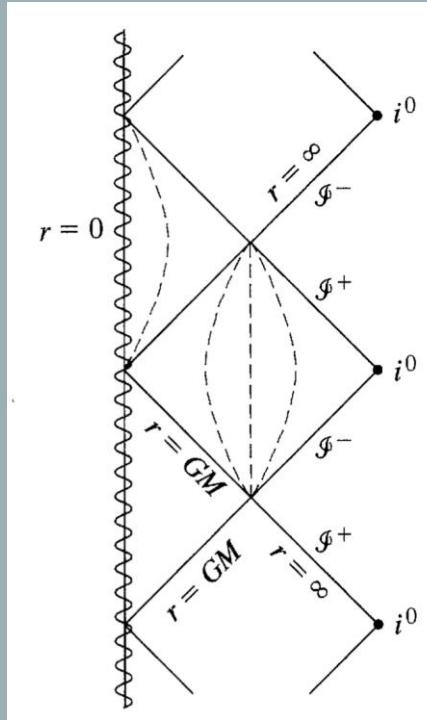


THE NONLINEAR DEVELOPMENT OF CHARGED HORIZON INSTABILITIES

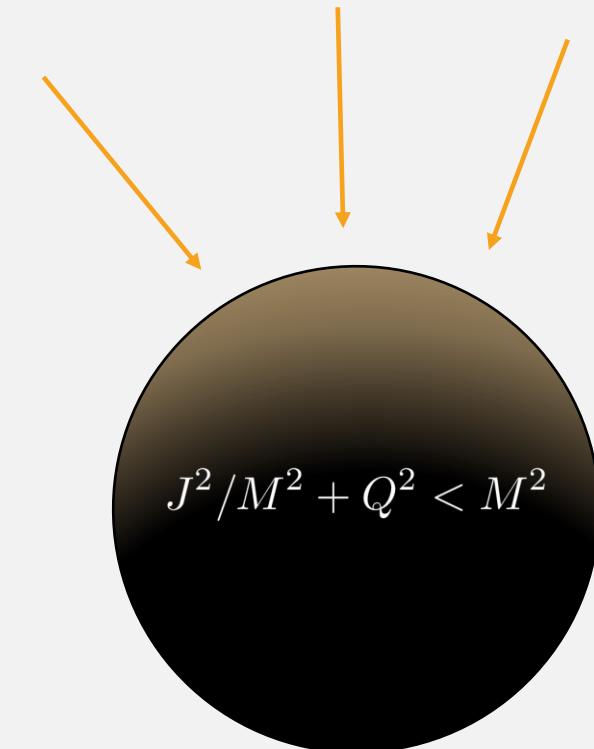


Zack Gelles & Frans Pretorius

Image Credit:
Carroll

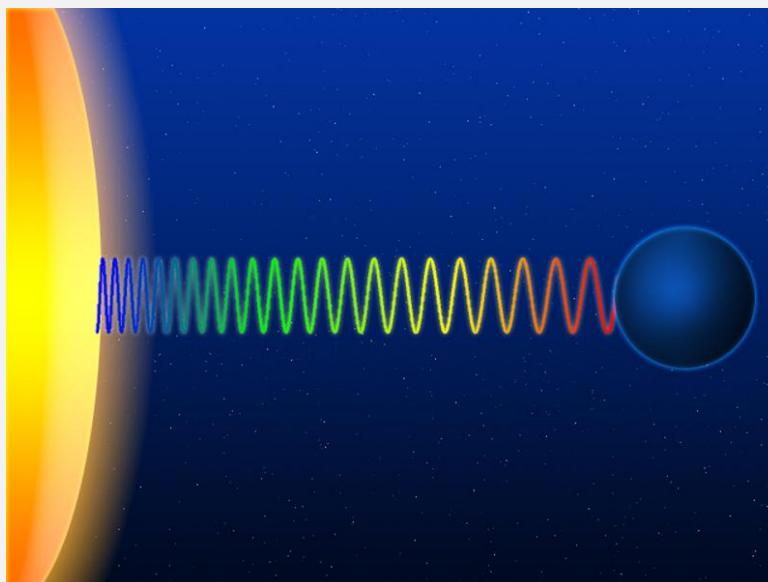
BLACK HOLE STABILITY

- Stationary black holes in nature believed to be described by M, Q, J alone (no-hair conjecture)
- What happens if you perturb a black hole?
 - Charged, rotating black holes are known to be linearly stable in the sub-extremal case
(e.g. Dafermos, Holzegel, & Rodnianski 2016; Giorgi 2020; Andersson, Backdahl, Blue, & Ma 2019)
- Open questions: Extremal black holes?



(IN)STABILITY OF EXTREMAL BLACK HOLES

- Extremal black holes ($J^2/M^2 + Q^2 = M^2$) are linearly *unstable* to perturbations: Aretakis Instability (2010, 2011)
 - Energy density of a scalar field does not decay on extremal horizon (fixed background metric)
- Occurs due to the lack of gravitational redshift at extremality (exponential \rightarrow power-law)



$$E \sim e^{-\kappa V}$$

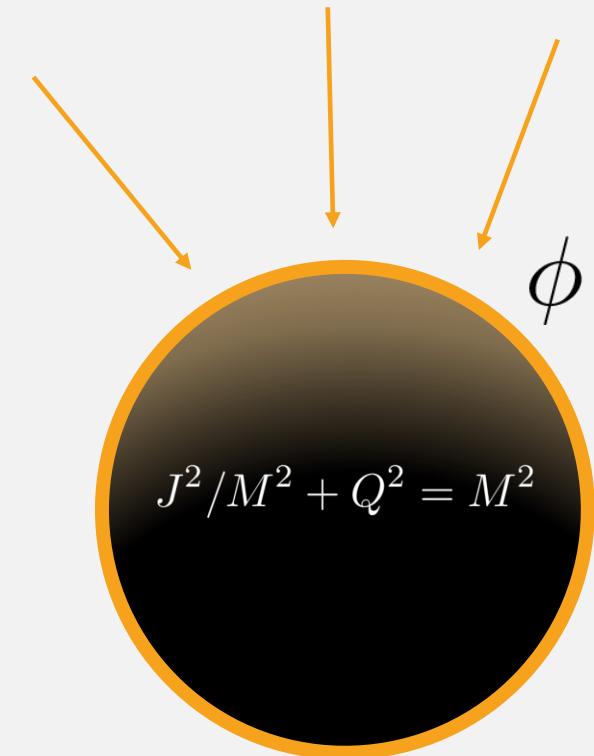
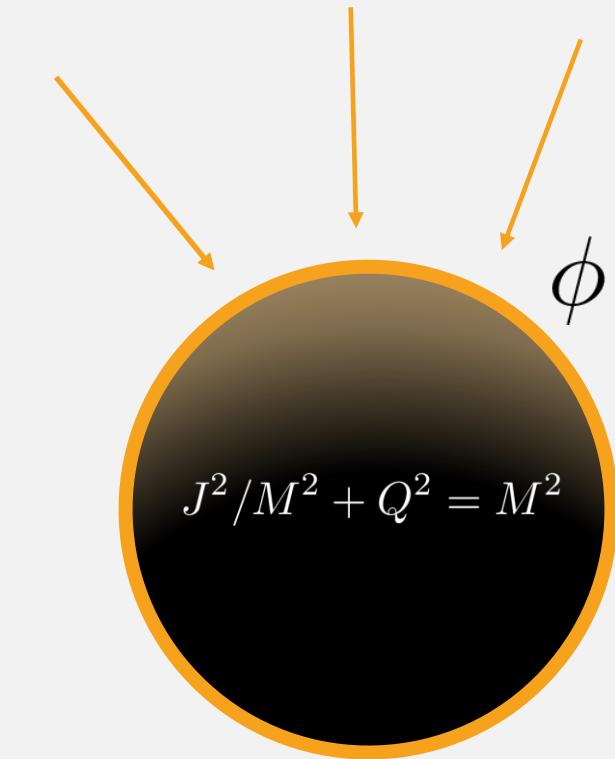


Image credit: Wikipedia

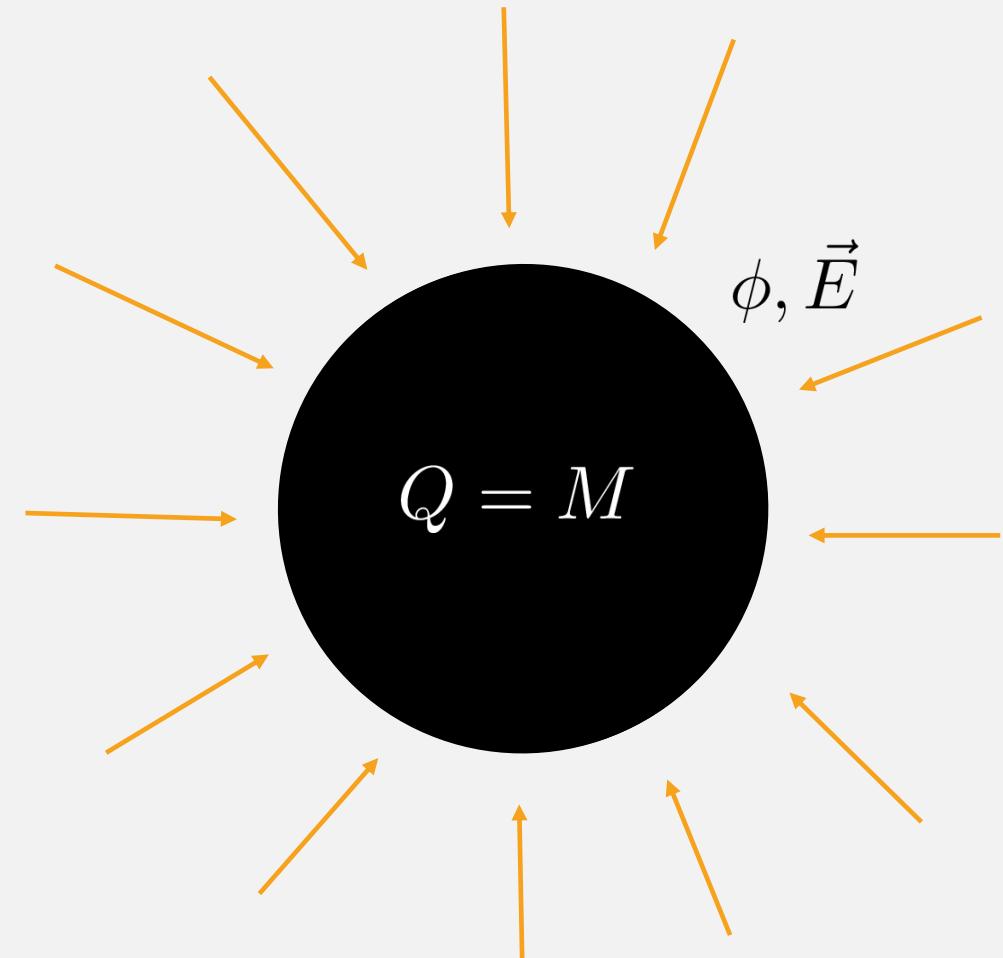
NON-LINEAR INSTABILITIES

- What happens if we evolve the matter *and* the spacetime dynamically (wave equation + Einstein's equations)?
 - Murata, Reall, & Tanahashi (MRT; 2013) showed that metric backreaction can regulate the instability for scalar fields
 - But can still trigger instability for finely tuned initial data (“dynamical extremal black holes”)
- Can a similar phenomenon happen with *charged* scalar fields (i.e. coupled to electromagnetism)?



MOTIVATION

- Charged fields have greater potential for instability, superradiance, toy model for rotating matter
 - Linear case treated by Zimmerman (2017); Casals, Gralla, & Zimmerman (CGZ; 2016). Formation of extremal BH (Kehle & Unger 2022)
- Much harder since we now need to evolve three sets of equations:
 1. Wave equation (linear)
 2. Maxwell's equation (non-linear)
 3. Einstein's equations (non-linear)
- Set $J=0$ and work in spherical symmetry
- **Goal:** investigate nonlinear horizon instabilities of charged scalar fields on extremal Reissner-Nordström spacetime in spherical symmetry



OUTLINE

1. Numerical Scheme
2. Review of linear problem (fixed background metric)
 - Stronger Aretakis instability
 - Scattering results highlight importance of weakly damped mode at the onset of superradiance
3. Non-Linear Problem
 - Mode decomposition still triggers instability
 - Emergent instability for fine-tuned data, universality
 - Large curvatures visible from Scri?

