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ings that we know in spherical symmetry...

VOLUME 70, NUMBER | PHYSICAL REVIEW LETTERS 4 JANUARY 1993

Universality and Scaling in Gravitational Collapse of a Massless Scalar Field

Matthew W. Choptuik
Center for Relativity, University of Tezas at Austin, Austin, Tezas 78712-1081
(Received 22 September 1992)

I summarize results from a numerical study of spherically sy i 11; ofa less scalar
field. I conndu families of solutions, S([p], with the property that a crltlcn.l puunmr value, p*,
black holes from those which do not. I p in t

of conjectures that (1) the strong-field evolution in the p — p* llmit is umverul and genenm
structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form
satisfy a power law Mpy o |p — p*|7, where 7 2 0.37 is a universal exponent.
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A numerical

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

experiment...

n=0.1

03<n <04
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A numerical

Consider massless scalar field
O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

evolve for different amplitudes 7...
Have critical parameter 1, so that

N < N a—1 — flat space

N> 1Ny a—0 — black hole

experiment...

0.8 7 =0.31

n =0.39

0.30 < 7, < 0.31

5/34



A numerical

Consider massless scalar field
O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

evolve for different amplitudes 7...
Have critical parameter 1, so that

N < N a—1 — flat space

N> 1Ny a—0 — black hole

experiment...

0.303 < 7, < 0.304
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A numerical experiment...

Consider massless scalar field

1.2
06 = g"V,Vsé =0
coupled to Einstein's equations 061
Initial data ° o4l
2 2 0.21 7 \
¢ =nexp(—R*/R;) | J -
00 7 =0.3039
evolve for different amplitudes 7... -0.25 5 T ; 2

Have critical parameter 1, so that

1 < N« a—1 — flat space

N> N a—0 — black hole

0.3033 < 7, < 0.3034
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A numerical experiment...

Consider massless scalar field

1.2
06 = g°V,V¢ =0 ;"
08l  m=030331 ‘
coupled to Einstein's equations o] “‘
Initial data T 04 /
b = nexp(—R?/R?) /UM,
001 030330
evolve for different amplitudes 7... —0:25 5 T p <
Have critical parameter 1, so that t
n<mn. a—1  — flatspace 0.30337 < 7, < 0.30338

N> N a—0 — black hole
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A numerical experiment...

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

«

1.2

1.01
0.81 1 =0.303371
0.61 |
0.4 ‘
0.2

0.04
1 =0.303379

—0.2
0 2 4 6 8

0.303375 < n, < 0.303376

5/34



A numerical

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experi ment...
1 =0.303371
0.8
0.6
©0.41
0.2 \ (
] R
0.0 7 =0.303379
5.8 6.0 6.2 6.4 6.6

t

0.303375 < n, < 0.303376
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A numerical

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

experi ment...

1 =0.3033751
0.81
0.6
0.4
0.2

0.07 5 =0.3033759

5.8 6.0 6.2 6.4 6.6

0.3033759 < 7, < 0.3033760




A numerical

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

experiment...

n =0.30337591
0.81

0.6
0.4 ‘

I
0.2 /J

0.07 5 =0.30337599
5.8 6.0 6.2 6.4 6.6

0.30337599 < 7, < 0.30337600

5/34



A numerical

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

experiment...

0.81
0.61
€ 0.41
0.21

0.01

n =0.303375991

1 =0.303375999

5.8 6.0

6.2

6.4

6.6

0.303375994 < 7, < 0.303375995




A numerical experiment...

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

| 1 =0.3033759941

0015 —0.3033759049

6.45

6.50

t

6.60

0.3033759947 < n, < 0.3033759948
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A numerical experiment...

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

0.04

| 1 =0.30337599471

7 =0.30337599479 I

6.45 6.50 6.55 6.60
t

0.30337599472 < n, < 0.30337599473
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A numerical experiment...

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

N <1
> M

a—1

a—0

— flat space

— black hole

0.04

| 1 =0.303375994721

1 =0.303375994729

6.45 6.50

t

6.60

0.303375994729 < 7, < 0.303375994730
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A numerical experiment...

Consider massless scalar field

O¢ = g**V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

0.4 7 =0.303375994721

1 =0.303375994729

6.5825  6.5850  6.5875  6.5900  6.5925
t

0.303375994729 < 7, < 0.303375994730
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A numerical experiment...

Consider massless scalar field

O¢ = g*V.Vyo =

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

evolve for different amplitudes 7...

