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Things that we know in spherical symmetry...

4/34



A numerical experiment...

• Consider massless scalar field

□ϕ ≡ g ab∇a∇b ϕ = 0

coupled to Einstein’s equations

• Initial data

ϕ = η exp(−R2/R2
0 )

• evolve for different amplitudes η...

• Have critical parameter η∗ so that

η < η∗ α→ 1 → flat space

η > η∗ α→ 0 → black hole
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Scaling

• For supercritical data, mass M of
forming black holes satisfies power-law
scaling

M ≃ (η − η∗)
γ

with critical exponent γ ≃ 0.37

• For subcritical data, maximum attained
curvature satisfies similar scaling law
with same exponent
[Garfinkle & Duncan, 1998]

[Choptuik, 1998]
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Looks familiar?
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Critical Phenomena...

Magnetic field M in MnF2 versus temperature T
[Ashcroft & Mermin, Solid State Physics, 1976]

Power-law scaling in vicinity of critical parameters with universal critical exponent
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Critical Solution

Radiation fluid (P = ρ/3) fine-tuned to critical parameter [Evans & Coleman(1994)]

• plot ρ versus R at different times...
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[TWB & Montero, 2016]
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Critical Solution

Radiation fluid (P = ρ/3) fine-tuned to critical parameter [Evans & Coleman(1994)]

• plot ρ versus R at different times...

• plot Ω ≡ 4πρR2 versus R ...

• plot Ω versus

ξ ≡ R

τ∗ − τ

with accumulation time τ∗ = 2.624
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Critical Solution for scalar field

• Look at scalar field ϕ at center (r = 0)

• plot as function of proper time τ

• oscillations accumulate at accumulation
time

τ∗ ≃ 1.5698
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• Look at scalar field ϕ at center (r = 0)

• plot as function of proper time τ

• oscillations accumulate at accumulation
time

τ∗ ≃ 1.5698

• plot as function of self-similar time

T ≡ − ln(τ∗ − τ)

Critical solution performs oscillations with
period ∆ in T : discrete self-similarity
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Continuous versus discrete self-similarity
Self-similarity can be...
• continuous (CSS) (e.g. fluid)
• discrete (DSS) (e.g. scalar fields):
expect periodic “wiggles” super-imposed on scaling laws
[Gundlach, 1997; Hod & Piran, 1997]
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Critical Phenomena in Gravitational Collapse

• Consider matter model (e.g. scalar field, fluid, vacuum...)

• Consider family of initial data parametrized by η and evolve...
• Critical parameter η∗ separates:

• supercritical data: form black hole
• subcritical data: don’t

• in vicinity of η∗ observe critical phenomena:
• dimensional quantities display scaling, e.g.

M ≃ (η − η∗)
γ

with critical exponent γ: depends on matter model, but not on parametrization of initial data
• spacetime approaches universal self-similar solution

13/34



Phase-space picture

• (infinite-dimensional) phase-space of
initial data

• critical solution acts as intermediate
attractor of co-dimension one

• possesses single unstable mode,
Lyapunov exponent λ

• critical exponent given by γ = 1/λ
[Koike et.al., 1995; Maison, 1996]

4

phase space can then be classified as ending up in one
or the other type of end state. The entire phase space
therefore splits into two halves, separated by a “critical
surface”.

A phase space trajectory that starts on a critical sur-
face by definition never leaves it. A critical surface is
therefore a dynamical system in its own right, with one
dimension fewer than the full system. If it has an attract-
ing fixed point, such a point is called a critical point. It
is an attractor of codimension one in the full system, and
the critical surface is its attracting manifold. This is also
visible in its linear perturbations: in a finite-dimensional
dynamical system, it would have exactly one unstable
linear perturbation mode. Making a mode ansatz for the
infinite-dimensional dynamical system that is general rel-
ativity, a single unstable mode is also found.

As illustrated in Figs. 1 and 2, any trajectory begin-
ning near the critical surface, but not necessarily near the
critical point, moves almost parallel to the critical sur-
face towards the critical point. Near the critical point the
evolution slows down, and eventually moves away from
the critical point in the direction of the growing mode.
This is the origin of universality. All details of the initial
data have been forgotten, except for the distance from the
black hole threshold. The closer the initial phase point
is to the critical surface, the more the solution curve ap-
proaches the critical point, and the longer it will remain
close to it.

We should stress that this phase picture is extremely
simplified. Some of the problems associated with this
simplification are discussed in Sect. II E.