SCALAR ELECTRODYNAMICS

- Can couple the scalar field to electromagnetism by making it complex:

$\phi \rightarrow \{\phi, \phi^*\}$ evolves via wave equation: $D_\mu D^\mu \phi = 0$

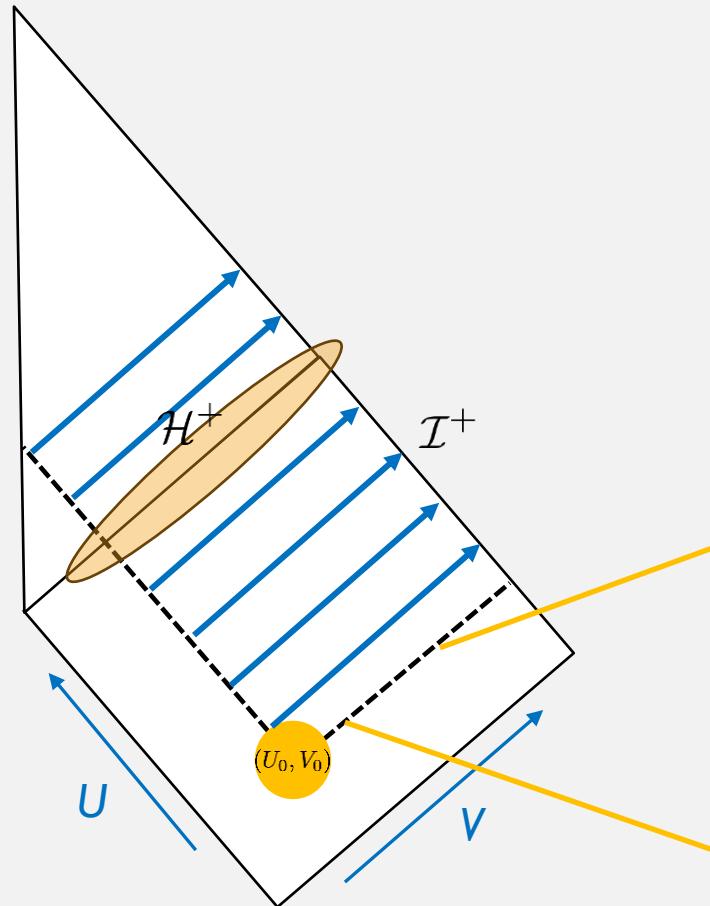
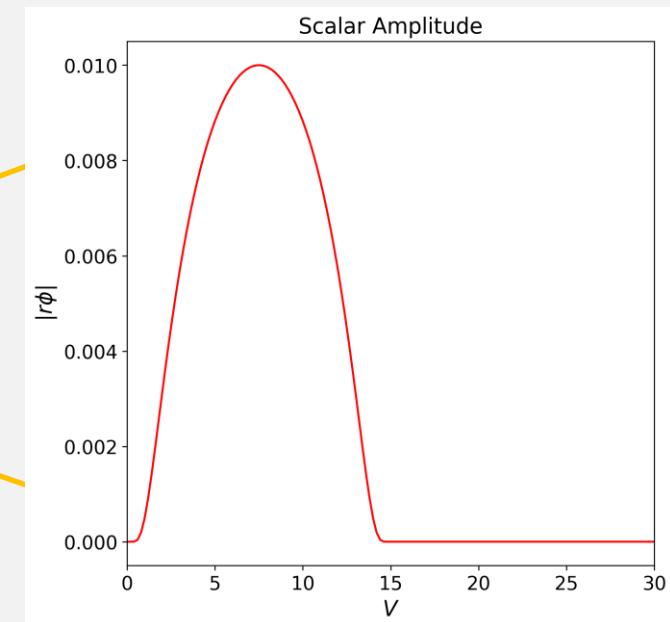
$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ evolves via Maxwell's equations: $\nabla_\mu F^{\nu\mu} = 4\pi J^\mu$

- Spherical symmetry and electromagnetic gauge symmetry reduce degrees of freedom to 2: $\{|\phi|, E^r\}$
- First step: Solve Wave+Maxwell system on fixed Reissner-Nordström background

Coupled via constant \tilde{e}

NUMERICAL SCHEME: DOUBLE-NULL COORDINATES

1. Construct initial data: ingoing pulse of charged matter
2. Evolve data along null hypersurfaces using finite difference scheme
 - o Static mesh refinement clusters resolution near event horizon
3. Examine fields along the event horizon



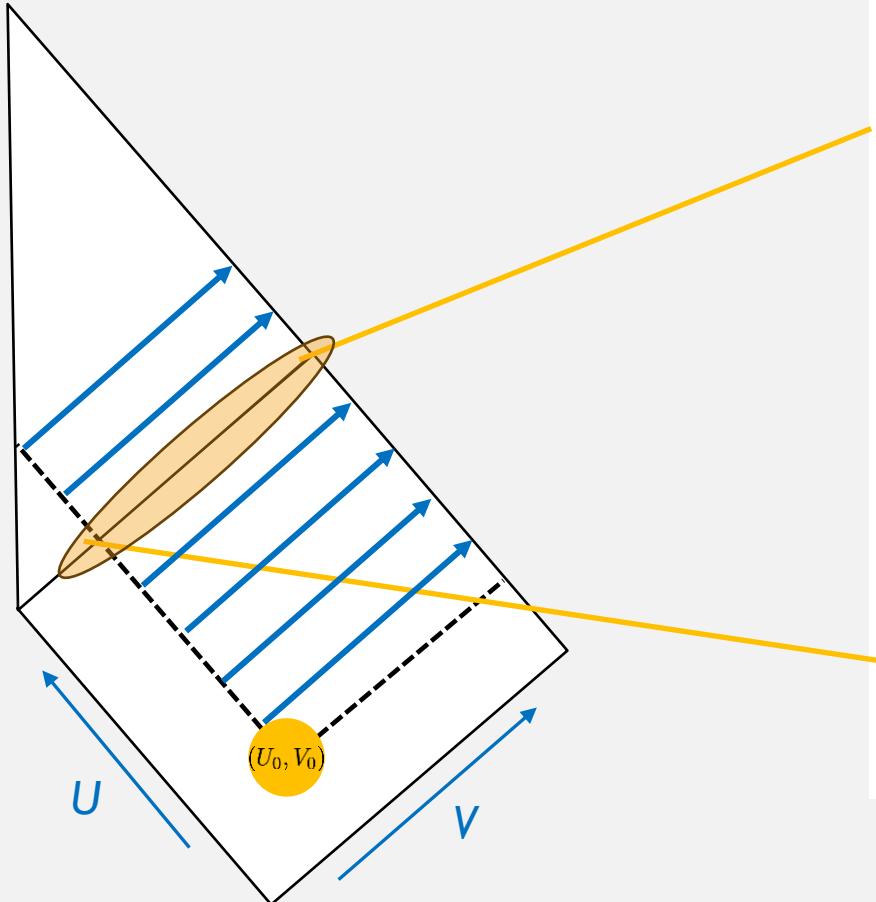
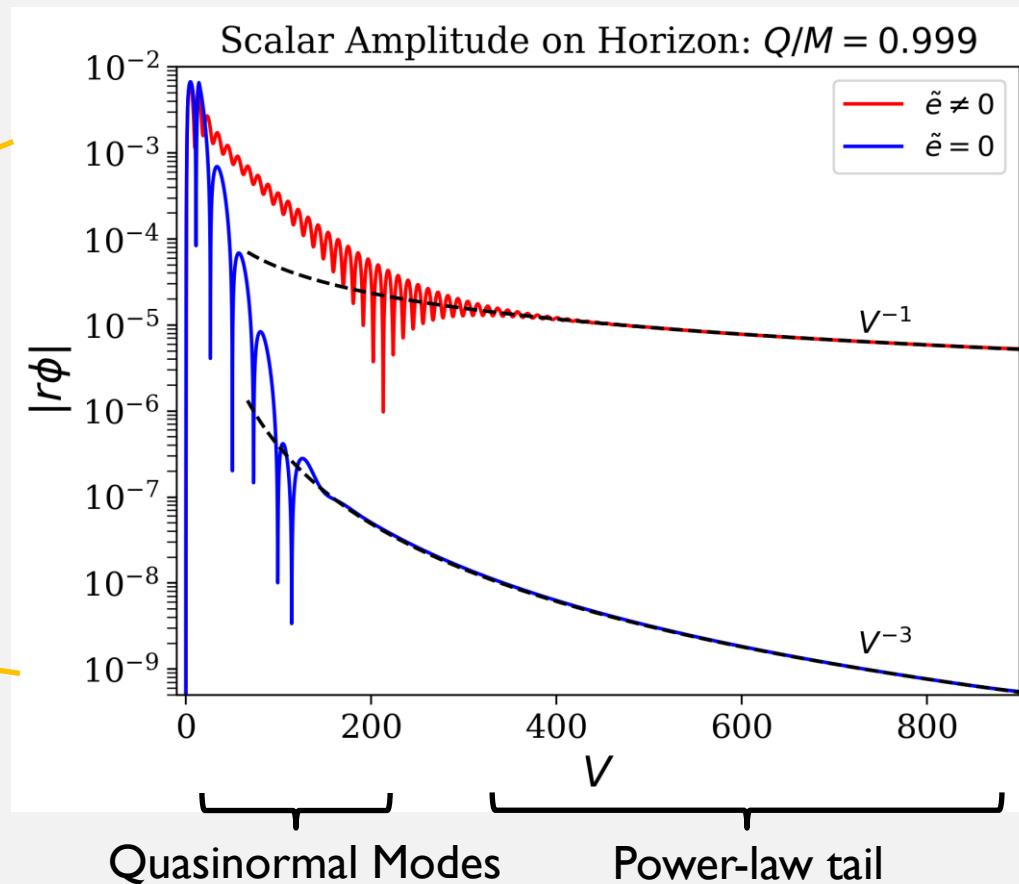
RESULTS ON FIXED BACKGROUND

Quantities of Interest

Scalar amplitude $|\phi|$, energy density $\rho_E \sim (\partial_r |\phi|)^2$, charge density $\rho_Q \sim \partial_r(r^2 E^r)$

- Behavior of fields treated analytically for fixed metric + fixed electromagnetic potential in Zimmerman (2017)
- Incorporate Maxwell's equations in Gelles & Pretorius (2025)