Have critical parameter 1, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

0.0

—0.1

0.3033759947297 < n, < 0.3033759947298

1 =0.3033759947291

1 =0.3033759947299

6.5825  6.5850  6.5875
t

6.5

900

6.5925




Scaling

® For supercritical data, mass M of
forming black holes satisfies power-law
scaling
M~ (n—n.)
with critical exponent v ~ 0.37
® For subcritical data, maximum attained
curvature satisfies similar scaling law

with same exponent
[Garfinkle & Duncan, 1998|

T T L.
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| Vg & 0.376 oo"
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o
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o = ©°

OO — o -

o j L1

o
° [0

o° 1 L 1 . ]

—26.0 —22.0 -18.0 —14.0
In |¢0 - ¢B |

[Choptuik, 1998]
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Critical Phenomena...

THERMODYNAMIC PROPERTIES AT THE ONSET OF ol

MAGNETIC ORDERING .

The critical temperature T, above which magnetic ordering vanishes is known as .
the Curie temperature in ferromagnets (or ferrimagnets) and the Néel temperature
(often written Ty) in antiferromagnets. As the critical temperature is approached
from below, the spontaneous magnetization (or, in antiferromagnets, the sublattice
magnetization) drops continuously to zero. The observed magnetization just below
T, is well described by a power law. a

Frequency (MHz)

M(T) ~ (T, — TY, (33.1) b .

where B is typically between 0.33 and 0.37 (see Figure 33.4). T b o P R O 5 R i
The onset of ordering is also signaled as the temperature drops to T, from above,

Magnetic field M in MnF, versus temperature T
[Ashcroft & Mermin, Solid State Physics, 1976]

Power-law scaling in vicinity of critical parameters with universal critical exponent J
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Critical Solution

Radiation fluid (P = p/3) fine-tuned to critical parameter [Evans & Coleman(1994)]

® plot p versus R at different times...

— 7=2377
T =2.429 |1
T =2479
T =2.527
— 17=2.572 |1

10°

100

107}
0.00 0.02 0.04 006 008 010 012 0.14 0.16

R

[TWB & Montero, 2016]
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Critical Solution

Radiation fluid (P = p/3) fine-tuned to critical parameter [Evans & Coleman(1994)]

0.30
0.25
. . 0.20
® plot p versus R at different times... = L ‘ o
0.15 ; | =2 1
® plot Q = 4mpR? versus R... P S r=2.429
020p 2 7=2479 |
0.05 ' T =2.527 | |
— 7=2572|
0.00 &= -
0.00 0.02 004 006 008 010 012 014 0.16

R

[TWB & Montero, 2016]
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Critical Solution

Radiation fluid (P = p/3) fine-tuned to critical parameter [Evans & Coleman(1994)]

® plot p versus R at different times...
® plot Q = 47pR? versus R...
® plot Q versus

R

Te — T

§

with accumulation time 7, = 2.624

Critical solution is self-similar and universal |

0.00
0.0

— 7 —7=0.247
7 —7=0.195
™ —71=0.145
™ —71=0.097

— 71" —7=0.052

0.2 0.4 0.6 0.8 1.0 1.2
¢

[TWB & Montero, 2016]

1.4

10/34



Critical Solution for scalar field

® Look at scalar field ¢ at center (r = 0)
® plot as function of proper time 7

® oscillations accumulate at accumulation
time
7. ~ 1.5698
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Critical Solution for scalar field

® Look at scalar field ¢ at center (r = 0)
® plot as function of proper time 7 .
® oscillations accumulate at accumulation 0‘4_

time '
0.2
7. ~ 1.5698

. . . . e:- OO
® plot as function of self-similar time 0
= —In(r. — 7) —0.41
—0.61

0.0

o
ot
ot
o
=
ot
—
o
o

Critical solution performs oscillations with
period A in T: discrete self-similarity J
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Continuous versus discrete self-similarity

Self-similarity can be...
e continuous (CSS) (e.g. fluid)
e discrete (DSS) (e.g. scalar fields):
expect periodic “wiggles” super-imposed on scaling laws
[Gundlach, 1997; Hod & Piran, 1997]

0.6

0.4

0.2

< 0.0
—0.2

—0.4

—0.6

0.0 2.5 5.0 7.5 10.0 —30 —25 —20 —15 —10
T In(n, —n)
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Critical Phenomena in Gravitational Collapse

Consider matter model (e.g. scalar field, fluid, vacuum...)
Consider family of initial data parametrized by 1 and evolve...

Critical parameter 7, separates:

® supercritical data: form black hole
® subcritical data: don't

in vicinity of 7, observe critical phenomena:
® dimensional quantities display scaling, e.g.

