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BLACK HOLE STABILITY

• Stationary black holes in nature believed to be described 

by M, Q, J alone (no-hair conjecture)

• What happens if you perturb a black hole?

o  Charged, rotating black holes are known to be linearly 

stable in the sub-extremal case  

(e.g. Dafermos, Holzegel, & Rodnianski 2016; Giorgi 

2020; Andersson, Backdahl, Blue, & Ma 2019)

• Open questions: Extremal black holes? 



(IN)STABILITY OF EXTREMAL BLACK HOLES

• Extremal black holes                            are linearly unstable to 

perturbations:  Aretakis Instability (2010, 2011)

o Energy density of a scalar field does not decay on extremal 

horizon (fixed background metric)

• Occurs due to the lack of gravitational redshift at extremality 

(exponential → power-law)
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NON-LINEAR INSTABILITIES

• What happens if we evolve the matter and the spacetime 

dynamically (wave equation + Einstein’s equations)?

oMurata, Reall, & Tanahashi (MRT; 2013) showed that 

metric backreaction can regulate the instability for 

scalar fields

oBut can still trigger instability for finely tuned initial data 

(“dynamical extremal black holes”)

• Can a similar phenomenon happen with charged scalar 

fields (i.e. coupled to electromagnetism)?



MOTIVATION

• Charged fields have greater potential for instability, 

superradiance, toy model for rotating matter

o Linear case treated by Zimmerman (2017); Casals, Gralla, & 

Zimmerman (CGZ; 2016). Formation of extremal BH (Kehle 

& Unger 2022)

• Much harder since we now need to evolve three sets of 

equations:
1. Wave equation (linear) 

2. Maxwell’s equation (non-linear)

3. Einstein’s equations (non-linear)

• Set J=0 and work in spherical symmetry

• Goal: investigate nonlinear horizon instabilities of 

charged scalar fields on extremal Reissner-Nordström 

spacetime in spherical symmetry



OUTLINE

1. Numerical Scheme

2. Review of linear problem (fixed background metric)

o Stronger Aretakis instability

o Scattering results highlight importance of weakly damped mode at the onset of superradiance  

3. Non-Linear Problem

o Mode decomposition still triggers instability

o Emergent instability for fine-tuned data, universality

o Large curvatures visible from Scri?



SCALAR ELECTRODYNAMICS

• Can couple the scalar field to electromagnetism by making it complex:

evolves via wave equation:

evolves via Maxwell’s equations:

• Spherical symmetry and electromagnetic gauge symmetry reduce 

degrees of freedom to 2:

• First step: Solve Wave+Maxwell system on fixed Reissner-Nordström 

background

Coupled via constant 



U
V

NUMERICAL SCHEME: 
DOUBLE-NULL COORDINATES

1. Construct initial data: ingoing pulse 

of charged matter 

2. Evolve data along null hypersurfaces 

using finite difference scheme

o Static mesh refinement clusters 

resolution near event horizon

3. Examine fields along the event 

horizon



RESULTS ON FIXED BACKGROUND

Quantities of Interest

Scalar amplitude     ,  energy density                     , charge density 

• Behavior of fields treated analytically for fixed metric + fixed electromagnetic 

potential in Zimmerman (2017)

• Incorporate Maxwell’s equations in Gelles & Pretorius (2025)



RESULTS – SCALAR AMPLITUDE

Quasinormal Modes Power-law tail
U

V



RESULTS – SCALAR AMPLITUDE

Tail exponents for neutral and charged fields computed in, e.g.: Price (1972), Hod & Piran (1998), Lucietti+ 

(2012),  Angelopoulos,  Aretakis, & Gajic (2018), Gajic & van de Moortel (2024)



LONG-LIVED OSCILLATIONS

• As            a set of “Nearly-Zero-Damped” 

(NZD) modes emerges:

• Since                         at extremality, this 

mode is very long-lived 

o Shows up as oscillations in the 

power-law tail → instability?