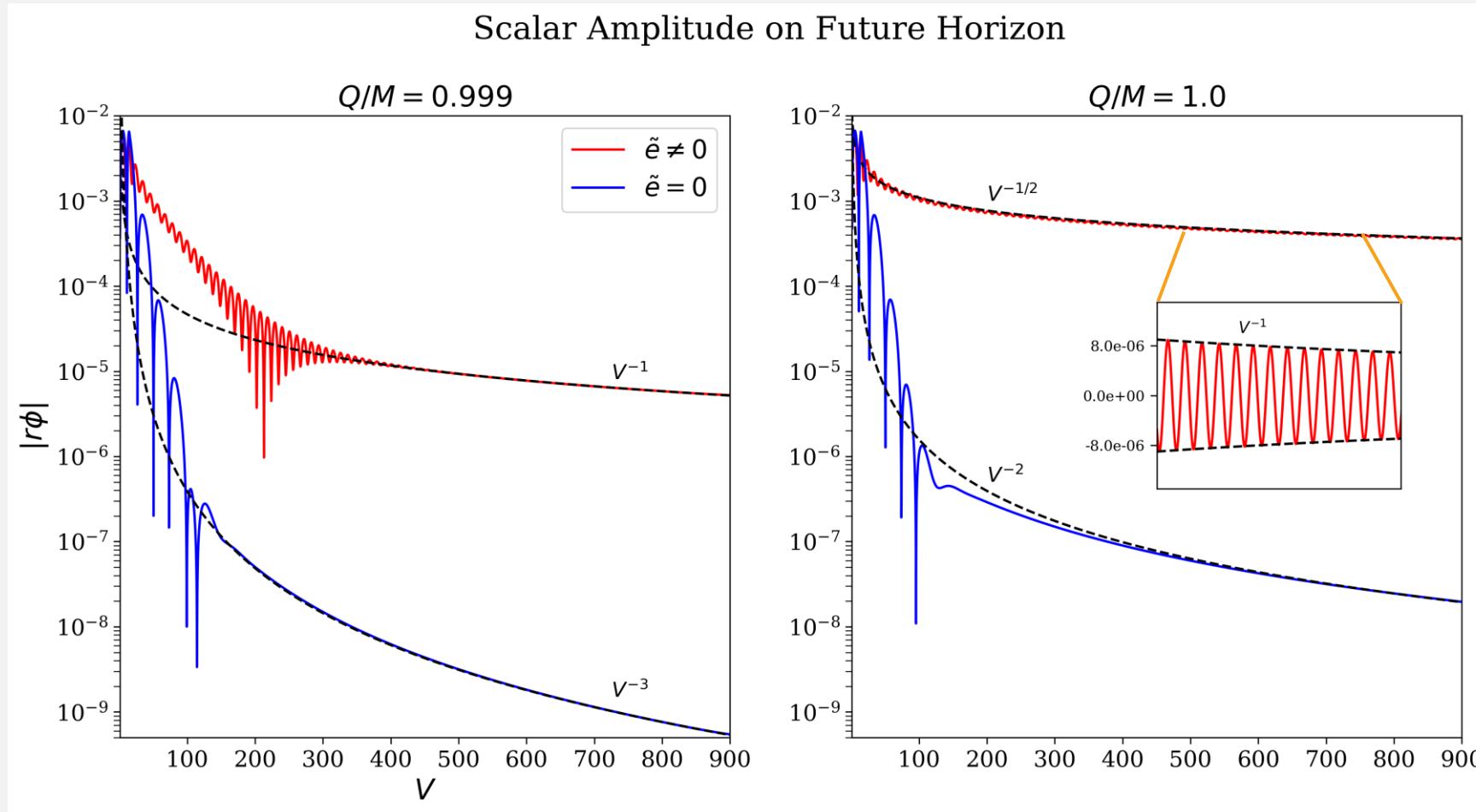
RESULTS – SCALAR AMPLITUDE



$$\phi \sim e^{i\omega V}$$

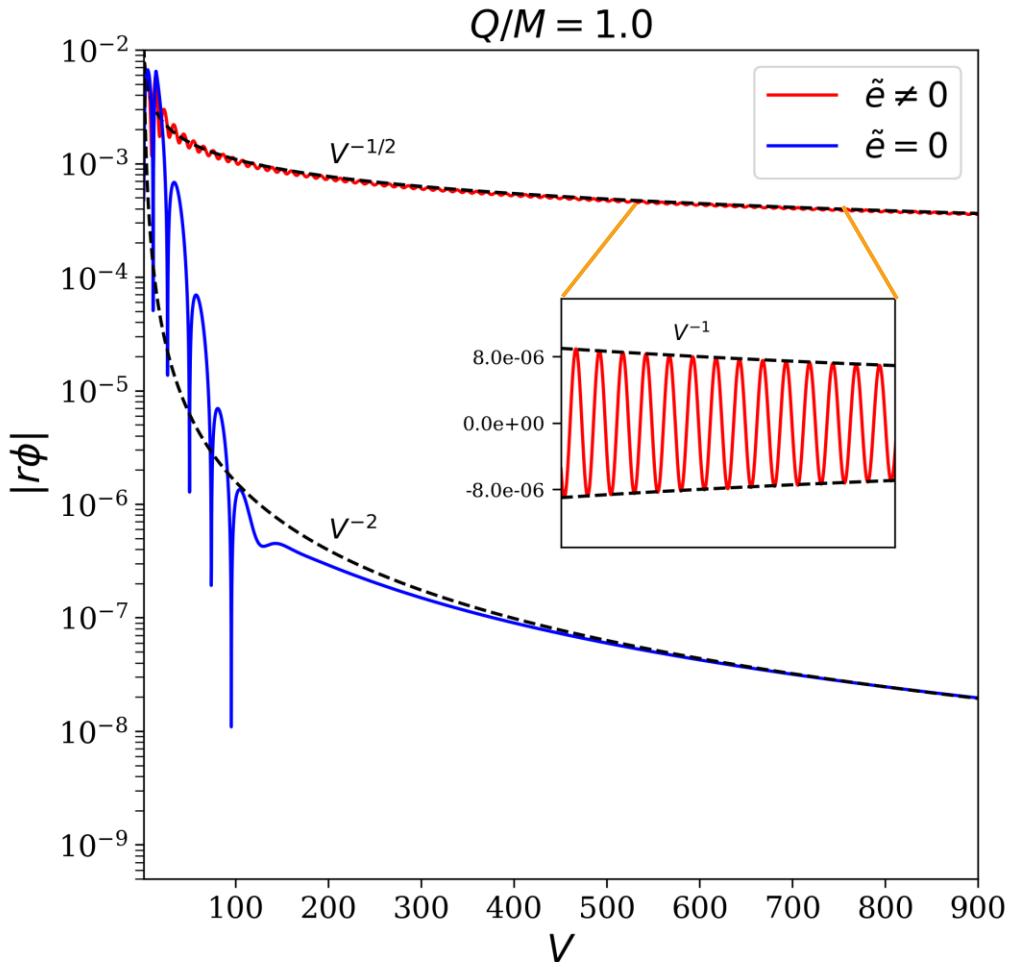
$$\phi \sim V^{-3}$$

RESULTS – SCALAR AMPLITUDE



Tail exponents for neutral and charged fields computed in, e.g.: Price (1972), Hod & Piran (1998), Lucietti+ (2012), Angelopoulos, Aretakis, & Gajic (2018), Gajic & van de Moortel (2024)

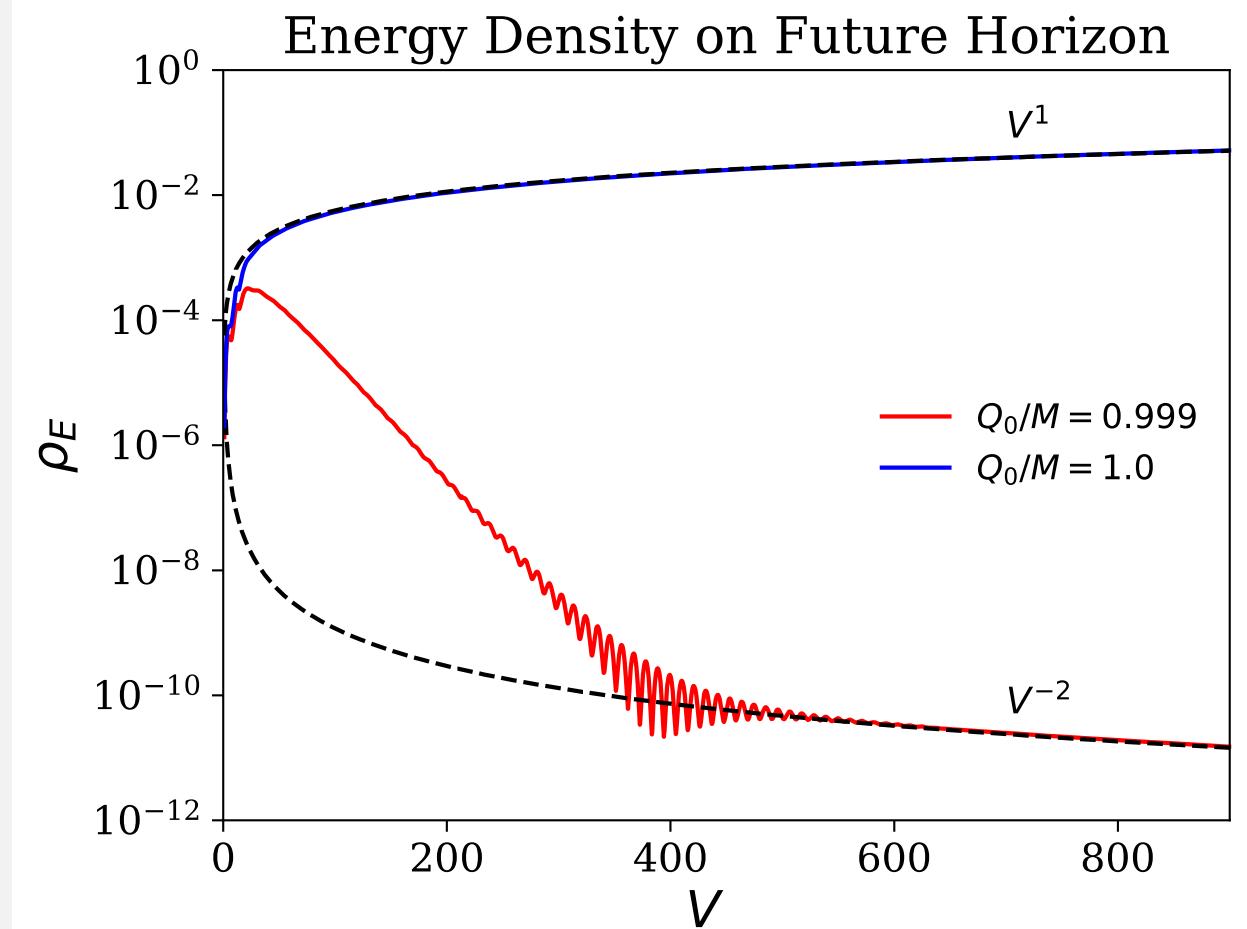
LONG-LIVED OSCILLATIONS



- As $Q \rightarrow M$ a set of “Nearly-Zero-Damped” (NZD) modes emerges:
$$\omega_{\text{NZD}} = \frac{\tilde{e}Q}{r_+} + \frac{i\kappa}{2} + \mathcal{O}(\kappa^2)$$
- Since $\text{Im}(\omega_{\text{NZD}}) \rightarrow 0$ at extremality, this mode is very long-lived
 - Shows up as oscillations in the power-law tail \rightarrow instability?
 - Importance of NZD discussed in (Hod 2010; CGZ 2016; Zimmerman 2017)

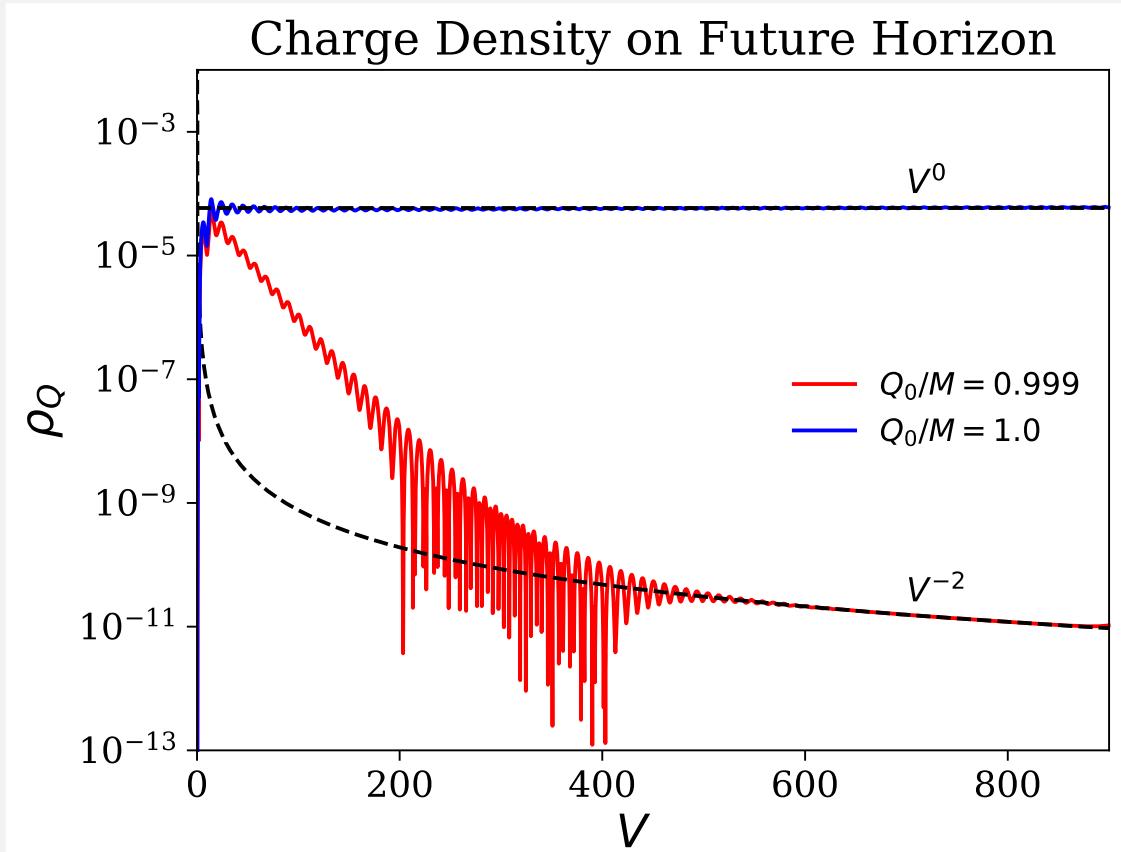
RESULTS – ENERGY DENSITY

- Energy density: $\rho_E \sim (\partial_r |\phi|)^2$
- For sufficiently charged matter, energy density grows as $\sim V$ on the extremal horizon
- Stands in contrast to the uncharged Aretakis instability:
 $\rho_E \sim (\partial_r \phi)^2 \sim \text{const}$
- Consistent with linearized, analytic results (Zimmerman 2017; CGZ 2016)



RESULTS – CHARGE DENSITY

- Charge density: $\rho_Q \sim \partial_r(r^2 E^r)$
- For sufficiently charged matter, charge density remains *constant* on the extremal horizon
- Represents an instability induced by dynamics of Maxwell's equations
 - A new (asymptotic) constant emerges in the presence of electromagnetic charge
- Charge accumulates on the extremal event horizon



PHYSICAL EXPLANATION

- Enhancement of charged Aretakis instability comes from the presence of a nearly-zero-damped (NZD) mode (Hod 2010; Zimmerman 2017; Richartz, Herdeiro, & Berti 2017):

$$\omega_{\text{NZD}} = \frac{\tilde{e}Q}{r_+} + \frac{i\kappa}{2} + \mathcal{O}(\kappa^2)$$

- At extremality, NZD mode coincides with onset of charged superradiance
 - Shuts off energy loss and prevents ρ_Q from decaying
- Can confirm by constructing *monochromatic* initial data at this frequency