B. Self-similarity

Fixed points of dynamical systems often have addi-
tional symmetries. In the case of type II critical phenom-
ena, the critical point is a spacetime that is self-similar,
or scale-invariant. The self-similarity can be discrete or
continuous.

We define a discretely self-similar (DSS) space-
time (M, g, !) to be a Lorentzian manifold (M, g) with
an invertible smooth map ! : M → M that obeys [14]

!→gab = e↑2!gab, (2)

where !→ is the push-forward under !, and ” > 0 a con-
stant, the log-scale period, or scale-echoing period. We
define a DSS-adapted vector field on a DSS spacetime
to be a smooth vector field ω, such that, along any of its
integral curves c(ε),

! (c(ε)) = c(ε + ”). (3)

Given a DSS-adapted vector field and its integral curves,
we can define DSS-adapted coordinates xµ := (ε, xi)
such that

ω :=
ϑ

ϑε
. (4)

black
hole

threshold

critical
point

flat space fixed point

black hole fixed point

1-parameter

family of

initial data

p<p*

p=p*

p>p*

FIG. 1. The phase space picture for the black hole threshold
in the presence of a critical point. Every point corresponds to
an initial data set, that is, a 3-metric, extrinsic curvature, and
matter fields. (In type II critical collapse these are only up
to scale). The arrow lines are solution curves, corresponding
to spacetimes, but the critical solution, which is stationary
(type I) or self-similar (type II) is represented by a point.
The line without an arrow is not a time evolution, but a 1-
parameter family of initial data that crosses the black hole
threshold at p = p→. The 2-dimensional plane represents an
(→ ↑ 1)-dimensional hypersurface, but the third dimension
represents really only one dimension.

In these coordinates, the metric is given by

gµω = e↑2ε g̃µω , (5)

where the rescaled metric coe#cients g̃µω(ε, x
i) are peri-

odic in ε with period ”. It follows from (5) that

RabcdR
abcd = e4ε K̃, (6)

where again K̃ is periodic in ε , and so, unless the space-
time is flat, ε = ↑ is a curvature singularity. The dis-
tance (proper distance, proper time, or null a#ne param-
eter) to the singularity, measured along a line of constant
xi, is

s = e↑ε S̃ (7)

where S̃ is periodic [with S > 0 and S̃,ε < S̃, so that
s,ε < 0]. Similarly, the distance between any two space-
time points shrinks by a factor e↑! under an application
of !. In this naive sense, the curvature singularity is a
point. If the spacetime exists everywhere to the past of
the future lightcone of this point and this lightcone ex-
tends to infinity, we call the singularity globally naked,
in the sense that it is not hidden inside an event horizon.
Its future lightcone is a Cauchy horizon, beyond which
the spacetime does not have a unique continuation.

[Gundlach & Mart́ın-Garćıa, 2007]
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attractor of co-dimension one
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[Koike et.al., 1995; Maison, 1996]
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spherical symmetry?
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Things that we thought we knew in the absence of spherical

symmetry...
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But...

Despite many attempts...

[Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne, 2008;
Sorkin, 2011; Hilditch et.al., 2013]

... it has been difficult to reproduce this:

• many simulations crash

• others produce results in apparent conflict with A&E

(more on this later...)
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Critical collapse without spherical symmetry: scalar fields

• All nonspherical perturbations of the
Choptuik spacetime decay (linear
perturbations)
[Mart́ın-Garćıa & Gundlach, 1999]
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Critical collapse without spherical symmetry: scalar fields

• All nonspherical perturbations of the
Choptuik spacetime decay (linear
perturbations)
[Mart́ın-Garćıa & Gundlach, 1999]

• But nonlinear aspherical perturbations
grow and lead to bifurcation
[Choptuik et.al., 2003; TWB, 2018;
Marouda et.al., 2024]

5

FIG. 1: Several frames of Φ(ρ, z, t) from the evolution of near-
critical, anti-symmetric initial data (10). The figures span the
first several half-echoes of the local self-similar solutions, and
the particular times shown correspond to when the scalar field
reaches a local minima/maxima. The height of each surface
represents the magnitude of Φ, and the coordinate domain of
each figure is [0..2.5, −2.5..2.5] in [ρ, z] (the axis ρ = 0 is the
nearest edge of each plot, and positive to negative z runs from
left to right).

