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Null coordinates

• Null coordinates systems are based in a family of null hypersurfaces where the null
coordinate x0 labels these hypersurfaces and the angular coordinates xA (A = 2, 3) label
the set of null geodesic rays. The metric reads:

gabdx
adxb = [g00dx

0 + 2g01dx
1 + 2g0Adx

A]dx0 + gABdx
AdxB . (1)

(FaMAF-UNC, IFEG-CONICET-Argentina) • ICERM; Brown University, Providence, USA • 05.01.2026 • (3/55)



Bondi Coordinates

• In the Bondi–Sachs metric, the areal radial coordinate r parametrizes the points along
outgoing null rays:

ds2 = −
(
e2β

V

r
− r2hABU

AUB

)
du2 − 2e2β du dr − 2r2hABU

B du dxA + r2hAB dxAdxB ,

(2)
where det(hAB) = det(qAB), with qAB(x

C ) a fixed reference metric on the unit two-sphere.

• The function β(u, r , xA) measures the deviation from an affine parametrization of the
outgoing null geodesics.

• In particular if λ is an affine parameter then

∂rλ(u, r , x
A) = e2β .

• The areal coordinate r becomes singular where the expansion of null rays vanishes,
whereas the affine coordinate λ is singular only at caustics.
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Affine Null Coordinates

• In an affine null formulation, the metric takes the form

ds2 = −W dw2 + 2ϵ dw dλ+ r2hAB
(
dxA −W Adw

) (
dxB −W Bdw

)
. (3)

• The covector ℓa = ϵ dw generates the null hypersurfaces w = const. The parameter
ϵ = −1 corresponds to a retarded null coordinate, while ϵ = +1 corresponds to an
advanced null coordinate.

• All metric functions r , W , W A, and hAB depend on (w , λ, xA).
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Characteristic initial value problem and Einstein equations in null coordinates

Using metrics of this type, there are four standard ways to set up a characteristic
initial–boundary value problem:

• timelike–null formulation,

• vertex–null formulation,

• double–null (or 2 + 2) formulation,

• affine–null formulation.

In general, the Einstein equations Eab := Gab − 8πTab = 0 can be decomposed into three
classes:

• Main equations:
▶ hypersurface equations,
▶ evolution equations;

• Supplementary equations (imposed only on a boundary);

• Trivial equation.
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Bondi-Sachs metric

Notably, for a Bondi-Sachs metrics, these equations adquire a hierarchical structure: Some
main equations take the schematic form of hypersurface equations

β,r = Nβ[hCD ] (4)

(r4e−2βhABU
B
,r ),r = NU [hCD , β] (5)

V,r = NV [hCD , β,U
C ], (6)

while other of the main equations take the form of evolution equations

MAMB(rhAB,u),r = Nh[hCD , β,U
C ,V ]. (7)

Given hAB on an initial null hypersurface u = 0, the main equations can be integrated radially
in sequential order to determine the initial values of

hAB → β → UA → V → hAB,u at u = 0

in terms of their integration constants on the boundary,. After determining hAB,u at u = 0, the
hypersurface data hAB can be advanced to u = ∆u by a finite difference procedure. It is the
algorithm underlying the PITT null code.
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Affine null metric

In contrast, for a affine null metric the vacuum field equations take the form:

r−1r,λλ = Hr [hCD ] (8)

(r4hABW
B
,λ),λ = HW [hCD , r ] (9)(

2(r2),u − V(r2),λ
)

,λ

= HV [hCD , r ,W
C ] (10)

MAMB(rhAB),uλ = Hh[hCD , r ,W
C ,V], (11)

Eq.(10) breaks the hierarchical structure due to the presence of r,u.
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Affine null Metric II

However, as first shown by Jeff Winicour [Phys. Rev. D 87, 124027 (2013)], the hierarchical
structure can be restored through the introduction of new variables:

Y = V − 2r,u
r,λ

, ρ = r,u (12)

and σ = 1
4m

AmBhAB,λ, κ = 1
4m

AmBhAB,u, J = 4(r,λκ− ρσ) With these definitions, the
field equations take the form

r−1r,λλ = Hr [hCD ] (13)

(r4hABW
B
,λ),λ = HW [hCD , r ] (14)(

Y(r2),λ

)
,λ

= HY [hCD , r ,W
C ] (15)(

rJ

r,λ

)
,λ

= HJ [hCD , r ,W
C ,Y] (16)(

ρ

r,λ

)
,λλ

= Hρ[hCD , r , J] , (17)