$$\underline{\omega < \omega_{\text{NZD}}}$$

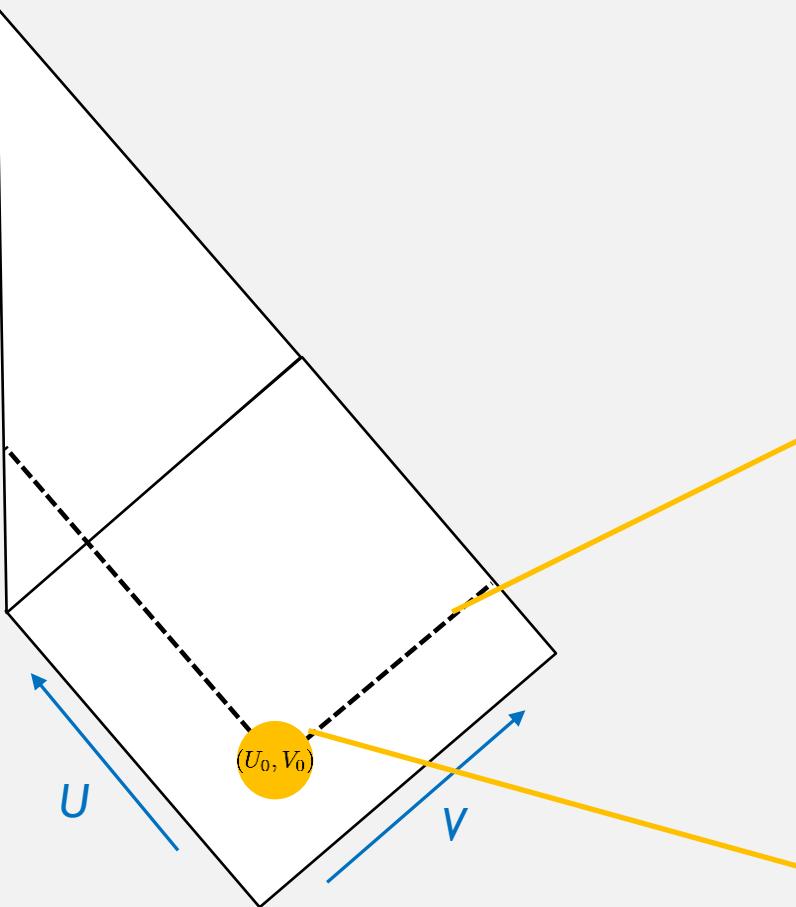
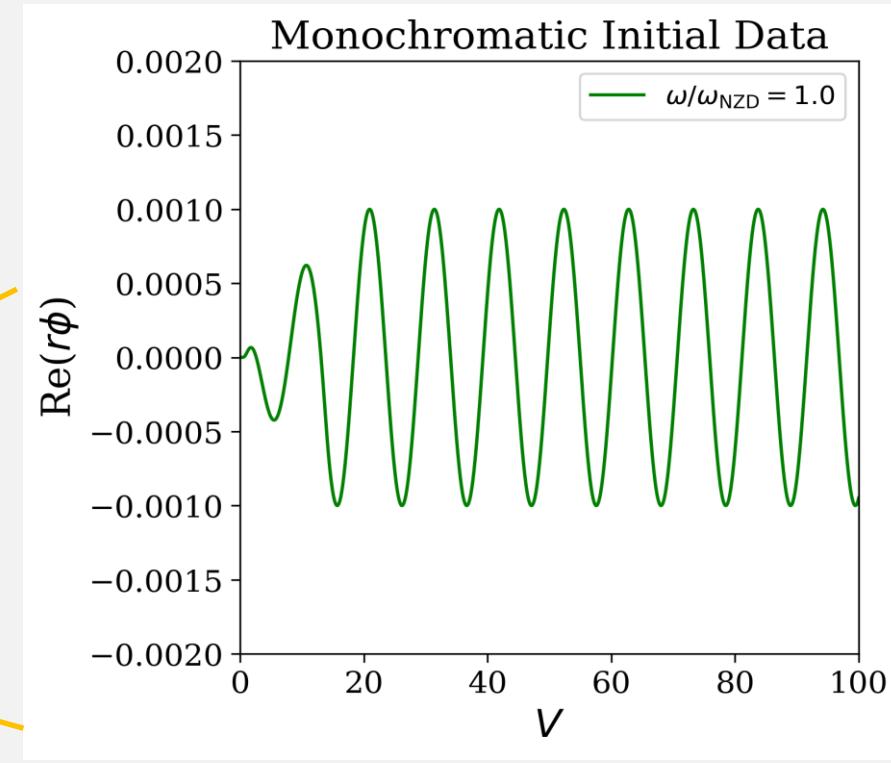
Extract charge
from black hole

$$\underline{\omega > \omega_{\text{NZD}}}$$

Inject charge
into black hole

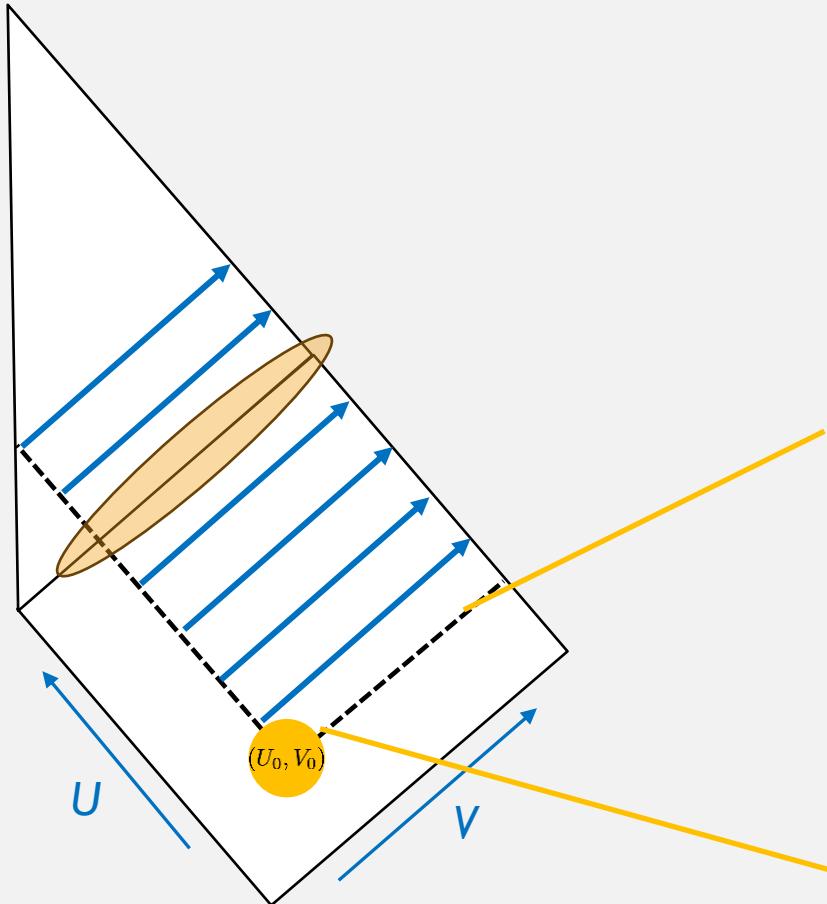
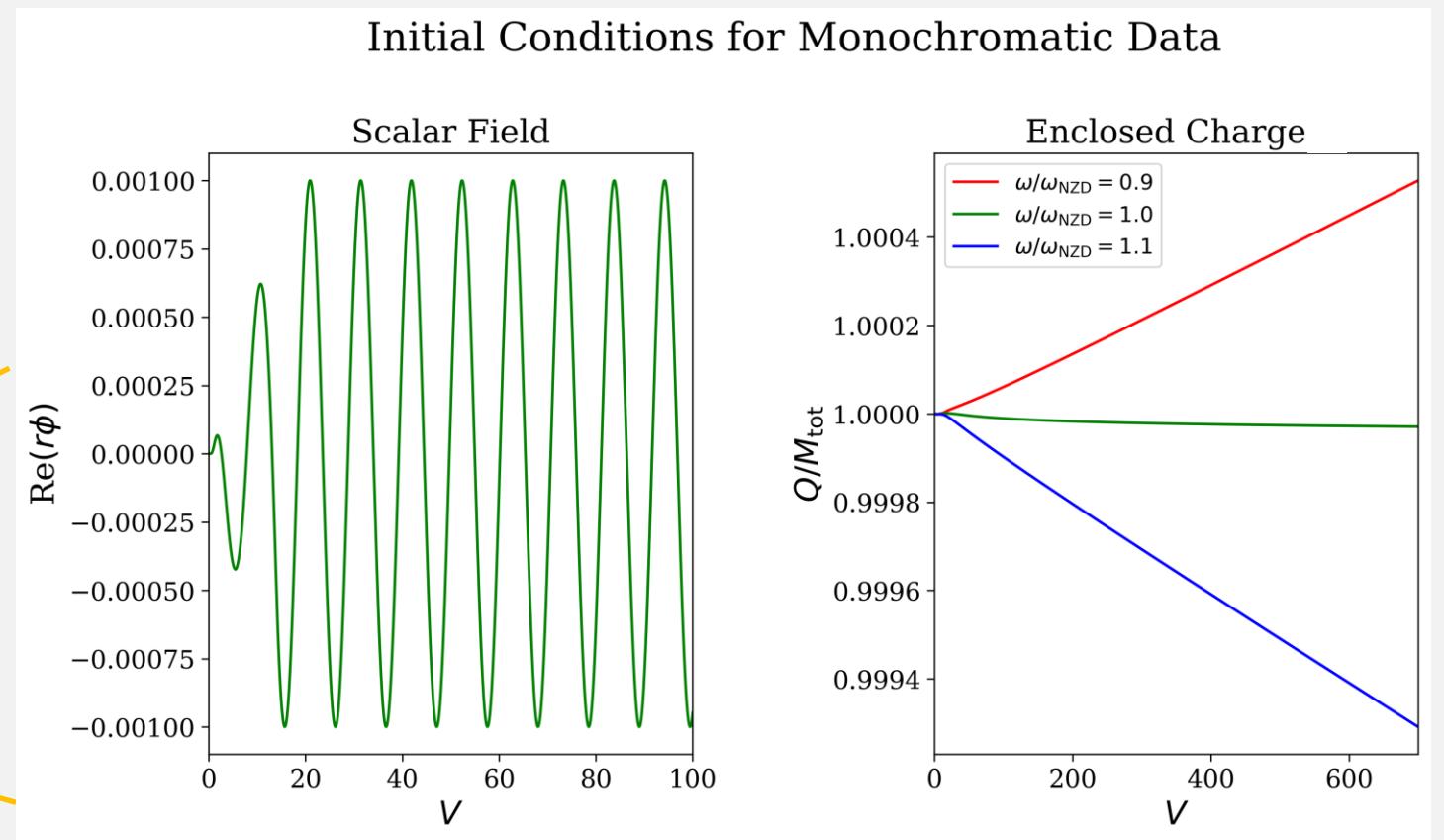
MONOCHROMATIC INITIAL DATA

- Construct monochromatic initial data with $r\phi = e^{i\omega V}$



MONOCHROMATIC INITIAL DATA

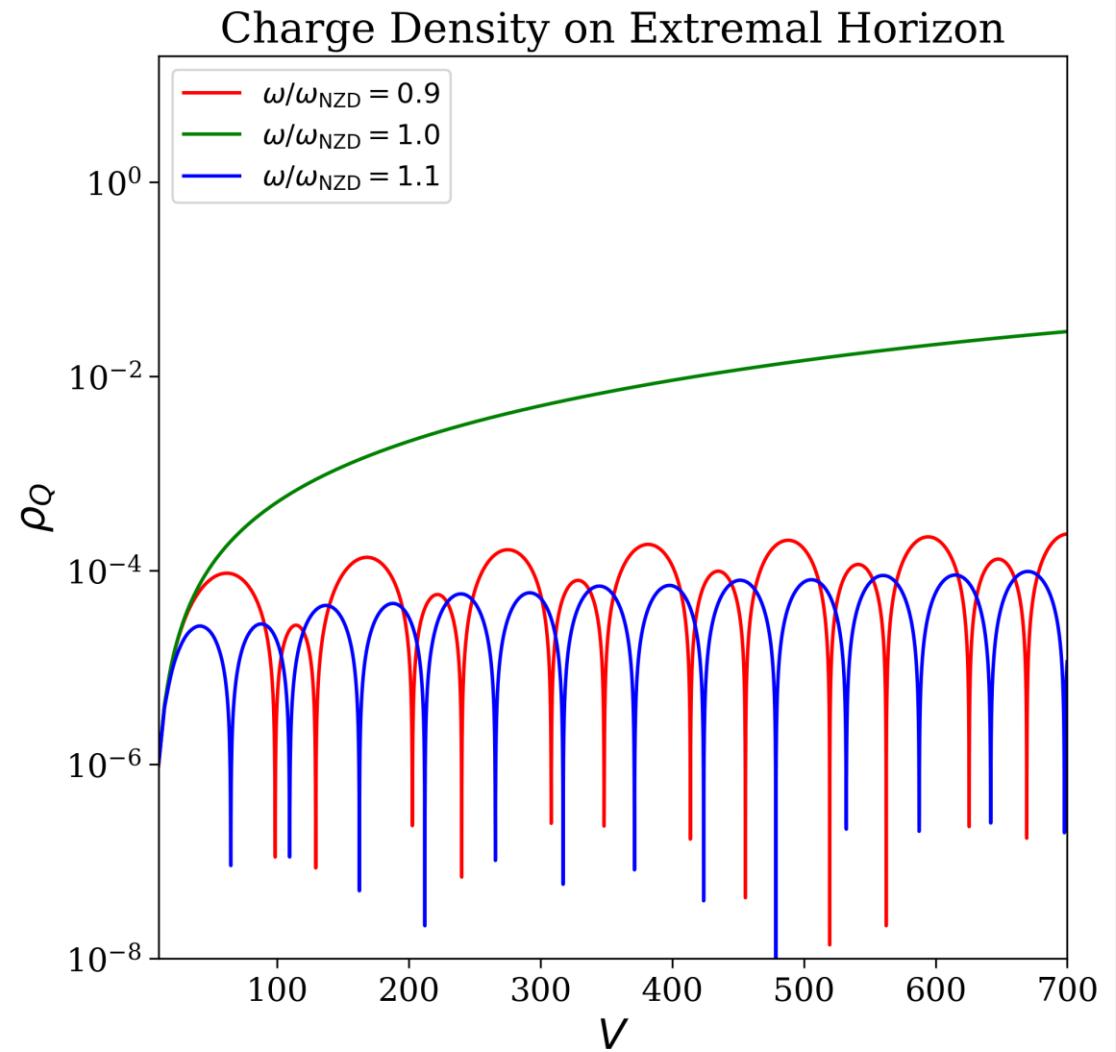
- Ratio of $\omega/\omega_{\text{NZD}}$ directly controls the charge-to-mass ratio of the monochromatic initial data



MONOCHROMATIC RESULTS

- Initial data with NZD frequency triggers the strongest instability
- Due to confluence of three effects:
 1. Weakly damped mode
 2. Onset of superradiance
 3. Charge-to-mass ratio of one

Key Question! Does this mode explanation persist in the presence of Einstein's equations?