FIG. 2: Several frames of Φ(r̄, θ, t) from the evolution of near-
critical, ε2 = 3/4 prolate initial data (9). Here we have trans-

formed to coordinates r̄ = ln(
√

ρ2 + z2 + e0) − ln e0 (with
e0 = 2x10−4) and tan θ = ρ/z, to give a better view of the
initial self-similar nature of the solution. [r̄, θ] ranges from
[0.. ≈ 10.8, 0..π], with the axis ρ = 0 being the nearest edge
in each figure. The height of each surface represents the mag-
nitude of Φ. The times shown correspond to the times when
Φ reaches a local minima/maxima, demonstrating the bifur-
cation that occurs after about 2 self-similar echoes of the field.

[Choptuik et.al., 2003]
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perturbations)
[Mart́ın-Garćıa & Gundlach, 1999]

• But nonlinear aspherical perturbations
grow and lead to bifurcation
[Choptuik et.al., 2003; TWB, 2018;
Marouda et.al., 2024]

• Inclusion of angular momentum leads
to different critical solution
[Choptuik et.al., 2004; Marouda 2025]
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represents the magnitude of Φ, and the coordinate domain of
each figure is [0..2.5, −2.5..2.5] in [ρ, z] (the axis ρ = 0 is the
nearest edge of each plot, and positive to negative z runs from
left to right).

FIG. 2: Several frames of Φ(r̄, θ, t) from the evolution of near-
critical, ε2 = 3/4 prolate initial data (9). Here we have trans-

formed to coordinates r̄ = ln(
√

ρ2 + z2 + e0) − ln e0 (with
e0 = 2x10−4) and tan θ = ρ/z, to give a better view of the
initial self-similar nature of the solution. [r̄, θ] ranges from
[0.. ≈ 10.8, 0..π], with the axis ρ = 0 being the nearest edge
in each figure. The height of each surface represents the mag-
nitude of Φ. The times shown correspond to the times when
Φ reaches a local minima/maxima, demonstrating the bifur-
cation that occurs after about 2 self-similar echoes of the field.

[Choptuik et.al., 2003]
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Critical collapse without spherical symmetry: ideal fluids

Fluid with equation of state

P = κρ

• (non-rotating) aspherical deformations
(ℓ = 2) unstable for κ ≳ 0.49
[Gundlach, 2002; TWB & Montero,
2015; Celestino & TWB, 2018]
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FIG. 5: The measure of deformation �⌦ = ⌦max,ax �⌦max,eq

as a function of (central) proper time ⌧ for the same aspherical
evolution as shown in Fig. 4, i.e. for a radiation fluid ( = 1/3)
with ✏ = 1 and close to criticality. The di↵erent lines repre-
sent results obtained with di↵erent angular resolution. The
higher-resolution results can hardly be distinguished at all,
indicating that the numerical error resulting from our rather
crude angular resolution is small, and highlighting the advan-
tages of spherical polar coordinates for these simulations.
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FIG. 6: Same as Fig. 5, but with �⌦ shown as a function
of T = � log(⌧⇤ � ⌧) rather than ⌧ , where ⌧⇤ = 6.4958. The
solid (blue) line is the numerical result (for N✓ = 12), while
the dashed (red) line is a fit based on (6).

and carry an error of at least several percent, larger than
those for the critical exponents �M and �⇢.

Our numerical values for ! agree very well with the
perturbative values of [15]. Our values for � are well
within about 10% of those reported by [15], and suggest
a slightly slower damping than the perturbative values.
Our values for � and ! depend at most very weakly on
✏.
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FIG. 7: Fits as in Fig. 6 but for di↵erent values of , and
all for ✏ = 0.5. The simulations for  = 0.5 and 0.6 were
performed with up to 20 instead of 10 regrids in order to
allow for better fine-tuning to the critical solution, and hence
to follow the critical solution for longer (see Sect. III).

B. Other ultra-relativistic fluids

We next analyze the dependence of our results on the
sti↵ness of the equation of state, i.e. on the constant 
in Eq. (2). Specifically, we consider  = 0.2, 0.4, 0.5
and 0.6 in addition to  = 1/3 for the radiation fluid
of Sect. IV A. For each value of  we choose di↵erent
values of the deformation ✏, and then bracket the critical
parameter ⌘⇤. We again perform fits to (1) and (5) to
find the critical exponents �M and �⇢, and to (6) to find
� and !. Numerical values for our fits are provided in
Tables II through V.

As for the radiation fluid, we find that the critical expo-
nents �M and �⇢ agree well with the perturbative values
of [2], and show very little dependence on ✏, certainly
within what we estimate to be our numerical and fitting
errors. Also as for the radiation fluid, it is again signif-
icantly more challenging to determine the coe�cients �
and ! for the deviation from the critical solution, but our
values nevertheless agree quite well with the perturbative
values provided by [15].