(FaMAF-UNC, IFEG-CONICET-Argentina) • ICERM; Brown University, Providence, USA • 05.01.2026 • (9/55)



Affine Null Metric III

Affine–null formulation of GR on intersecting null hypersurfaces

Mädler Phys.Rev.D 99 (2019) 10, 104048 studied the affine null formulation when the
boundary is null. In this case, the metric reads

ds2 = −W dw2 + 2ϵ dw dλ+ r2hAB(dx
A −W Adw)(dxB −W Bdw), (18)

with boundary conditions at λ = 0: W = W,λ = W A = 0, ϵ2 = 1.
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Affine null metric IV

The null vectors ℓa and na have the coordinate expressions

ℓa∂a = ∂λ , (19)

na∂a = −ϵ∂w − 1

2
W ∂λ − ϵW A∂A . (20)

where in particular na∂a|B = −ϵ∂w . The expansion rates, θ(ℓ) := ∇aℓ
a and θ(n) := ∇an

a, for
both null vectors are

θ(ℓ) =
2r,λ
r

(21)

θ(n) = −ϵ∂w ln r2− (r2W ),λ
2r2

− ϵDA(r
2W A)

r2
. (22)

At the boundary B, θ(n) =
2r,w
r .
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Initial value problem for Vacuum Einstein equations

The initial value problem at two intersecting null hypersurfaces for the vaccum Einstein
equations split into three different groups:

(i) a hierarchical set of differential equations along the null rays on the boundary B where
λ = 0.

(ii) a hierarchical set of hypersurface equations on the null hypersurfaces. Nw0 where w = w0

(iii) two evolution equations to propagate the initial data from a given null hypersurface Nw0

to a null hypersurface Nw0+∆w .

This set of equations requires the following initial-boundary data

• Initial data on Σ, that are functions of xA, only

hAB , σAB , r , W A
,λ , ρℓ = r,y , ρn = r,w (23)

• free data on B which are functions depending on w and xA

nAB = hAB,w (24)

• free data on Nw0 which are functions depending on λ and xA

σAB = hAB,y (25)
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Can the formalism be generalized to
include matter fields?
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Including Matter: Maxwell Field and Spherical Symmetry

In Phys. Rev. D 104 (2021), 084048, we showed that, under spherical symmetry, the affine-null
hierarchy can be restored in the presence of a Maxwell field without sources.
We introduce an electromagnetic potential Aa = (Aw ,Aλ, 0, 0) with Faraday tensor
Fab = 2A[b,a]. In the adapted null gauge,

Aa = α(w , λ) dw . (26)

The field equations are
Rab = 8π

(
Tab − 1

2gabT
c
c

)
.

with

Tab = − 1

4π

(
FacFb

c − 1
4gabF

cdFcd

)
, ,

determined by Fab.
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Including matter: Maxwell Field II

• The fundamental metric and matter variables are prescribed as independent constants on
Σw0 :

A := α,λ

∣∣∣
Σw0

, r0 := r
∣∣∣
Σw0

, N0 = N
∣∣∣
Σw0

, Θ0 = Θ
∣∣∣
Σw0

, (27)

• The non-extremal Reissner-Nordström metric: Let us choose now the data on Σ0 such
that N0 = 0, and Θ0 ̸= 0. The Bondi mass is given by:

mB(w) := lim
λ→∞
w=const

r

2
(1 + g abr,ar,b)

=
r0
2
(1 + 2N0Θ0) +

Q2

2r0
= m|Σ0 +

Q2

2r0
≡ m = const.

(28)

The final solution is:

ds2 = −1 + 2κH(r + r0)

r2
λ2dw2 − 2dwdλ+ r2dΩ2

with r = rH − κHwλ.
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Schwarzschild and Israel coordinates

If Q = 0 this solution reduces to

ds2 =
2λ2

8m2 − wλ
dw2 − 2dwdλ+

(
2m − wλ

4m

)2
(dθ2 + sin2 θdϕ2) (29)

Israel obtained this metric by analyzing the null geodesics in the standard Schwarzschild metric
representation adopting the w coordinate to the null structure. The past and future horizons in
the above metric are given by λ = 0 and w = 0 respectively.
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Including a massless scalar field

The case of a scalar field was studied by Winicour, Mädler, and collaborators in Phys. Rev. D
100 (2019), 104017; Phys. Rev. D 110 (2024), 044061. This framework was also employed to
analyze critical collapse, where affine null coordinates allow the evolution to be followed beyond
the formation of the event horizon and up to the physical singularity.