INCORPORATING EINSTEIN'S EQUATIONS

- Einstein's equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$
 - In spherical symmetry, two independent metric components:
$$ds^2 = -2g_{UV}dUdV + r^2d\Omega^2$$

- Four quantities in total:
$$\underbrace{|\phi|}_{\text{Wave}}$$

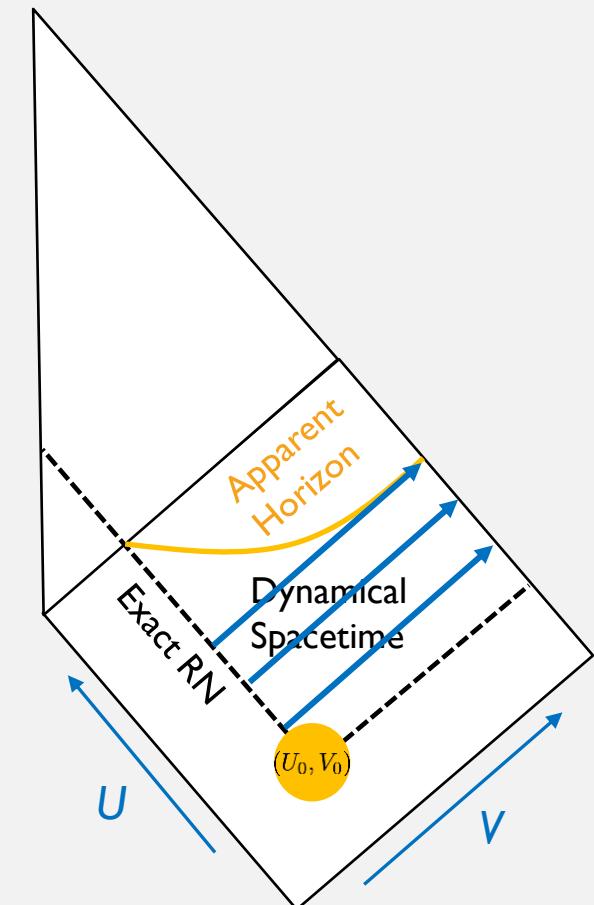
$$\underbrace{Q/M}_{\substack{\text{Einstein} \\ +}}$$

$$\underbrace{r}_{\text{Einstein}}$$

$$\underbrace{g_{UV}}_{\text{Einstein}}$$

Numerical Scheme:

- Same as before but with dynamical refinement around apparent horizon: $\Delta U \propto g^{UV}|_{\mathcal{I}^+}$

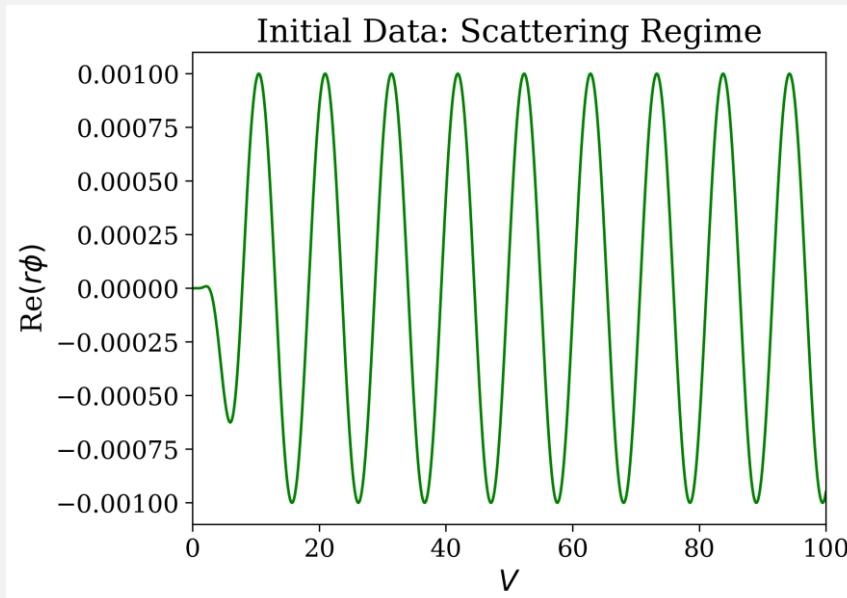


NONLINEAR NZD'S

With Einstein's equations, response to monochromatic initial data splits into two regimes:

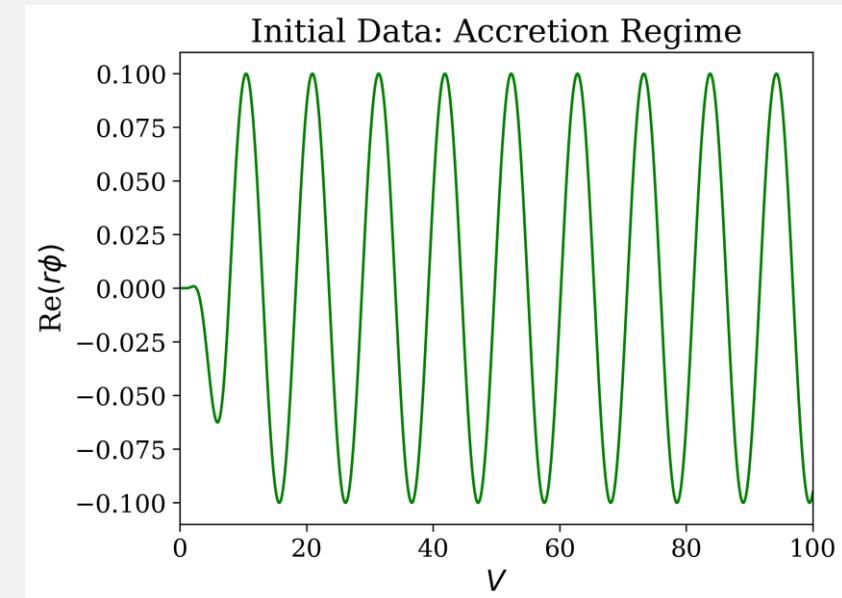
Regime 1: Scattering (Low Amplitude)

- Get back growth from linear problem, but it's transient



Regime 2: Accretion (High Amplitude)

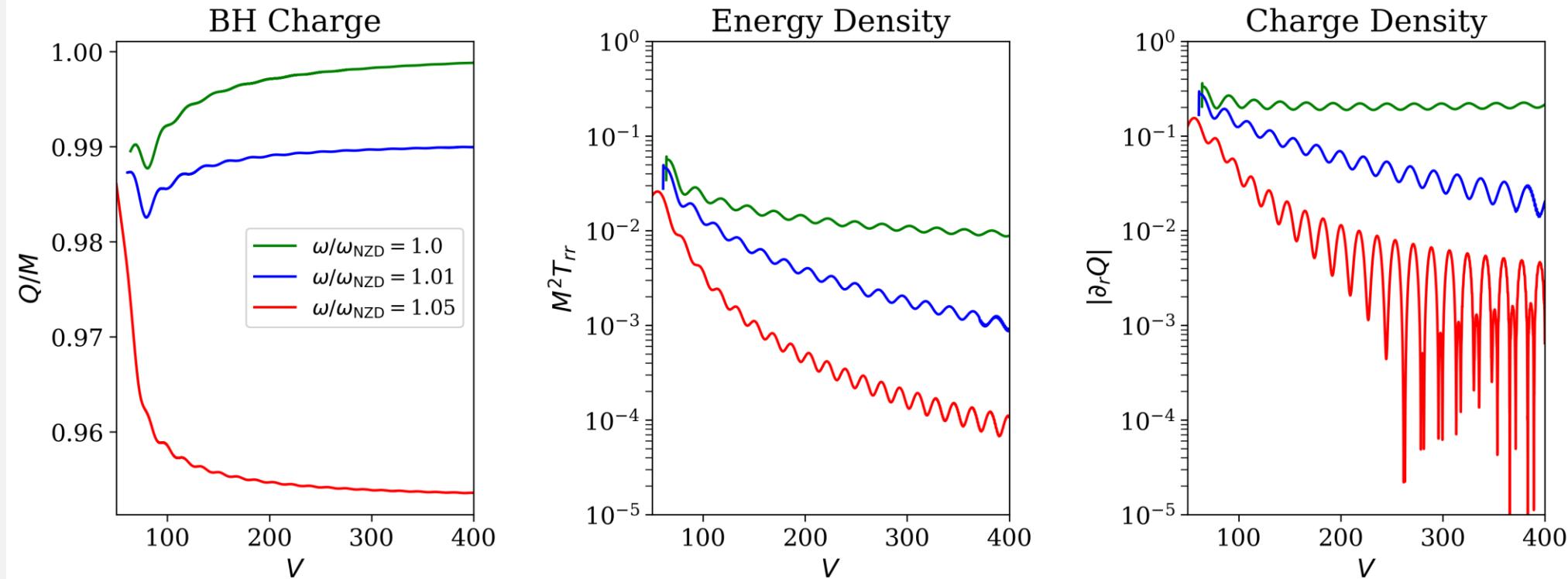
- Unstable behavior can be drawn out by accreting to extremality



RESULTS: ACCRETION REGIME

- Since NZD has a charge-to-mass ratio of one, it pushes the black hole towards extremality

Matter Fields on Apparent Horizon: Accretion Regime

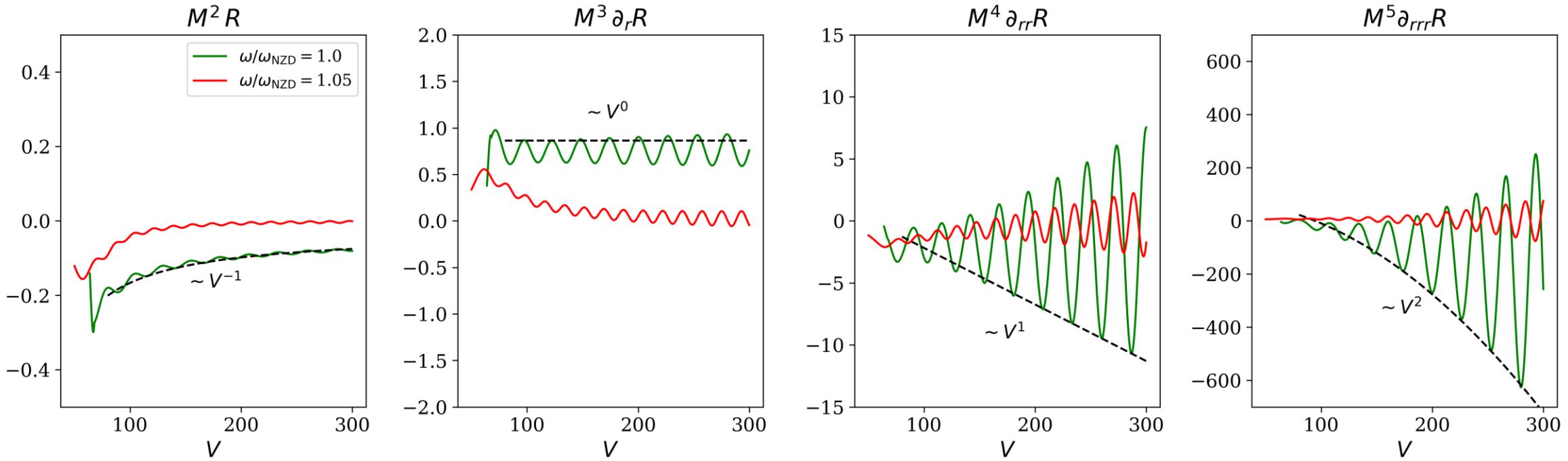


- Energy decay weakens and charge becomes constant

RESULTS: ACCRETION REGIME

- Curvature scalars might grow in response to matter: $R = -8\pi T \propto -8\pi\partial_r|\phi|\partial_V|\phi| + \frac{Q_{,r}Q_{,V}}{8\pi\tilde{e}|\phi|^2r^4}$

Behavior of Ricci Scalar on Apparent Horizon: Accretion Regime



- Ricci scalar decays, but its *gradients* grow → results agree with naive expectations from stress tensor in linear theory

RESULTS: ACCRETION REGIME

Implications

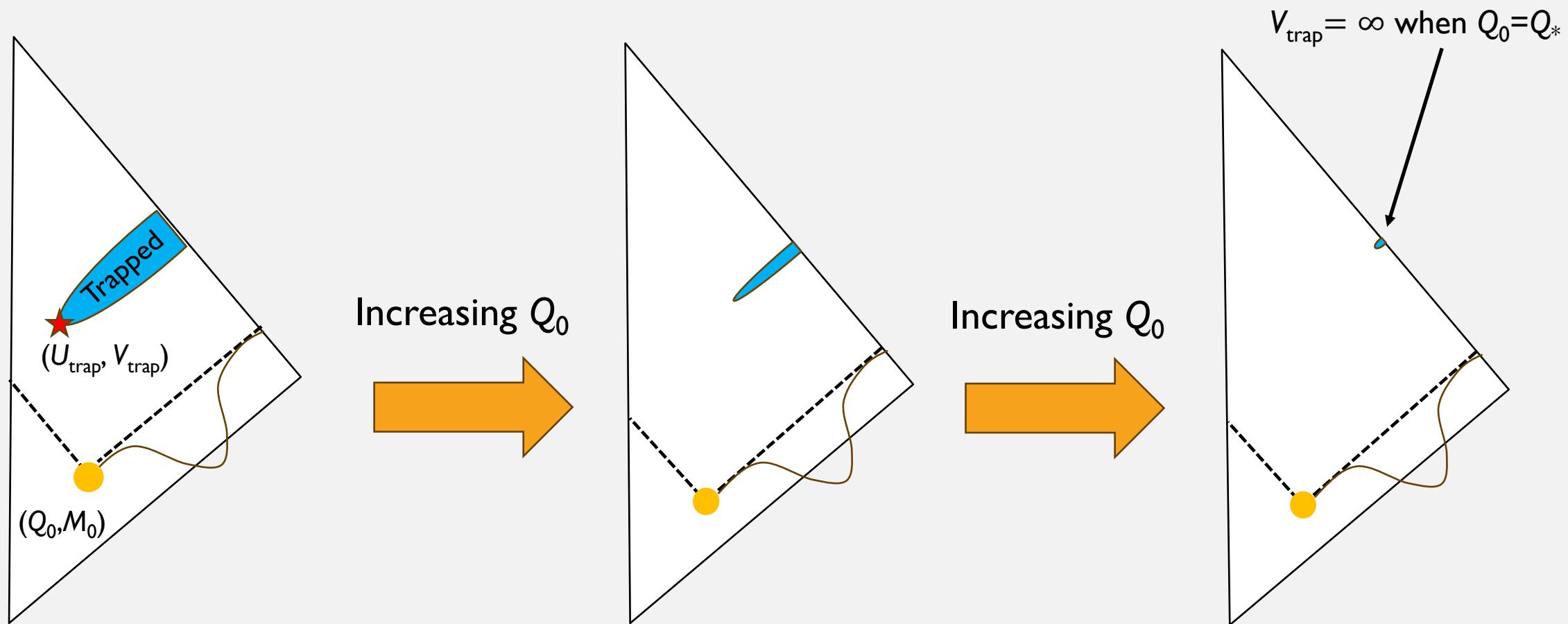
- When backreaction is large, NZD switches from driving superradiant scattering to driving accretion towards extremality
 - Still creates divergent transverse derivatives → shows up in curvature scalars
 - Suggests nonlinear instability on horizon

Key Question: Can the effects of this mode in the nonlinear regime be isolated in compactly-supported data?

