, ©) — 2k3wy

gww(Wayae) = K%_IW2 ) (71)
Fo(An(©) — ©
gwo(w,y,0) = A l(E)= iy ), (72)
RHW
Fo(Au(©) — kywy, ©
gw¢(Way’e) = = ¢( H( liHWH )’ (73)
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Bondi type coordinates for Kerr-Newman metric

We start from the Kerr-Newman metric in Boyer—Lindquist coordinates. A Bondi-like
coordinate system (£, 7,6, ¢) is constructed by defining a null coordinate u satisfying

g?°V,uVu =0, (74)
g%V, uV = —1, (75)
g°V,uV,e =0, (76)
gV ,uV,6 = 0. (77)

Slow-rotation expansion

In the slow-rotation regime, the solution can be constructed iteratively to arbitrary order in the
spin parameter a, assuming the expansion

N
u= uRN—l—Zﬁ-(P,é)a",

i=1

where urn denotes the Reissner—Nordstrom null coordinate.
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Let \' = —rowy + rp with kg and ry the surface gravity and location of the event horizon of
the RN black hole. Up to second order in a:

y? (2&0)\’ + 2Kory — 1)

W(w,y,®) = - )2 +a’y*F(X, ),
2
WO (w,y,0) = —3(}:\7,3)5% sin© cos© (/{0(/\’)2r0 + wo(N)rg — 8rorg — 5(N)? —5(\)ro + 4r§),
ya
WO (w,y,0) = fm(znorg + (V)P + (NP + (V) - 1)),
0
! sin”© "3 4 "3, 3
Rw,y,0) = XN+ |- m(zno(m ro — 2kort — 10(N)3 + ro)
265(N)rg — 2rgrg — 2k0(N)ro + 3korg + N — o 2
2r3K3 ’
.2
sin© ©
1w,y,0) = o (260N )10 — 2607 = 2X + 10 ) 1o 22,
6 = 0.
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Double Null Data

e Using these expressions, we can compute the double-null data that characterize the slowly
rotating limit of the Kerr—Newman metric.

e As shown by Récz, given two null horizons H* and H™ intersecting at a bifurcation
sphere, the expansion, shear, 7 : =/, m?n®, and a set of curvature scalars uniquely
determine the solution of the Einstein—-Maxwell equations.

e In particular, on the bifurcation sphere ¥,

asin(20) .sin®©
T|):0 = —\fQ(/{oro +1)a ( pe — 22 ) . (78)
e Similarly, the value of the Weyl curvature scalar W4 on H™ is
3k3 y?sin? © a2
W, = — OIS (79)
0

e These results motivate the question of whether a hierarchical formulation of the
Einstein-Maxwell equations can be constructed. The answer is yes! ( Bridera, Gallo,
Madler: Upcoming)
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Summary

o We formulated an affine-null formulation (ANF) of the Einstein equations with matter,
using a suitable set of auxiliary variables.

e We constructed Israel-type coordinates for slowly rotating spacetimes and analyzed the
small-spin limit of Kerr-Newman.

e We derived a hierarchical affine—null formulation of the Einstein—scalar field equations in
conformal space, naturally yielding regular fields at null infinity; extensions beyond
spherical symmetry remain open.

e We have also constructed an affine—null formulation of the Einstein-Maxwell equations for
general spacetimes, providing a flexible framework for future dynamical studies.

(FaMAF—UNC, |FEG—CON|CET—Argentina) e ICERM; Brown University, Providence, USA e 05.01.2026 e (55/55)



	 Motivation
	 Affine null formulation of Einstein equations
	Vacuum case
	Non vacuum case with spherical symmetry
	Exact solutions

	 Conformal affine null Einstein equations
	 Rotating, Axisymmetric Black Holes

