THE NONLINEAR DEVELOPMENT OF
CHARGED HORIZON INSTABILITIES




BLACK HOLE STABILITY

* Stationary black holes in nature believed to be described
by M, Q, ] alone (no-hair conjecture)

* What happens if you perturb a black hole?

o Charged, rotating black holes are known to be linearly
stable in the sub-extremal case
(e.g. Dafermos, Holzegel, & Rodnianski 2016; Giorgi
2020; Andersson, Backdahl, Blue, & Ma 2019)

* Open questions: Extremal black holes?




(IN)STABILITY OF EXTREMAL BLACK HOLES

* Extremal black holes (J?/M? + Q* = M?) are linearly unstable to
perturbations: Aretakis Instability (2010,201 )

o Energy density of a scalar field does not decay on extremal
horizon (fixed background metric)

* Occurs due to the lack of gravitational redshift at extremality
(exponential = power-law)

JPIM? +Q* = M?

Image credit: Wikipedia



NON-LINEAR INSTABILITIES

* What happens if we evolve the matter and the spacetime
dynamically (wave equation + Einstein’s equations)?

o Murata, Reall, & Tanahashi (MRT;2013) showed that
metric backreaction can regulate the instability for
scalar fields

JIM? +Q* = M?

o But can still trigger instability for finely tuned initial data
(“dynamical extremal black holes”)

* Can a similar phenomenon happen with charged scalar
fields (i.e. coupled to electromagnetism)?



MOTIVATION

* Charged fields have greater potential for instability,
superradiance, toy model for rotating matter

o Linear case treated by Zimmerman (2017); Casals, Gralla, &
Zimmerman (CGZ;2016). Formation of extremal BH (Kehle
& Unger 2022)

* Much harder since we now need to evolve three sets of

equations:

|. Wave equation (linear)

2. Maxwell’s equation (non-linear)
3. Einstein’s equations (nhon-linear)

* Set J=0 and work in spherical symmetry

* Goal: investigate nonlinear horizon instabilities of
charged scalar fields on extremal Reissner-Nordstrom
spacetime in spherical symmetry
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OUTLINE

|. Numerical Scheme

2. Review of linear problem (fixed background metric)

o Stronger Aretakis instability

o Scattering results highlight importance of weakly damped mode at the onset of superradiance
3. Non-Linear Problem

o Mode decomposition still triggers instability

o Emergent instability for fine-tuned data, universality

o Large curvatures visible from Scri?



SCALAR ELECTRODYNAMICS

* Can couple the scalar field to electromagnetism by making it complex:
¢ — {p, "} evolves via wave equation: D, D"y =0

F,., = 0,A, — 0,A, evolves via Maxwell’s equations: V, F"" = 4xJ"

* Spherical symmetry and electromagnetic gauge symmetry reduce
degrees of freedom to 2: {|¢|, " }
* First step: Solve Wave+Maxwell system on fixed Reissner-Nordstrom

background

[

— Coupled via constant e




NUMERICAL SCHEME:
DOUBLE-NULL COORDINATES

|. Construct initial data: ingoing pulse
of charged matter

2. Evolve data along null hypersurfaces
using finite difference scheme

o Static mesh refinement clusters
resolution near event horizon

3. Examine fields along the event

horizon
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RESULTS ON FIXED BACKGROUND

Quantities of Interest
Scalar amplitude |¢|, energy density pr ~ (0-|¢|)?, charge density pg ~ 9-(r°E")

* Behavior of fields treated analytically for fixed metric + fixed electromagnetic
potential in Zimmerman (2017)
* Incorporate Maxwell’s equations in Gelles & Pretorius (2025)



RESULTS — SCALAR AMPLITUDE

Scalar Amplitude on Horizon: Q/M = 0.999
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RESULTS — SCALAR AMPLITUDE
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LONG-LIVED OSCILLATIONS

Q/M=1.0

* AsQ — M a set of “Nearly-Zero-Damped”
(NZD) modes emerges:
WNZD = @ + s + O(Hz)
T+ 2