o Importance of NZD discussed in 

(Hod 2010; CGZ 2016; Zimmerman 

2017)



RESULTS – ENERGY DENSITY

• Energy density: 

• For sufficiently charged matter, 

energy density grows as ~V on the 

extremal horizon

• Stands in contrast to the uncharged 

Aretakis instability:

• Consistent with linearized, analytic 

results (Zimmerman 2017; CGZ 2016)



RESULTS – CHARGE DENSITY

• Charge density: 

• For sufficiently charged matter, charge 

density remains constant on the extremal 

horizon

• Represents an instability induced by 

dynamics of Maxwell’s equations

o A new (asymptotic) constant emerges in 

the presence of electromagnetic charge 

• Charge accumulates on the extremal event 

horizon



PHYSICAL EXPLANATION

• Enhancement of charged Aretakis instability 

comes from the presence of a nearly-zero-

damped (NZD) mode (Hod 2010; Zimmerman 

2017; Richartz, Herdeiro, & Berti 2017):

• At extremality, NZD mode coincides 

with onset of charged superradiance

o Shuts off energy loss and 

prevents ρQ from decaying

• Can confirm by constructing 

monochromatic initial data at this 

frequency

Extract charge 

from black hole

Inject charge 

into black hole



MONOCHROMATIC INITIAL DATA

• Construct monochromatic initial data with 

U
V



MONOCHROMATIC INITIAL DATA

• Ratio of              directly controls the charge-to-mass ratio of the monochromatic initial data

U
V



MONOCHROMATIC RESULTS

• Initial data with NZD frequency triggers 

the strongest instability

• Due to confluence of three effects:

1. Weakly damped mode 

2. Onset of superradiance

3. Charge-to-mass ratio of one

Key Question! Does this mode 

explanation persist in the presence of 

Einstein’s equations?



INCORPORATING EINSTEIN’S EQUATIONS

• Four quantities in total:

Wave Einstein

+

Maxwell

Einstein

• Einstein’s equations:

o In spherical symmetry, two independent metric components:

U
V

Dynamical 

Spacetime

Numerical Scheme:

• Same as before but with dynamical refinement 

around apparent horizon:



NONLINEAR NZD’S

With Einstein’s equations, response to monochromatic initial data splits into two regimes: 

Regime 1: Scattering (Low Amplitude) Regime 2: Accretion (High Amplitude)

• Get back growth from linear 

problem, but it’s transient
• Unstable behavior can be drawn 

out by accreting to extremality



RESULTS: ACCRETION REGIME

• Since NZD has a charge-to-mass ratio of one, it pushes the black hole towards extremality

• Energy decay weakens and charge becomes constant



RESULTS: ACCRETION REGIME

• Ricci scalar decays, but its gradients grow → results agree with naive expectations from stress 

tensor in linear theory

• Curvature scalars might grow in response to matter:



RESULTS: ACCRETION REGIME

Implications

• When backreaction is large, NZD switches from driving superradiant 

scattering to driving accretion towards extremality

o Still creates divergent transverse derivatives → shows up in curvature 

scalars

o Suggests nonlinear instability on horizon

Key Question: Can the effects of this mode in the nonlinear regime be isolated 

in compactly-supported data?

• Turn to “dynamical extremal black holes” (MRT 2013)



(Q0,M0)

DYNAMICAL EXTREMAL BLACK HOLES

• Begin with super-extremal spacetime (no trapped surfaces) and tune background charge Q0 

(MRT; see Kehle & Unger 2024 for similar fine-tuning arguments)

Vtrap= ∞ when Q0=Q*

Increasing Q0 Increasing Q0
(Utrap, Vtrap)



UNIVERSALITY

• As  𝑉trap → ∞, resultant black hole approaches black hole with 𝑟 = 𝑄 = 𝑀

o Universal critical exponent is ½ (consistent with MRT 2013; Gralla & Zimmerman 2018; East 2025):   