 = 0.2

✏ ⌘⇤ ⌧⇤ �M �⇢ � !

perturbative 0.2614 -1.296 5.1884

0 0.10772 9.85 0.256 0.263 – –

0.01 0.10772 9.85 0.261 0.263 -1.2 5.2

0.1 0.10773 9.86 0.257 0.263 -1.2 5.2

0.5 0.10806 9.89 0.262 0.265 -1.2 5.3

TABLE II: Same as Table I, but for an ultrarelativistic fluid
with  = 0.2.

[Celestino & TWB, 2018]
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Critical collapse without spherical symmetry: ideal fluids

Fluid with equation of state

P = κρ

• (non-rotating) aspherical deformations
(ℓ = 2) unstable for κ ≳ 0.49
[Gundlach, 2002; TWB & Montero,
2015; Celestino & TWB, 2018]

• (rotational) perturbations (ℓ = 1)
unstable for κ < 1/9
[Gundlach, 2002; TWB & Gundlach,
2016; Gundlach & TWB, 2016, 2017]
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performed with up to 20 instead of 10 regrids in order to
allow for better fine-tuning to the critical solution, and hence
to follow the critical solution for longer (see Sect. III).

B. Other ultra-relativistic fluids

We next analyze the dependence of our results on the
sti↵ness of the equation of state, i.e. on the constant 
in Eq. (2). Specifically, we consider  = 0.2, 0.4, 0.5
and 0.6 in addition to  = 1/3 for the radiation fluid
of Sect. IV A. For each value of  we choose di↵erent
values of the deformation ✏, and then bracket the critical
parameter ⌘⇤. We again perform fits to (1) and (5) to
find the critical exponents �M and �⇢, and to (6) to find
� and !. Numerical values for our fits are provided in
Tables II through V.

As for the radiation fluid, we find that the critical expo-
nents �M and �⇢ agree well with the perturbative values
of [2], and show very little dependence on ✏, certainly
within what we estimate to be our numerical and fitting
errors. Also as for the radiation fluid, it is again signif-
icantly more challenging to determine the coe�cients �
and ! for the deviation from the critical solution, but our
values nevertheless agree quite well with the perturbative
values provided by [15].

 = 0.2

✏ ⌘⇤ ⌧⇤ �M �⇢ � !

perturbative 0.2614 -1.296 5.1884

0 0.10772 9.85 0.256 0.263 – –

0.01 0.10772 9.85 0.261 0.263 -1.2 5.2

0.1 0.10773 9.86 0.257 0.263 -1.2 5.2

0.5 0.10806 9.89 0.262 0.265 -1.2 5.3

TABLE II: Same as Table I, but for an ultrarelativistic fluid
with  = 0.2.

[Celestino & TWB, 2018]
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Critical collapse without spherical symmetry: electromagnetic

waves

• Dipolar electromagnetic waves feature
only approximately DSS critical solution
[TWB et.al., 2019]

• Competition between different degrees
of freedom?
[Gundlach et.al.., 2019]

3

FIG. 1. Plots of A⇠ in the equatorial plane (✓ = ⇡/2) as a function of the affine parameter � of null geodesics that originate from the center at
time T . The left panel shows results for centered data (r0 = 0 with ⌧⇤ = 5.66 and T0 = 0), while the right panel shows results for off-centered
data (r0 = 3 with ⌧⇤ = 10.58 and T0 = 0.42).

�2 �1 0 1 2
T

10�2

10�1

100

101

102

e2
T

0
� c

r0 = 0

r0 = 3

15 e2T

FIG. 2. The density ⇢, evaluated at the center, as a function of
T = � ln(⌧⇤ � ⌧) + T0 for near-critical centered and off-centered
evolutions. In both cases the amplitude of the central density’s oscil-
lation increases approximately with (⌧⇤ � ⌧)�2 = e2(T�T0), which
is consistent with self-similar contraction. Both evolutions also dis-
play similar features, again suggesting an approximate universality.
As before, however, the oscillations are not strictly periodic, indicat-
ing that the critical solution is not exactly DSS.

to an echoing period of � ' 0.55 for both the centered and
off-centered data.

The absence of a strict periodicity is also visible in Fig. 2,
where we show the density (4) evaluated at the center as a
function of T for near-critical centered and off-centered evo-
lutions. The amplitude of the central density’s oscillations in-
crease approximately as expected for self-similar contraction,
and both evolutions display similar features, hinting at some
notion of universality in the critical solution – but again the
oscillations are not strictly periodic, suggesting that the criti-
cal solution is not exactly DSS.