Figure extracted from PRD 110 (2024) 4, 044061 (Mädler, Baake, Hosseini, Winicour)
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Including a Massless Scalar and Maxwell Field

In (Phys. Rev. D 111 (2025) 124001) we extended the affine-null formulation to the
Einstein–Maxwell system coupled to a massless complex scalar field.
The field equations are

Eab := 0 = Rab −
κ

4π

(
g cdFacFbd − 1

4
gabF

cdFcd

)
− κ

[
1

2
(DaΦ)(DbΦ) +

1

2
(DbΦ)(DaΦ)

]
,

Eb := 0 = ∇aF
a
b + 4πjb,

E := 0 = DaDaΦ, Ē := 0 = DaDaΦ,

where Dc = ∇c + iqAc is the gauge-covariant derivative, and q is the scalar charge and with
current jb = iq

2

(
ΦDbΦ− ΦDbΦ

)
. Its integral over a three-volume V defines the charge

function

Q =

∫
V

jadΣa =
1

4π

∮
Σ

F ab ℓ[anb]
√
det(gAB) dx

2 dx3. (30)

(FaMAF-UNC, IFEG-CONICET-Argentina) • ICERM; Brown University, Providence, USA • 05.01.2026 • (18/55)



Including a Massless Scalar and Maxwell Field II

Consider the metric

ds2 = −V (w , λ) dw2 + 2ϵ dw dλ+ r2(w , λ) qAB dxAdxB .

For the charge function (30), we find Q = −ϵr2α,λ. The nonzero components of Eab are

(Eww )
[S] 0 = r,ww − V (r2V,λ),λ

4r
− ϵ

2
(r,wV,λ − r,λV,w )

+
1

2
κr

[
|Φ,w |2 +

VQ2

8πr4
+ q2α2|Φ|2 + iqα

(
ΦΦ̄,w − Φ̄Φ,w

)]
,

(Ewλ)
[T ] 0 = r,wλ +

ϵ

4r
(r2V,λ),λ − 1

2
κr

[
ϵQ2

8πr4
− 1

2

(
Φ,wΦ,λ +Φ,λΦ,w

)
− iqα

2
(ΦΦ,λ − ΦΦ,λ)

]
(Eλλ)

[M] 0 = r,λλ +
1

2
κr |Φ,λ|2 ,

(qABEAB)
[M] 0 = − (Vrr,λ + 2ϵr r,w − λ),λ − κ

8π

Q2

r2
.
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Including a massless scalar and Maxwell field III

and those of Ea are

(Ew )
[S] : 0 = Q,w + ϵVQ,λ + 4πq2r2α|Φ|2 + 2iπqr2

(
ΦΦ̄,w − Φ̄Φ,w

)
, (31)

(Eλ)
[M] : 0 = Q,λ + 2πr2qi(ΦΦ,λ − ΦΦ,λ). (32)

while E gives

E [M] : 0 = 0 = (r2Φ,w ),λ + (r2Φ,λ),w + ϵ(r2VΦ,λ),λ + 2iqrα(rΦ),λ − iϵqΦQ . (33)

• main equations
Eλλ , qABEAB , Eλ , E . (34)

• supplementary equations :
Eww , Ew . (35)

• trivial equation :
Ewλ. (36)
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CAN THE HIERARCHY BE RESTORED?
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Restoring the Hierarchy

In recent work with T. Mädler and R. Gannouji (Phys. Rev. D 111 (2025) 124001), the
hierarchical structure is restored by introducing the following auxiliary fields:

ρ = r,w , (37a)

Z = Vrr,λ + 2ϵrρ− λ , (37b)

L =
2r (r,λΦ,w − ρΦ,λ) + ϵ(Z + λ)Φ,λ

r,λ
. (37c)

J = i(ΦΦ,λ − Φ,λΦ). (37d)
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Restoring the hierarchy

Allowing to cast the main equations into

r,λλ = −1

2
κr |Φ,λ|2 , (38a)

Q,λ = −2πr2qJ , (38b)

α,λ = −ϵ
Q

r2
, (38c)