- Turn to “dynamical extremal black holes” (MRT 2013)

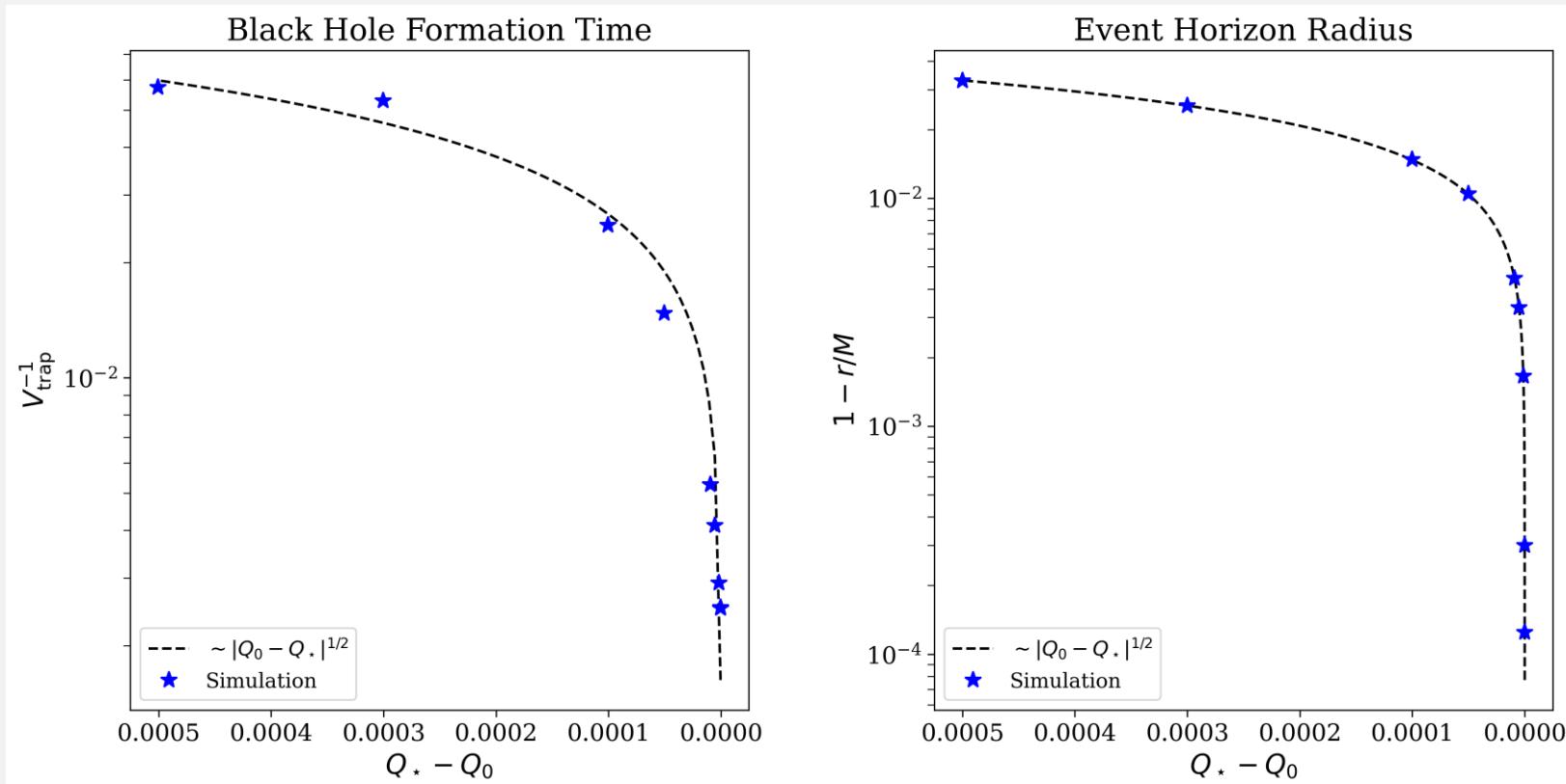
DYNAMICAL EXTREMAL BLACK HOLES

- Begin with super-extremal spacetime (no trapped surfaces) and tune background charge Q_0 (MRT; see Kehle & Unger 2024 for similar fine-tuning arguments)



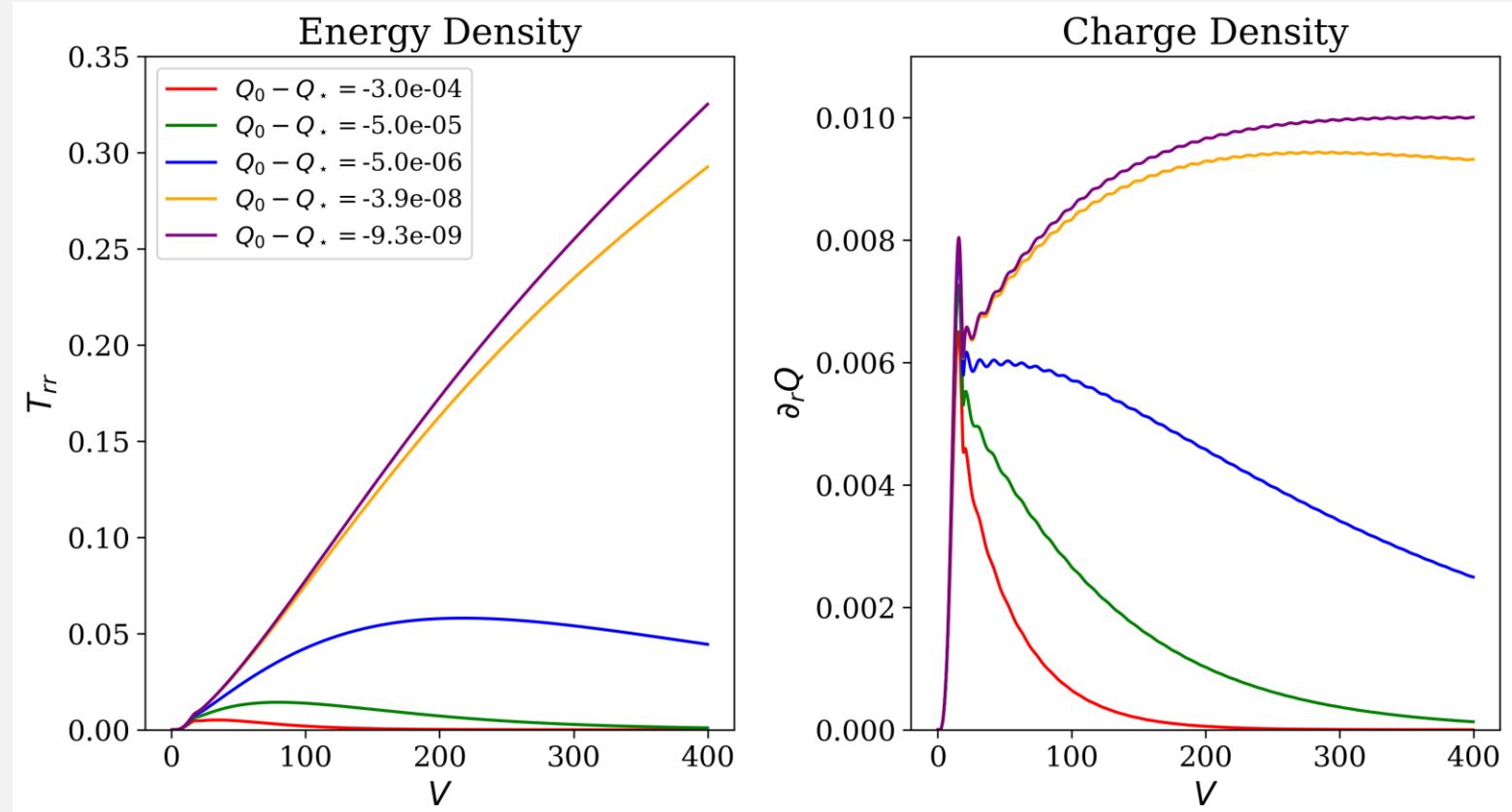
UNIVERSALITY

- As $V_{\text{trap}} \rightarrow \infty$, resultant black hole approaches black hole with $r = Q = M$
 - Universal critical exponent is $1/2$ (consistent with MRT 2013; Gralla & Zimmerman 2018; East 2025):
 $V_{\text{trap}} \sim |Q_* - Q_0|^{-1/2}$ and $r/M - 1 \sim |Q_* - Q_0|^{1/2}$



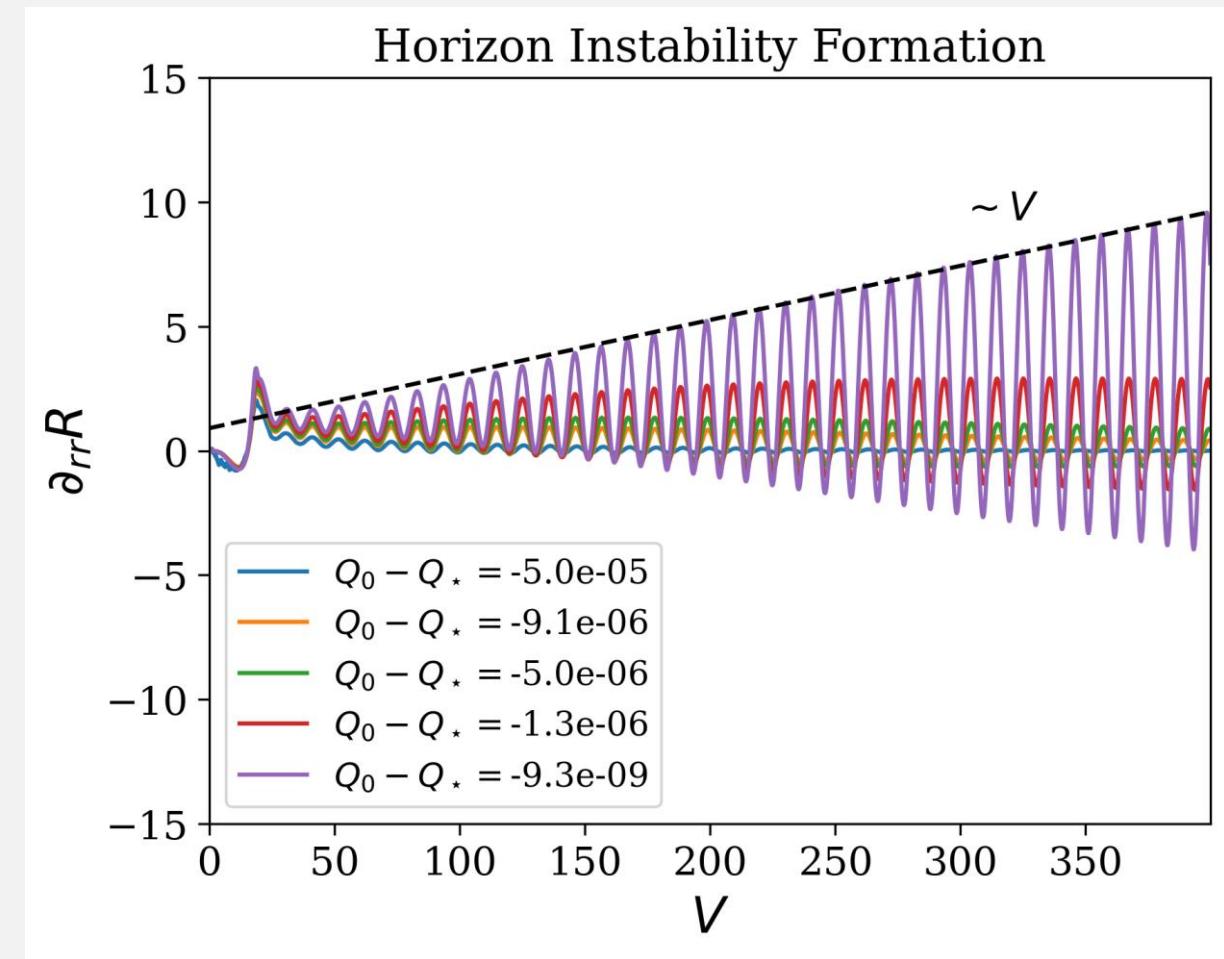
NON-LINEAR ARETAKIS INSTABILITY

- Dynamical extremal black hole shows full-blown Aretakis instability
 - Like MRT results but with actual energy blowup
- Backreaction does *not* regulate instabilities because T_μ^μ , $T_{\mu\nu}T^{\mu\nu}$ remain finite
 - On horizon, energy density balanced by radial pressure and momentum
 - But derivatives of these stresses do diverge...