The power-law scalings (1) and (2) are a result of the
growth of linear perturbations of the critical solution. Dif-
ferent fine-tuning, i.e. different values of |⌘⇤ � ⌘|, lead to dif-
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FIG. 3. The maximum central density for subcritical centered (r0 =
0, blue, above the black dashed line) and off-centered (r0 = 3,
red, below the dashed line) evolutions, using Nr = 64N radial and
N✓ = 6N angular grid points. The dashed line corresponds to scal-
ing with � = 0.145. The fitted values of ⌘(N)

⇤ depend on the resolu-
tion N . Convergence of these values for r0 = 0 is demonstrated in
the inset, where we have adopted a Richardson extrapolated value of
⌘1
⇤ = 0.912895, and where the dotted line is proportional to N�4,

indicating the expected fourth-order convergence.

ferent size perturbations, which therefore become non-linear
at different times. The length scale of the self-similar solution
at this moment endows the subsequent evolution with a length
scale, and hence determines dimensional quantities like the
black-hole mass and the maximum central density. For CSS
critical solutions, the power laws (1) and (2) are exact, while
the periodicity of a DSS critical solution results in a periodic
“wiggle” that is superimposed on the scaling laws (see [8, 9]).
Given that we do not find an exactly DSS critical solution,
we also do not expect deviations from power-law scalings to
be exactly periodic. This can be seen in Fig. 3, where we
plot the maximum encountered central density as a function
of ⌘⇤ = ⌘, where we have fit the values of ⌘⇤ to obtain be-

[TWB et.al., 2019]
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Critical collapse without spherical symmetry: electromagnetic

waves

• Dipolar electromagnetic waves feature
only approximately DSS critical solution
[TWB et.al., 2019]

• Competition between different degrees
of freedom?
[Gundlach et.al.., 2019]

• Do quadrupolar electromagnetic waves
have distinct critical solution?
[Perez Mendoza & TWB, 2021; Gray &
Choptuik, 2023]
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FIG. 6. Same as Figs. 3 and 5, but for the density ⇢.

sity peaks away from the center, as for the quadrupole
data. Evidently the numerical resolution of those peaks
becomes increasingly poor in our simulations.

C. Scaling

In Fig. 7 we graph the (global) maximum densities
⇢max encountered in simulations for given amplitudes A

of the initial data (see Eqs. 17 and 20), versus A? � A,
where A? is the approximate critical value. In Fig. 2

we have adopted Adip
? ' 0.91295765109 and Aquad

? '
3.533437407467. We also included, as the dotted lines,
the expected power-law scaling

⇢max ' (A? � A)�2� (28)

(see Eq. 2), with fitted values of �dip = 0.145 (see BGH)
and �quad = 0.11.

[Perez Mendoza & TWB, 2021]
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Things that we don’t know in the absence of spherical symmetry

In absence of spherical symmetry, threshold of black hole formation significantly more
complicated

• threshold solution not exactly self-similar?

• threshold solution not unique?

• in some cases evidence for bifurcation?

• single or multiple accumulation points?
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Things that we don’t know in the absence of spherical symmetry

In absence of spherical symmetry, threshold of black hole formation significantly more
complicated

• threshold solution not exactly self-similar?

• threshold solution not unique?

• in some cases evidence for bifurcation?

• single or multiple accumulation points?

Revisit critical collapse of gravitational waves

20/34



GW initial data: Teukolsky waves

Wave-like solution to linearized Einstein equations [Teukolsky, 1982; Rinne, 2008],
“dressed up” to satisfy constraints

• E.g.: choose moment of time symmetry: momentum constraint satisfied identically

• Construct spatial metric from seed functions F = F (r ± t) and its derivatives, e.g.