Z,λ = − κ

8π

Q2

r2
, (38d)

L,λ = −ϵ(λ+ Z )Φ,λ

r
− 2iqα(rΦ),λ + i

ϵqΦQ

r
, (38e)

V,λλ = − 1

λ

(
λ2

r2

)
,λ

+
2Zr,λ
r3

+
κ

2π

Q2

r4

−κϵ

2r

(
Φ,λL+ LΦ,λ

)
+ κqϵαJ , (38f)

Φ,w =
L
2r

− ϵ

2
VΦ,λ . (38g)
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Asymptotic initial value problem

(Phys. Rev. D 111 (2025) 124001)
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Local initial-boundary formulation at a world line

(Phys. Rev. D 111 (2025) 124001)
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Initial-boundary value problem at a null hypersurface
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Double-null CIBVP I

A solution of the Einstein-Maxwell-scalar field equations on the domain Bϵ(w) ∪ N ϵ(w) can
be found for the double-null CIBVP with the following specifications:

• On N ϵ(0) specify a free (sufficiently differentiable) complex function FΦ(λ);

• On Bϵ(0) specify a free (sufficiently differentiable) complex function NB(w);

• The following fields are trivial everywhere on Bϵ(w)

α(w , 0) = V (w , 0) = V,λ(w , 0) = 0. (39)

• On the common intersection Σ0 = Bϵ(0)∩N ϵ(0) specify the values for the following fields

Φ(0, 0) , r(0, 0) , r,w (0, 0) , r,λ(0, 0) , Q(0, 0). (40)

where in particular r(0, 0) > 0.
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Double-null CIBVP II

This double-null CIBVP can be solved as follows:

1. Given NB(w) and Φ(0, 0), determine the scalar field on the boundary Bϵ(w) from

Φ,w (w , 0) = NB(w).

2. Using NB(w), Φ(w , 0), and the initial values r(0, 0), r,w (0, 0), Q(0, 0), and r,λ(0, 0), solve
the boundary hierarchy to obtain r , Q, and r,λ on Bϵ(w):

Eww |B → 0 = r ,ww + 1
2κr |NB|2,

Ew |B → 0 = Q ,w + 2iπqr2
(
Φ̄NB − ΦN̄B

)
,

qABEAB |B → 0 = 2ϵ(r r,λ),w − 1 + κ
8π

Q2

r2 ,

on Bϵ.

3. From r , r,w , and NB determine Z and L, thus fixing all boundary data for the
hypersurface equations (41a)–(41f).

4. On the initial null hypersurface w = 0, use Φ(0, 0) and FΦ to integrate

Φ,λ(0, λ) = FΦ(λ).
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Double-null CIBVP II

5. Given initial data Φ(0, λ) on N ϵ(0) (w = 0), integrate hierarchically the hypersurface
equations (41a)–(41f) to obtain

r → Q → α → Z → L → V at w = 0,

using FΦ(λ) and the boundary data at w = 0.
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Double-null CIBVP III

Namely,

r,λλ = −1

2
κr |Φ,λ|2 , (41a)

Q,λ = −2πr2qJ , (41b)

α,λ = −ϵ
Q

r2
, (41c)

Z,λ = − κ

8π

Q2

r2
, (41d)

L,λ = −ϵ(λ+ Z )Φ,λ

r
− 2iqα(rΦ),λ + i

ϵqΦQ

r
, (41e)

V,λλ = − 1

λ

(
λ2

r2

)
,λ

+
2Zr,λ
r3

+
κ

2π

Q2

r4

−κϵ

2r

(
Φ,λL+ LΦ,λ

)
+ κqϵαJ , (41f)
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Double-null CIBVP IV

6. Compute Φ,w (0, λ) algebraically from r , L, V , and Φ,λ via

Φ,w =
L
2r

− ϵ

2
VΦ,λ,

and integrate in w to obtain Φ(∆w , λ) on N ϵ(∆w).