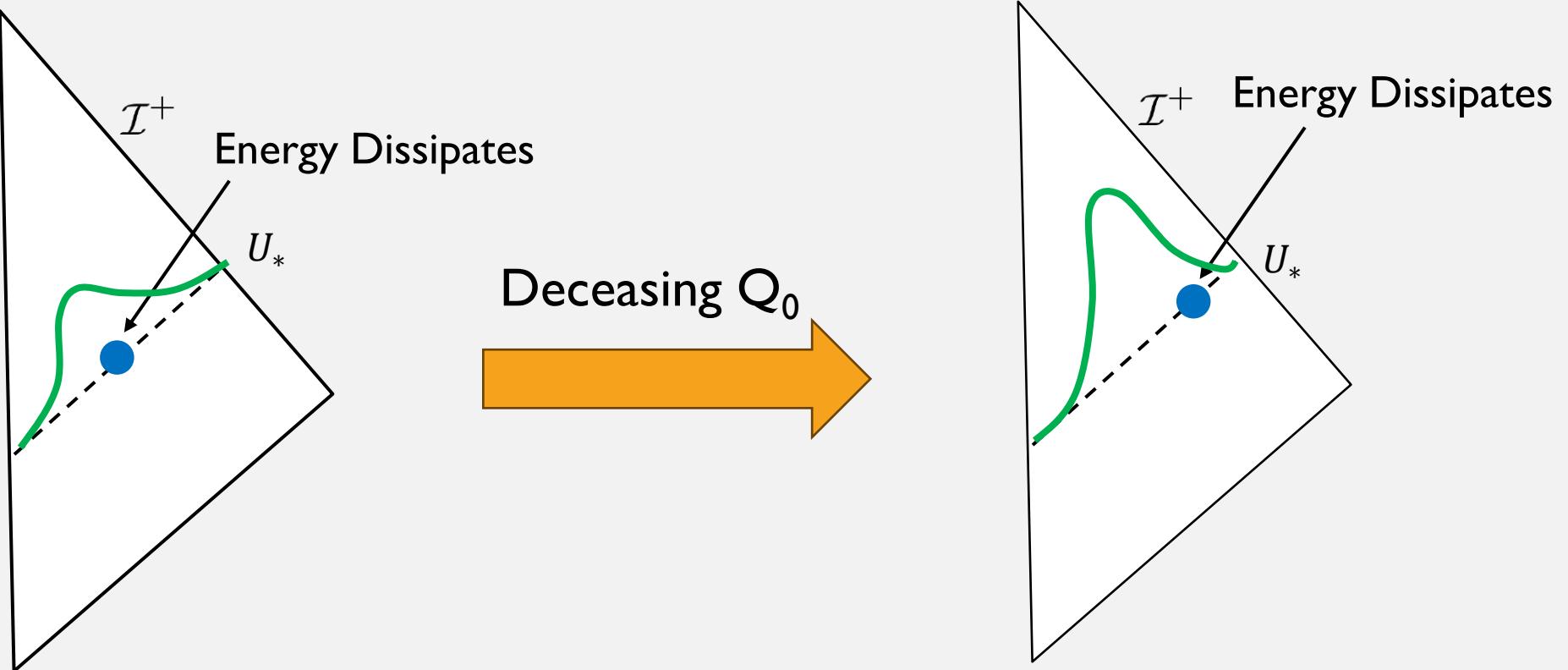
CURVATURE SCALARS

- Derivatives of Ricci scalar blow up at the same rate as the accretion problem
- Oscillations at linear value of NZD!



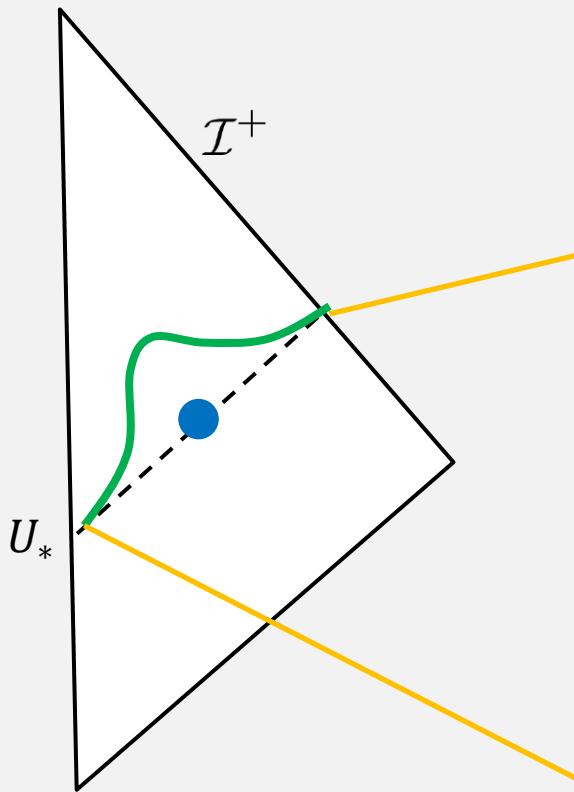
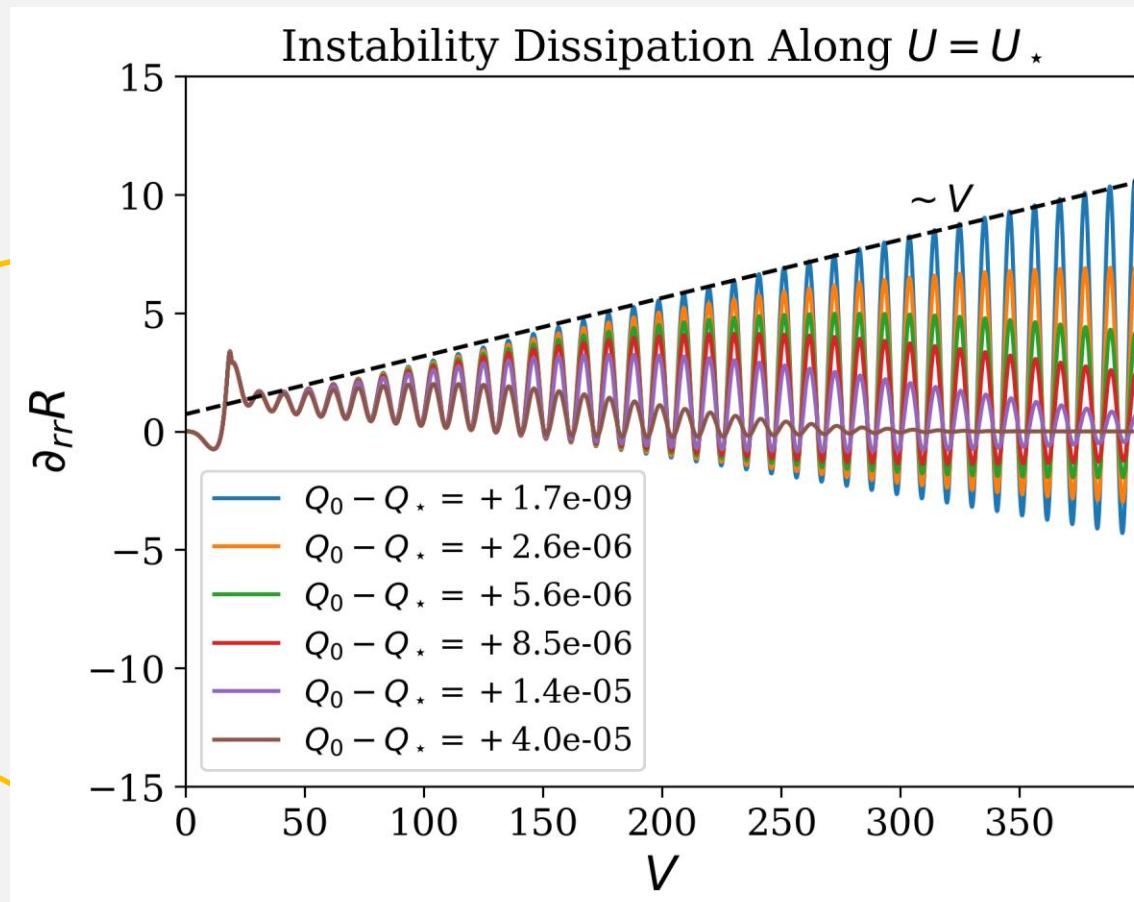
WHAT ABOUT $Q_0 > Q_*$?

- Can find critical behavior when $Q_0 > Q_*$ (no trapped surfaces) side by tracking gradients along location of “would-be” horizon: $U=U_*$



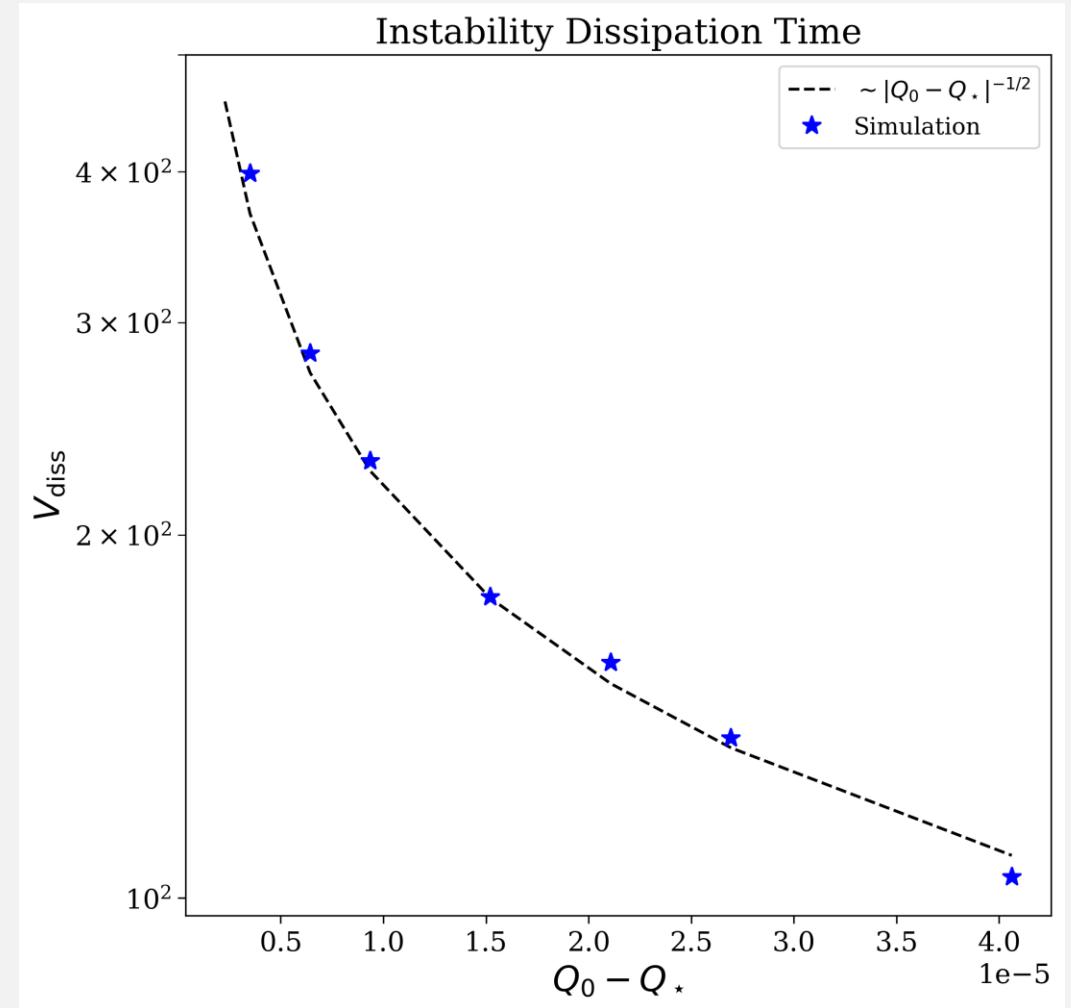
INSTABILITY DISSIPATION: $Q_0 > Q_*$

- Radial derivatives of Ricci scalar grow (and oscillate at NZD frequency) and dissipate