* Since Im(wnzp) — 0 at extremality, this
mode is very long-lived
o Shows up as oscillations in the

power-law tail = instability?

o Importance of NZD discussed in
(Hod 2010; CGZ 2016; Zimmerman
2017)
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RESULTS — ENERGY DENSITY

Energy Density on Future Horizon

Energy density: pe ~ (9:|8])° 10° )
For sufficiently charged matter, 02 Y
energy density grows as ~V on the
extremal horizon 10-4
Stands in contrast to the uncharged
. . oo Ly -6 —— Qo/M =0.999
Aretakis instability: q 1071 — QuM=10
PE ™~ (a’r‘qb)z ~ const 10-8 -
Consistent with linearized, analytic L0-10 2
: 1 V-
results (Zimmerman 2017; CGZ 201 6)
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RESULTS — CHARGE DENSITY

Charge density: pg ~ Or(r°E")

Charge Density on Future Horizon

For sufficiently charged matter, charge 107

VO

density remains constant on the extremal
horizon
Represents an instability induced by
dynamics of Maxwell’s equations
o A new (asymptotic) constant emerges in
the presence of electromagnetic charge
Charge accumulates on the extremal event
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PHYSICAL EXPLANATION

* Enhancement of charged Aretakis instability

comes from the presence of a nearly-zero- w < WNZD W > WNZD
damped (NZD) mode (Hod 2010; Zimmerman .
2017; Richartz, Herdeiro, & Berti 2017): Extract charge Inject charge
eQ ik from black hole into black hole
WNZD = o + 5 + O(H}z)
+

* At extremality, NZD mode coincides
with onset of charged superradiance
o Shuts off energy loss and
prevents p, from decaying
¢ Can confirm by constructing
monochromatic initial data at this
frequency




MONOCHROMATIC INITIAL DATA

« Construct monochromatic initial data with 7¢ = ™"

Monochromatic Initial Data
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MONOCHROMATIC INITIAL DATA

 Ratio of w/wnzp directly controls the charge-to-mass ratio of the monochromatic initial data

Initial Conditions for Monochromatic Data
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MONOCHROMATIC RESULTS

Charge Density on Extremal Horizon

— W/wnzp=0.9
* Initial data with NZD frequency triggers 100] — wenmo1a
the strongest instability
* Due to confluence of three effects:
| .Weakly damped mode 107
2. Onset of superradiance o
3. Charge-to-mass ratio of one = Lo~ |
’? MUYV ( ' (
Key Question! Does this mode 107
explanation persist in the presence of
Einstein’s equations!? Los
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INCORPORATING EINSTEIN’S EQUATIONS

: . : 1
* Einstein’s equations: R, — 5 R = 871G

o In spherical symmetry, two independent metric components:
ds® = —2gyydUdV + r?dQ?

* Four quantities in total: |¢| Q/M r quv
L E— g | Y J
Woave Einstein Einstein
+
Maxwell

Numerical Scheme:

* Same as before but with dynamical refinement
around apparent horizon: AU x ¢"V|+




NONLINEAR NZD’S

With Einstein’s equations, response to monochromatic initial data splits into two regimes:

-~

Regime |: Scattering (Low Amplitude)

™~

Regime 2:Accretion (High Amplitude)

* Get back growth from linear  Unstable behavior can be drawn

Re(rg)

problem, but it’s transient

Initial Data: Scattering Regime

out by accreting to extremality
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RESULTS: ACCRETION REGIME

* Since NZD has a charge-to-mass ratio of one, it pushes the black hole towards extremality

Matter Fields on Apparent Horizon: Accretion Regime
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RESULTS: ACCRETION REGIME

g 0 V
* Curvature scalars might grow in response to matter: R = —87T «x —87d,.|¢|0v || + SQLTqu;Z y
we|P|“T
Behavior of Ricci Scalar on Apparent Horizon: Accretion Regime
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* Ricci scalar decays, but its gradients grow = results agree with naive expectations from stress
tensor in linear theory