7. Use Φ(∆w , λ) as new characteristic data on N ϵ(∆w) and repeat step 4 at w = ∆w .
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Symmetry considerations

Let us consider possible timelike Killing vectors ξ.
An ansatz for the Killing vector ξ left invariant under spatial rotations is ξ = ξw∂w + ξλ∂λ with
the components ξw and ξλ only dependent on w and λ. The general solution is

ξ = A(w)∂w + [−A,w (w)λ+ B(w)] ∂λ , (42)

where A and B are free functions. It is convenient to introduce the scalar function

z = A(w)λ−
∫ w

B(ŵ)dŵ , (43)

which is invariant under the action of the vector field ξ that is the Lie derivative
Lξz = ξa∂az = 0.
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Finally, inserting into the remaining Killing equations gives us

V =
V̂ [z(w , λ)]

A2(w)
− 2ϵ(A,wλ− B)

A
, (44)

in which V̂ (·) is an arbitrary differentiable function.
Some choices for A and B are

Selective choices for A and B to build a Killing vector
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Exact solution of the hierarchical system

r = me − w +
w2

2(me − w)2
λ, (45a)

V =
4meλ

2

(me − w)5
−λw3 + (me + 2w)(me − w)3

r2
. (45b)

• The future horizon is at w = 0 while the past horizon is located at

λ(w) =
2(w −me)

2

w
.
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Conformal completion

• Conformal compactification provides a natural framework for studying global aspects of
Einstein’s equations, as it gives a precise definition of infinity.

• On the other hand, in numerical work, infinities are often treated using compactified
coordinates in physical spacetime and regularized fields.

QUESTIONS:

• Can the conformal equations be written in a simple hierarchical form?
• Are these conformal equations equivalent to the regularized equations obtained in

compactified physical space?

Yes: Phys.Rev.D 112 (2025) 2, 024056
Let M = M̃ ∪ I be the conformal completion of the physical spacetime M̃, where I = ∂M̃ is
null infinity.
There exists a smooth conformal factor Ω on M such that Ω > 0 in M̃, Ω = 0 and ∇aΩ ̸= 0
on I.
The unphysical fields are defined by

gab = Ω2g̃ab, Φ = Ω−1Φ̃,

with Ω otherwise arbitrary.
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Regularity at null infinity

Unphysical coordinates are denoted by xa, and ∇a is the Levi–Civita connection of gab. The
physical and unphysical Ricci tensors satisfy

R̃ab = Rab +
2∇a∇bΩ

Ω
+ gab

(
∇c∇cΩ

Ω
− 3∇cΩ∇cΩ

Ω2

)
. (46)

Using the physical field equations, the conformal Einstein–scalar system on (M, gab,Ω)
becomes

0 =− κ(∇aΩΦ)(∇bΩΦ) + Rab +
2∇a∇bΩ

Ω
+ gab

(
∇c∇cΩ

Ω
− 3∇cΩ∇cΩ

Ω2

)
,

0 = Ω3∇a∇aΦ+ Ω2Φ∇a∇aΩ− 2ΩΦ∇aΩ∇aΩ.
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Affine–null conformal compactification

The spherically symmetric affine–null physical metric reads

ds̃2AN = −W dũ2 − 2 dũ d λ̃+ r2qABdx̃
Adx̃B . (47)

With λ̃ ∈ [0,∞), choose the conformal factor

Ω(λ̃) =
1

1 + λ̃
.

The unphysical metric gab = Ω2g̃ab becomes

ds2AN =− W

(1 + λ̃)2
dũ2 − 2 dũ d

(
λ̃

1 + λ̃

)
+

(
r

1 + λ̃

)2

qABdx̃
Adx̃B .

This naturally defines conformal coordinates

xa = (u, x , xA) =

(
ũ,

λ̃

1 + λ̃
, x̃A

)
, x ∈ [0, 1],

so that λ̃ = x
1−x and Ω = 1− x .
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Affine-null conformal compactification II

• In conformal coordinates xa, the affine parameter satisfies λ̃ = 0 at the vertex, and future
null infinity is located at x = 1.

• The unphysical metric in coordinates xa takes the form

ds2 = −(1− x)W du2 − 2 du dx +R2qAB dxAdxB , (48)

where the conformally regular variables are defined by

R := (1− x) r , W := (1− x)W .

• The physical and conformal scalar fields are related by

Φ̃ = (1− x)Φ.