𝑉trap~ 𝑄∗ − 𝑄0
−1/2 and 𝑟/𝑀 − 1 ∼ 𝑄∗ − 𝑄0

1/2



NON-LINEAR ARETAKIS INSTABILITY

• Dynamical extremal black hole 

shows full-blown Aretakis 

instability

o Like MRT results but with 

actual energy blowup

• Backreaction does not regulate 

instabilities because 𝑇𝜇
𝜇

, 𝑇𝜇𝜈𝑇𝜇𝜈 

remain finite

o On horizon, energy density 

balanced by radial pressure 

and momentum

o But derivatives of these 

stresses do diverge…



CURVATURE SCALARS

• Derivatives of Ricci scalar blow 

up at the same rate as the 

accretion problem

• Oscillations at linear value of 

NZD!



WHAT ABOUT 𝑄0 > 𝑄∗?

• Can find critical behavior when 𝑄0 > 𝑄∗ (no trapped surfaces) side by tracking gradients 

along location of “would-be” horizon:  U=U* 

Deceasing Q0

Energy Dissipates

Energy Dissipates

𝑈∗ 𝑈∗



INSTABILITY DISSIPATION: 𝑄0 > 𝑄∗

• Radial derivatives of Ricci scalar grow (and oscillate at NZD frequency) and dissipate

𝑈∗



UNIVERSALITY FOR 𝑄0 > 𝑄∗ 

• Define dissipation timescale as time for 

which radial derivatives of R stop growing

o Scales as 𝑉diss ∼ 𝑄0 − 𝑄∗
−1/2



SUB-CRITICAL VS. SUPER-CRITICAL

𝑄0 < 𝑄∗

Growth censored

Growth visible from 

null infinity

𝑄0 > 𝑄∗

• To understand whether large curvatures are visible from Scri, we need to 

understand how localized the instability is around the horizon

𝑈∗



INSTABILITY LOCALIZATION

• Aretakis instability persists in region with no redshift: 
𝜕𝑈

𝜕𝑟
∼ 1

o Only exists within a small patch of the extremal horizon

• Further in exterior, r redshifts: 
𝜕𝑈

𝜕𝑟
→ 0 

o Causes energy decay

• Further in interior, r blueshifts: 
𝜕𝑈

𝜕𝑟
→ ∞

o Causes energy growth

o A different instability of extremal BH interiors (Marolf 2010; 

Garfinkle 2011)

o Sub-extremal analog at inner horizon (Penrose 1968; Dafermos 

2005; Marolf & Ori 2011)

o Coincides with the Aretakis instability at late times

Redshift

Blueshift



ENERGY GROWTH IN INTERIOR 

Redshift

Blueshift 𝑈∗

Aretakis

Blueshift

Curvature scalars 

bounded

Curvature scalars 

not bounded

** Even with no 

trapped surfaces, 

similar divergences 

appear in the “would-

be” interior!

Exterior Interior 



IMPLICATIONS: 𝑄0 > 𝑄∗

𝑈∗

Curvature scalars growing 

in “would-be” interior… 

Could in principle be 

visible from null infinity!

??

Black hole formation at 

late times could censor 

large curvature, but it 

would have to form 

arbitrarily close to U* in 

the limit as 𝑄0 → 𝑄∗ 



CONCLUSION

Future Steps

• Continue to explore critical phenomena

o Universality of horizon “hairs”?

o Visibility from null infinity? 

o Extensions to collapse problem

• Breaking spherical symmetry

• Extremal black hole horizons develop divergent energy density in presence of 

charged perturbations 

o Behavior present at linear level (fixed metric) and non-linear level 

(dynamical ERN)

o Behavior due NZD mode. Remains a resonance via accretion

• Universality is observed in fine-tuning of non-linear perturbations

o By tuning to critical parameter from above, can potentially generate large 

curvature visible from Scri

𝑈∗
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