RESULTS: ACCRETION REGIME

Implications
* When backreaction is large, NZD switches from driving superradiant
scattering to driving accretion towards extremality
o Still creates divergent transverse derivatives = shows up in curvature
scalars
o Suggests nonlinear instability on horizon

Key Question: Can the effects of this mode in the nonlinear regime be isolated
in compactly-supported data’
* Turn to “dynamical extremal black holes” (MRT 201 3)




DYNAMICAL EXTREMAL BLACK HOLES

* Begin with super-extremal spacetime (no trapped surfaces) and tune background charge Q,

(MRT; see Kehle & Unger 2024 for similar fine-tuning arguments)

V4

Increasing Q,
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UNIVERSALITY

As Virap — o, resultant black hole approaches black hole with r = Q = M

o Universal critical exponent is /2 (consistent with MRT 2013; Gralla & Zimmerman 2018; East 2025):
Vtrap~|Q* — Qo™ Y?and r/M — 1 ~ |Q, — Qp|*/?

Black Hole Formation Time
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NON-LINEAR ARETAKIS INSTABILITY

* Dynamical extremal black hole

_ 0.35 Energy Density Charge Density
shows full-blown Aretakis T 00, - 30008
. oo — Qu-0. =-5.0e-05 0.010 -
instability 0.301 — u— 0. =-5.00.06
o Like MRT results but with Qo=Q. =-3.9e-08
0254 — Qo— Q. =-9.3e-09 0.008 -
actual energy blowup
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stresses do diverge...



CURVATURE SCALARS

Horizon Instability Formation
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WHAT ABOUT 0Q, > 0.?

* Can find critical behavior when @, > Q. (no trapped surfaces) side by tracking gradients
along location of “would-be” horizon: U=U.

7+ Energy Dissipates

Deceasing Q,

)




INSTABILITY DISSIPATION: Q, > O,

* Radial derivatives of Ricci scalar grow (and oscillate at NZD frequency) and dissipate

Instability Dissipation Along U =U.
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UNIVERSALITY FOR Q4 > Q.

* Define dissipation timescale as time for
which radial derivatives of R stop growing

o Scales as Vgigs ~ (Qo — Q.) /2

Instability Dissipation Time
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* Simulation
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SUB-CRITICAL VS. SUPER-CRITICAL

* To understand whether large curvatures are visible from Scri, we need to
understand how localized the instability is around the horizon

Growth visible from
null infinity



INSTABILITY LOCALIZATION

_ e . . : . ... OU
* Aretakis instability persists in region with no redshift: — 1

o Only exists within a small patch of the extremal horizon

. . ) ou
* Further in exterior, r redshifts: —= 0

o Causes energy decay

au

e Further in interior, r blueshifts: > — 0

o Causes energy growth
o A different instability of extremal BH interiors (Marolf 2010;

Garfinkle 201 1) Vo\/

o Sub-extremal analog at inner horizon (Penrose 1968; Dafermos \A?
2005; Marolf & Ori 201 1)

o Coincides with the Aretakis instability at late times




ENERGY GROWTH IN INTERIOR

o

Blueshift

Energy Density Across Horizon
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** Even with no
trapped surfaces,
similar divergences
appear in the “would-
be” interior!



IMPLICATIONS: Q, > 0,

Curvature scalars growing
in “would-be” interior...
Could in principle be
visible from null infinity!

Black hole formation at
late times could censor
large curvature, but it
would have to form
arbitrarily close to U in

the limit as Qo — 0,



CONCLUSION

* Extremal black hole horizons develop divergent energy density in presence of
charged perturbations
o Behavior present at linear level (fixed metric) and non-linear level
(dynamical ERN)
o Behavior due NZD mode. Remains a resonance via accretion
* Universality is observed in fine-tuning of non-linear perturbations
o By tuning to critical parameter from above, can potentially generate large
curvature visible from Scri

Future Steps

e Continue to explore critical phenomena
o Universality of horizon “hairs™?
o Visibility from null infinity?
o Extensions to collapse problem

* Breaking spherical symmetry
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