• As in the physical affine-null formulation, the Einstein equations do not admit a natural
hierarchical structure.
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0 = R,uu +
1

2
(1− x)2

[(
W

1− x

)
,x

R,u −
(

R
1− x

)
,y

W,u

]

−1

4
(1− x)3W

[
R
(

W
1− x

)
,x

]
,x

+
κ

2
R[(1− x)Φ,u]

2,

(49a)

0 = R,xx +
κ

2
R
[
(1− x)Φ,x − Φ

]2
, (49b)

0 = qAB

{
−1

2

[
(1− x)(R2),xW − 2x − 2(R2),u

]
,x
− (1− x)2

R2

[
R4W

(1− x)2

]
,x

+
2(R2),u
1− x

}
,

0 = −(R2Φ,u),x − (R2Φ,x),u +
[
R2(1− x)WΦ,x

]
,x
+

{
(R2),u
(1− x)

− (1− x)

[
R2W
1− x

]
,x

}
Φ.

In order to restore a hierarchy, we start by introducing the field

Y = (1− x)

(
R

1− x

)
,x

W − 2R,u

1− x
, (50)
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This casts qABEAB = 0 into

0 =

(
RY ,x

1− x
− x

1− x

)
,x

. (51)

implying

Y =
x + (1− x)Z0(u)

R
, (52)

with Z0(u) being a function of integration. Next, definition of

L =2RΦ,u −
W[(1− x)Φ],x
(1− x)R,x +R (53)

gives a first order evolution equation for the unphysical scalar field Φ, i.e.

Φ,u =
1

2

{
L
R

+W[(1− x)Φ],x

}
, (54)

and casts the main equation for Φ into a hypersurface equation.
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After a lengthy and tedious calculation we arrive at

0 =R,xx +
κR
2

{[(1− x)Φ],x}2, (55a)

L,x =
[x + (1− x)Z0][(1− x)Φ],x

R
, (55b)

W,xx =κ
[(1− x)Φ],xL

R
+

2[R+ (1− x)R,x ]Z0

R3

− 1

x

(
x2

R2

)
,x

, (55c)

Φ,u =
1

2

{
L
R

+W[(1− x)Φ],x

}
, (55d)

which is regular at the boundary I, i.e. it has no singularities at x = 1. The system (55) is
completed with Euu|B = 0 and qABEAB |B = 0 evaluated a some value x ∈ [0, 1), which are
needed to fix the boundary values for the hypersurface fields R, Z, L and W.
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What about rotating spacetimes in this
framework?
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Rotating, Axisymmetric Black Holes

A generic line element for an affine-null metric defined with respect to a family of outgoing null
hypersurfaces u = const is

gabdx
adxb = −Wdu2 − 2dudλ+ R2hAB(dx

A −W Adu)(dxB −W Bdu). (56)

hAB is transverse-traceless and has only two degrees of freedom:

hABdx
AdxB =

(
e2γdθ2 +

sin2 θ

e2γ
dϕ2

)
cosh(2δ) + 2 sin θ sinh(2δ)dθdϕ . (57)
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In this situation, the vacuum Einstein equations Rab = 0 split into:

• supplementary equations Si = 0, with

Si = (Ruu,Ruθ,Ruϕ),

• one trivial equation Ruλ = 0,

• six main equations.

We assume axisymmetry and stationarity, with Killing vectors ∂u and ∂ϕ, implying u- and
ϕ-independent metric functions. The associated Komar charges are the mass

Km =
1

8π
lim

λ→∞

∮ (
W,λ − R2hABW

AW B
,λ

)
R2 d2q,

and the angular momentum

KL = − 1

16π
lim

λ→∞

∮ (
R4hϕBW

B
,λ

)
d2q,

with d2q = sin θ dθ dϕ.
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Slowly rotating and axyssimetric black holes

Let us assume there is a smooth one parameter family of stationary and axially symmetric
metrics gab(ε), where ε is a small parameter such that ε = 0 is a corresponds to a (static)
spherically symmetric spacetime solution of the vacuum Einstein equations. Then there is an
expansion of the metric fields like

R(λ, θ) = r(λ) + R[1](λ, θ)ε+ R[2](λ, θ)ε
2 + R[3](λ, θ)ε

3 + O(ε4), (58a)

W (λ, θ) = V (λ) +W[1](λ, θ)ε+W[2](λ, θ)ε
2 +W[3](λ, θ)ε

3 + O(ε4), (58b)

W A(λ, θ) = W A
[1](λ, θ)ε+W A

[2](λ, θ)ε
2 +W A

[3](λ, θ)ε
3 + O(ε4), (58c)

γ(λ, θ) = γ[1](λ, θ)ε+ γ[2](λ, θ)ε
2 + γ[3](λ, θ)ε

3 + O(ε4), (58d)