C =
1

4

(
F (4)

r
+

2F (3)

r 2
+

9F (2)

r 3
+

21F (1)

r 4
+

21F

r 5

)

• Adopt spatial metric as conformally related metric

• Solve Hamiltonian constraint to construct (non-linear) initial data:
invert non-flat Laplace operator

Adopted by Abrahams & Evans (1993) (see also Rostworowski, 2025)
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GW initial data: Brill waves

Construct time-symmetric vacuum initial data [Brill, 1959]

• choose axisymmetric seed function, e.g.

q(r , θ) = Ar 2 sin2 θe−r2 = Aρ2e−(ρ2+z2)

• deform conformally related spatial metric (in cylindrical coordinates)

dl2 = ψ4
(
eq(dρ2 + dz2) + ρ2dϕ2

)

• solve linear flat elliptic equation for conformal factor

∇2ψ = −ψ
8

(
∂2q

∂ρ2
+
∂2q

∂z2

)

Adopted by almost everybody since Abrahams & Evans (1993)
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Evolution

• Many previous attempts used 1+log
slicing,

(∂t − β i∂i)α = −α2f (α)K

with
f (α) = 2/α

[Bona et.al., 1995]

• Very successful in many cases, but can
lead to coordinate shocks...
[Alcubierre, 1997; 2003]

[TWB, Gundlach & Hilditch, 2023]
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Evolution
Consider alternatives...

• sphGR: shock-avoiding slicing condition
in BSSN: use

f (α) = 1 + 1/α2

[Alcubierre, 1997; TWB & Hilditch,
2022]

• prague: approximate maximal slicing
in BSSN
[Ledvinka & Khirnov, 2018]

• bamps: gauge-source functions in
generalized harmonic formalism
[Hilditch et.al., 2017]

[TWB, Gundlach & Hilditch, 2023]

24/34



Code comparison

• Choose Brill initial data with both
A > 0 and A < 0

• plot maximum attained curvature
invariant I for subcritical data

• all three codes agree very well

• But: no evidence for universal power
law

I ≃ |A− A∗|−4γ

plus periodic wiggles with universal γ

[TWB et.al., 2023]
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Universality...

Unlike in spherically symmetric case...

• γ depends on family

• threshold solution family-dependent

• No clear evidence for threshold
solutions being DSS

But: do gravitational-wave families with
DSS threshold solutions exist??

[Ledvinka & Khirnov, 2021]
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Evolution of Teukolsky waves

• Consider superposition of quadrupolar
(ℓ = 2) Teukolsky waves

• Use sphGR code (BSSN in spherical
polar coordinates)

• evolve with shock-avoiding slicing
condition

• analyze Weyl scalar I
[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

• Weyl scalar I for near-critical ℓ = 2
solution in equatorial plane

• plot as function of R and τ ...

[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

• Weyl scalar I for near-critical ℓ = 2
solution in equatorial plane

• plot as function of R and τ ...

• plot as function of ξ and T ...

[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

• Weyl scalar I for near-critical ℓ = 2
solution in equatorial plane

• plot as function of R and τ ...

• plot as function of ξ and T ...

• plot as function of null coordinates λ
and Tnull

Approximate DSS with period ∆ ≃ 0.52,
consistent with Abrahams & Evans (1993)

[TWB, Gundlach & Hilditch, 2023]
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Hexadecapolar wave

• Repeat analysis for ℓ = 4

• find approximate DSS with period
∆ ≃ 0.1

Quadrupolar and hexadecapolar threshold
solutions are distinct

[TWB, Gundlach & Hilditch, 2023]
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GW initial data: Nakamura waves

Analytical wave-like solution to linearized Einstein equations [Nakamura, 1984], “dressed
up” to satisfy constraints

• E.g.: choose moment of time when γij = ηij
• Construct analytical solution to momentum constraint from seed functions
F = F (r ± t), and its derivatives

• Solve Hamiltonian constraint to construct (non-linear) initial data:
invert flat Laplace operator
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Quadrupolar Teukolsky and Nakamura waves

• For both families find approximate
scaling with

γ ≃ 0.25

• threshold solutions appear to be
approximately, but not exactly DSS
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Does every family have DSS threshold solution?

• Consider I for Brill waves with A > 0
(focus of most previous studies)

• No evidence for self-similarity with
accumulation point at center

[TWB et.al., 2023]
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Summary

• Critical phenomena in gravitational collapse

• Universality, self-similarity, and scaling

• Well understood in spherical symmetry...

• ... but less so in absence of spherical symmetry
• Recent progress for vacuum gravitational waves:

• replace 1+log slicing with other choice
• good agreement between independent codes
• no evidence for universal critical solution
• for some families there exist at least approximate DSS threshold solutions...
• ... but possibly not for others
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Why has it been so difficult to reproduce Abrahams & Evans?

• Numerical issues:
• popular slicing condition (1+log) fails in these particular applications
• use different slicing condition

• Absence of uniqueness:
• different families of initial data lead to different threshold solutions (at least at current level

of fine-tuning)
• does not present conflict with Abrahams & Evans (1993)
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