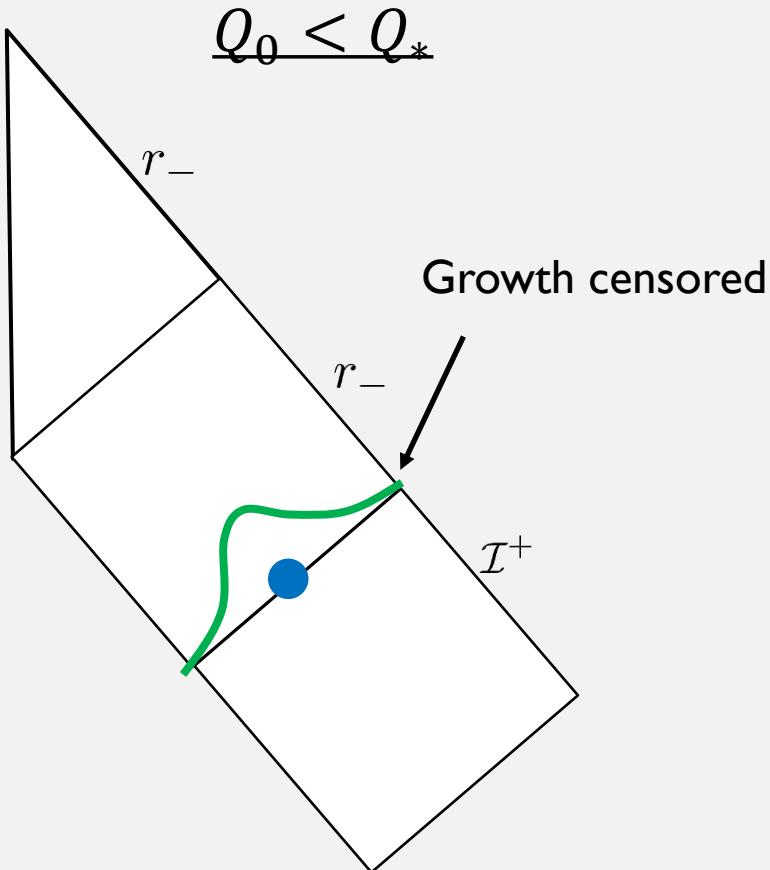
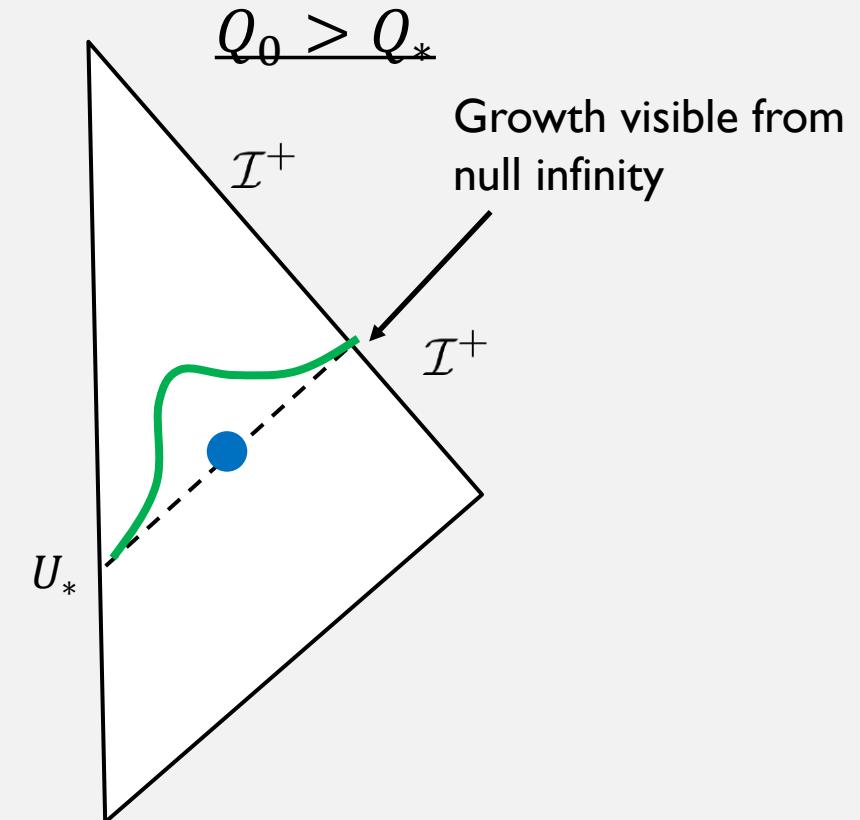


UNIVERSALITY FOR $Q_0 > Q_*$

- Define dissipation timescale as time for which radial derivatives of R stop growing
 - Scales as $V_{\text{diss}} \sim (Q_0 - Q_*)^{-1/2}$



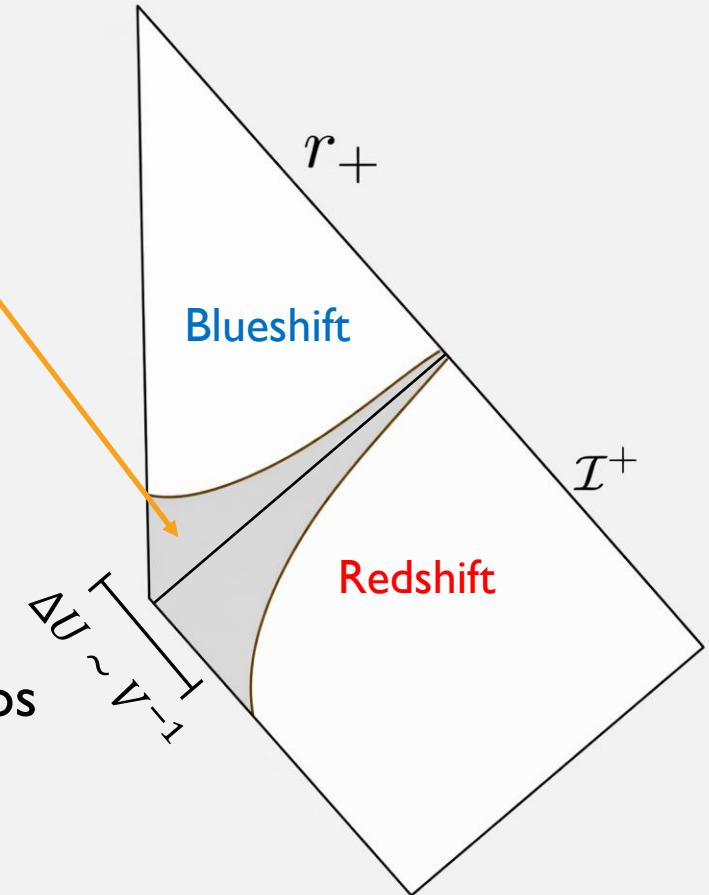
SUB-CRITICAL VS. SUPER-CRITICAL



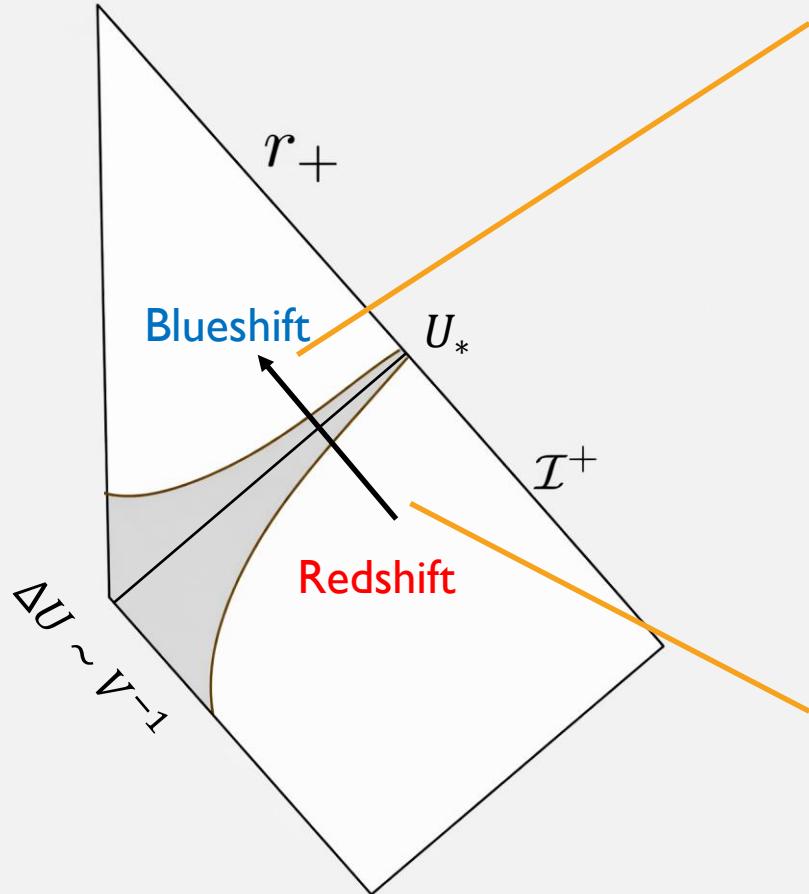
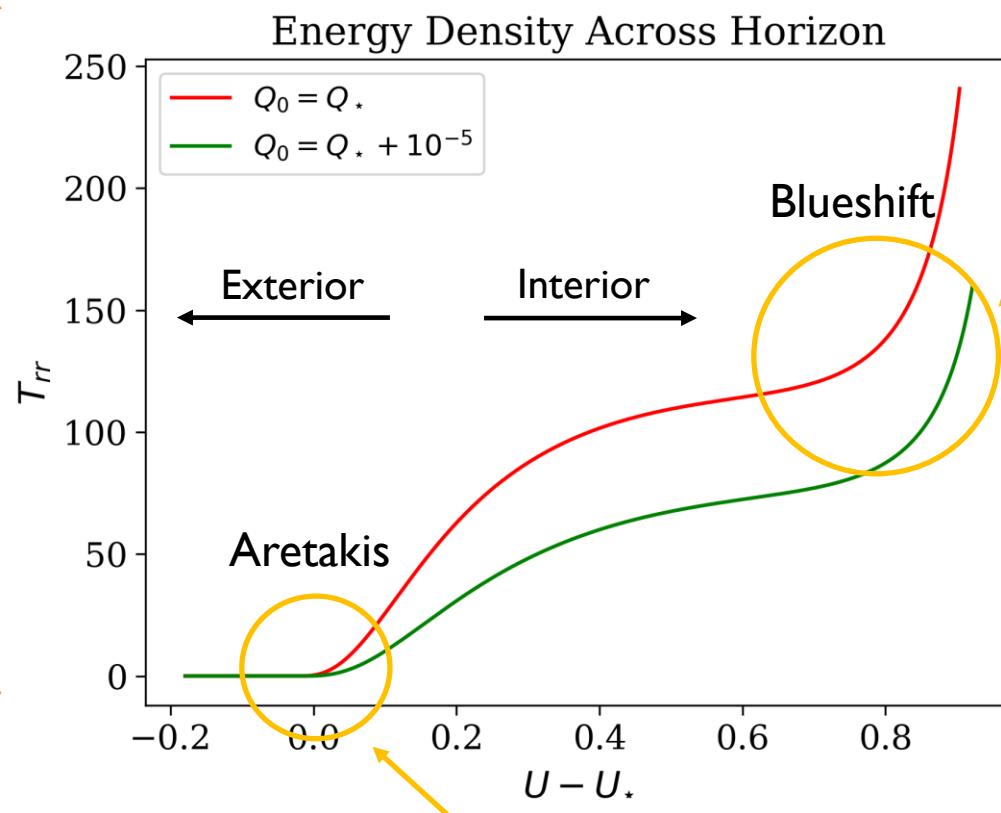
- To understand whether large curvatures are visible from Scri, we need to understand how *localized* the instability is around the horizon

INSTABILITY LOCALIZATION

- Aretakis instability persists in region with no redshift: $\frac{\partial U}{\partial r} \sim 1$
 - Only exists within a small patch of the extremal horizon
- Further in exterior, r redshifts: $\frac{\partial U}{\partial r} \rightarrow 0$
 - Causes energy decay
- Further in interior, r blueshifts: $\frac{\partial U}{\partial r} \rightarrow \infty$
 - Causes energy growth
 - A *different* instability of extremal BH interiors (Marolf 2010; Garfinkle 2011)
 - Sub-extremal analog at inner horizon (Penrose 1968; Dafermos 2005; Marolf & Ori 2011)
 - Coincides with the Aretakis instability at late times



ENERGY GROWTH IN INTERIOR



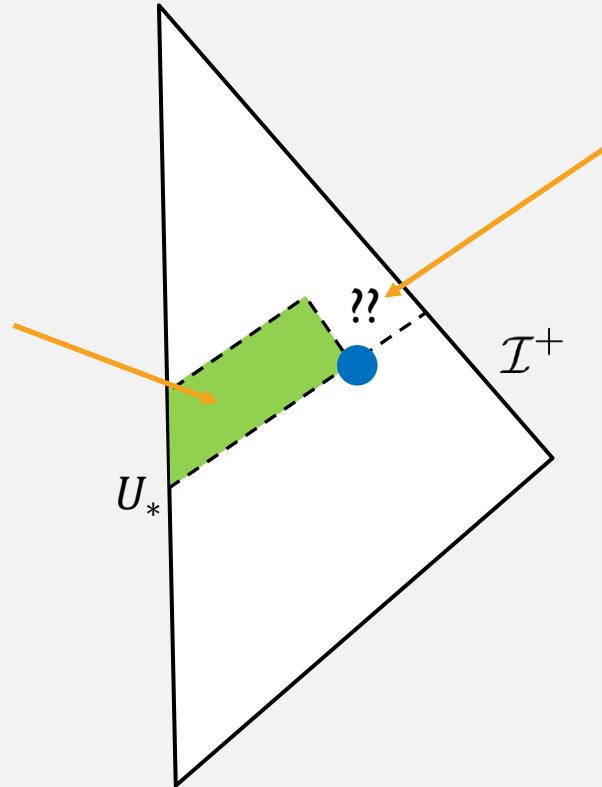
Curvature scalars
not bounded

** Even with no
trapped surfaces,
similar divergences
appear in the “would-
be” interior!

Curvature scalars
bounded

IMPLICATIONS: $Q_0 > Q_*$

Curvature scalars growing
in “would-be” interior...
Could in principle be
visible from null infinity!



Black hole formation at
late times could censor
large curvature, but it
would have to form
arbitrarily close to U_* in
the limit as $Q_0 \rightarrow Q_*$

CONCLUSION

- Extremal black hole horizons develop divergent energy density in presence of charged perturbations
 - Behavior present at linear level (fixed metric) and non-linear level (dynamical ERN)
 - Behavior due NZD mode. Remains a resonance via accretion
- Universality is observed in fine-tuning of non-linear perturbations
 - By tuning to critical parameter from above, can potentially generate large curvature visible from Scri

Future Steps

- Continue to explore critical phenomena
 - Universality of horizon “hairs”?
 - Visibility from null infinity?
 - Extensions to collapse problem
- Breaking spherical symmetry