δ(λ, θ) = δ[1](λ, θ)ε+ δ[2](λ, θ)ε
2 + δ[3](λ, θ)ε

3 + O(ε4). (58e)
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Slowly rotating, axisymmetric black holes II

In PRD 107 (2023) 10, 104010 we recovered the slowly rotating limit of the Kerr metric in
affine null coordinates using a Master equation for δ and γ and the expansions:
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R(λ, θ) = λ− 3m2 sin4 θ

40λ5
a4 + O(a6)

W (λ, θ) = 1− 2m

λ
+

[
2m

λ3
+

(
−3m

λ3
+

3m2

λ4

)
sin2 θ

]
a2

+

[
−2m

λ5
+

(
10m

λ5
− 3m2

λ6

)
sin2 θ +

(
−35m

4λ5
+

21m2

4λ6
− 9m3

10λ7

)
sin4 θ

]
a4 + O(a6)

W θ(λ, θ) =

{
−3m

λ4
a2 +

[
5m

λ6
−
(
35m

4λ6
+

3m2

10λ7

)
sin2 θ

]
a4
}
sin θ cos θ + O(a6)

W ϕ(λ, θ) =
2m

λ3
a+

[
−4m

λ5
+

(
5m

λ5
− m2

λ6

)
sin2 θ

]
a3 + O(a5)

γ(λ, θ) =

(
−m sin2 θ

2λ3

)
a2 +

[
9m sin2 θ

4λ5
+

(
−21m

8λ5
− m2

4λ6

)
sin4 θ

]
a4 + O(a6)

δ(λ, θ) = −5m cos θ sin2 θ

4λ4
a3 + O(a5)
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Regular coordinates for rotating and axisymmetric black holes

• From the explicit metric, the location of the past horizon

λ = λH(θ)

can be determined, and the metric is regular there (see PRD 107 (2023) 10, 104010 for
the explicit expression).

• As expected in a Bondi frame, the future horizon is not covered by this coordinate chart.

Key question

Does there exist a Israel like coordinate system which covers not only the exterior region but
also a neighbourhood of both horizons?
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Regular coordinates for rotating and axisymmetric black holes II

We start with the stationary and axisymmetric metric expressed in a Bondi-like coordinate
system (with affine parameter λ:

xµ = (u, λ, θ, ϕ), A,B ∈ {θ, ϕ},
and metric

ds2 = guu du
2 − 2 du dλ+ 2 guA du dxA + gAB dxAdxB , (60)

We assume all components depend only on (λ, θ):

gµν = gµν(λ, θ) (no u or ϕ dependence). (61)

Let a past Killing horizon B be the null hypersurface given by the level set

f (xµ) = λ− λH(θ) = 0, (62)

for a smooth function λH(θ), and let the Killing generator:

χa = ∂u +ΩH ∂ϕ, χa = gau +ΩH gaϕ. (63)

On a past Killing horizon one has the standard horizon identities

χ2 := guu + 2ΩHguϕ +Ω2
Hgϕϕ = 0 on B, ∂λχ

2
∣∣
B = −2κH , (64)
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Regular coordinates for rotating and axisymmetric black holes III

∂λχ
2
∣∣
B = −2κH follows from the definition of surface gravity given by

∇aχ
2 = 2κHχa

∣∣
B; (65)

therefore by contraction with ℓa = ∂λ

ℓa∇aχ
2 = 2κHℓ

aχa

∣∣
B; (66)

but χaℓ
a = χλ = gλu +ΩHgλϕ = −1.

Moreover, comparing χa with the horizon normal sa = ∇af = (0, 1,−∂θλH , 0), i.e. χa = α∇af
we obtain:

guϕ +ΩHgϕϕ = 0, ∂θλH = guθ +ΩHgθϕ on B. (67)
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Regular coordinates for rotating and axisymmetric black holes IV

Define new coordinates (w , y ,Θ,Φ) by

λ = λH(Θ)− κH w y , w = −e−κHu, ϕ = Φ+ ΩHu, Θ = θ. (68)

In these new coordinates, the Killing vector field χa reads χa = κH(y∂y − w∂w ). Define

Fϕ(λ, θ) := guϕ(λ, θ) + ΩH gϕϕ(λ, θ), (69)

Fθ(λ, θ) := ∂θλH(θ)− guθ(λ, θ)− ΩH gθϕ(λ, θ). (70)

On B, one has Fϕ|B = Fθ|B = 0. With the change of variables (68), the mixed coefficient reads

gww (w , y ,Θ) =
χ2
(
λH(Θ)− κHwy ,Θ

)
− 2κ2

Hwy

κ2
Hw

2
, (71)

gwΘ(w , y ,Θ) =
Fθ

(
λH(Θ)− κHwy ,Θ

)
κHw

, (72)

gwΦ(w , y ,Θ) = −
Fϕ

(
λH(Θ)− κHwy ,Θ

)
κHw

, (73)

and they extend smoothly to neighborhoods of w = 0 and y = 0.
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Bondi type coordinates for Kerr-Newman metric

We start from the Kerr-Newman metric in Boyer–Lindquist coordinates. A Bondi-like
coordinate system (t̂, r̂ , θ̂, ϕ̂) is constructed by defining a null coordinate u satisfying

g ab∇au∇bu = 0, (74)

g ab∇au∇bλ = −1, (75)

g ab∇au∇bϕ = 0, (76)

g ab∇au∇bθ = 0. (77)

Slow-rotation expansion

In the slow-rotation regime, the solution can be constructed iteratively to arbitrary order in the
spin parameter a, assuming the expansion

u = uRN +
N∑
i=1

fi (r̂ , θ̂) a
i ,

where uRN denotes the Reissner–Nordström null coordinate.
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Let λ′ = −κ0wy + r0 with κ0 and r0 the surface gravity and location of the event horizon of
the RN black hole. Up to second order in a:

W (w , y ,Θ) = −
y2
(
2κ0λ

′ + 2κ0r0 − 1
)

(λ′)2
+ a2y2F (λ′,Θ),

W (Θ)(w , y ,Θ) = − y a2

3 (λ′)5r0
sinΘ cosΘ

(
κ0(λ

′)2r0 + κ0(λ
′)r20 − 8κ0r

3
0 − 5(λ′)2 − 5(λ′)r0 + 4r20

)
,

W (Φ)(w , y ,Θ) = − y a

r20 (λ
′)4

(
2κ0r

4
0 + (λ′)3 + (λ′)2r0 + (λ′)r20 − r30

)
,

R(w , y ,Θ) = λ′ +

[
− sin2 Θ

12 (λ′)3r0

(
2κ0(λ

′)3r0 − 2κ0r
4
0 − 10(λ′)3 + r30

)
−2κ2

0(λ
′)r20 − 2κ2

0r
3
0 − 2κ0(λ

′)r0 + 3κ0r
2
0 + λ′ − r0

2 r40κ
2
0

]
a2,

γ(w , y ,Θ) =
sin2 Θ

4 (λ′)4

(
2κ0(λ

′)r0 − 2κ0r
2
0 − 2λ′ + r0

)
r0 a

2,

δ = 0.
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Double Null Data

• Using these expressions, we can compute the double-null data that characterize the slowly
rotating limit of the Kerr–Newman metric.

• As shown by Rácz, given two null horizons H+ and H− intersecting at a bifurcation
sphere, the expansion, shear, τ := ℓa;b m

anb, and a set of curvature scalars uniquely
determine the solution of the Einstein–Maxwell equations.

• In particular, on the bifurcation sphere Σ0,

τ
∣∣
Σ0

= −
√
2 (κ0r0 + 1) a

(
a sin(2Θ)

r30
− i

sinΘ

2r20

)
. (78)

• Similarly, the value of the Weyl curvature scalar Ψ4 on H+ is

Ψ4

∣∣
H+ = −3κ3

0 y
2 sin2 Θ a2

r30
. (79)

• These results motivate the question of whether a hierarchical formulation of the
Einstein–Maxwell equations can be constructed. The answer is yes! ( Bridera, Gallo,
Mädler: Upcoming)
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Summary

• We formulated an affine–null formulation (ANF) of the Einstein equations with matter,
using a suitable set of auxiliary variables.

• We constructed Israel-type coordinates for slowly rotating spacetimes and analyzed the
small-spin limit of Kerr-Newman.

• We derived a hierarchical affine–null formulation of the Einstein–scalar field equations in
conformal space, naturally yielding regular fields at null infinity; extensions beyond
spherical symmetry remain open.

• We have also constructed an affine–null formulation of the Einstein–Maxwell equations for
general spacetimes, providing a flexible framework for future dynamical studies.
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