M >~ (n—mn.)"

with critical exponent y: depends on matter model, but not on parametrization of initial data
® spacetime approaches universal self-similar solution
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Phase-space picture

flat space fixed point
///—\ /

black

(@]
hole threshold —
(infinite-dimensional) phase-space of I-parameter
|n|t|a| data initial data
critical solution acts as intermediate

attractor of co-dimension one

possesses single unstable mode,
Lyapunov exponent A

critical exponent given by v =1/
[Koike et.al., 1995; Maison, 1996] Tl e et

PR

[Gundlach & Martin-Garcia, 2007]
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Phase-space picture

flat space fixed point
e (infinite-dimensional) phase-space of black — T /
PR O
initial data BOI® reshold T
® critical solution acts as intermediate |-parameter

attractor of co-dimension one

® possesses single unstable mode,
Lyapunov exponent A

e critical exponent given by v =1/
[Koike et.al., 1995; Maison, 1996]

black hole fixed point
O~

Does this picture persist in the absence of \
spherical symmetry? ‘

[Gundlach & Martin-Garcia, 2007]
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Things that we thought we knew in the absence of spherical
symmetry...

VOLUME 70, NUMBER 20 PHYSICAL REVIEW LETTERS 17 MAY 1993

Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse

Andrew M. Abrahams(®)
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853

Charles R. Evans
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
(Received 22 December 1992)

We report a second example of critical behavior in gravitational collapse. Collapse of axisymmetric
gravitational wave packets is computed numerically for a one-parameter family of initial data. A
black hole first appears along the sequence at a critical parameter value p*. As with spherical scalar-
field collapse, a power law is found to relate black-hole mass (the order parameter) and critical
separation: Mpn o |p — p*|®. The critical exponent is 8 ~ 0.37, remarkably close to that observed
by Choptuik. Near-critical evolutions produce echoes from the strong-field region which appear to
exhibit scaling.
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But...

Despite many attempts...

[Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne, 2008;
Sorkin, 2011; Hilditch et.al., 2013]

. it has been difficult to reproduce this:

® many simulations crash

e others produce results in apparent conflict with A&E
(more on this later...)
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Critical collapse without spherical symmetry: scalar fields

o All nonspherical perturbations of the
Choptuik spacetime decay (linear
perturbations)

[Martin-Garcia & Gundlach, 1999]
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e
Critical collapse without spherical symmetry: scalar fields

e All nonspherical perturbations of the
Choptuik spacetime decay (linear
perturbations)

[Martin-Garcia & Gundlach, 1999]

® But nonlinear aspherical perturbations
grow and lead to bifurcation
[Choptuik et.al., 2003; TWB, 2018; [Choptuik et.al., 2003]
Marouda et.al., 2024]
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Critical collapse without spherical symmetry: scalar fields

® All nonspherical perturbations of the
Choptuik spacetime decay (linear
perturbations)
[Martin-Garcia & Gundlach, 1999]

® But nonlinear aspherical perturbations
grow and lead to bifurcation
[Choptuik et.al., 2003; TWB, 2018;
Marouda et.al., 2024]

® Inclusion of angular momentum leads
to different critical solution
[Choptuik et.al., 2004; Marouda 2025]

[Choptuik et.al., 2003]
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Critical collapse without spherical symmetry: ideal fluids

S 0w
Fluid with equation of state ;009?
S 00
P =rp L0
a0
® (non-rotating) aspherical deformations o 0
(¢ = 2) unstable for k > 0.49 01
[Gundlach, 2002; TWB & Montero, S 000 N
2015; Celestino & TWB, 2018] B S R B S
T

[Celestino & TWB, 2018]
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Critical collapse without spherical symmetry: ideal fluids

Fluid with equation of state

A
cee

AQ
DO O b coo OQCOCCOOC
ClOUl RO RO ORFROIO O
T

P=kp

AQ

e (non-rotating) aspherical deformations
(¢ = 2) unstable for k 2> 0.49
[Gundlach, 2002; TWB & Montero,

AQ

2015; Celestino & TWB, 2018] -
e (rotational) perturbations (¢ = 1) 5 _§: "
unstable for x < 1/9 ' 0 2 i 6 8

[Gundlach, 2002; TWB & Gundlach, r
2016; Gundlach & TWB, 2016, 2017] [Celestino & TWB, 2018]

18/34



Critical collapse without spherical symmetry: electromagnetic

WavVves
10
0.
® Dipolar electromagnetic waves feature A 01
only approximately DSS critical solution E_%
[TWB et.al., 2019] A9 N

® Competition between different degrees

of freedom?
[Gundlach et.al.., 2019]

0.0
T %

[TWB et.al., 2019]
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Critical collapse without spherical symmetry: electromagnetic
waves

® Dipolar electromagnetic waves feature
only approximately DSS critical solution
[TWB et.al., 2019]

® Competition between different degrees

of freedom?
[Gundlach et.al.., 2019]

® Do quadrupolar electromagnetic waves
have distinct critical solution?
[Perez Mendoza & TWB, 2021; Gray & s N
Choptuik, 2023] [Perez Mendoza & TWB, 2021]
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Things that we don’t know in the absence of spherical symmetry

In absence of spherical symmetry, threshold of black hole formation significantly more
complicated

® threshold solution not exactly self-similar?
® threshold solution not unique?

® in some cases evidence for bifurcation?

® single or multiple accumulation points?
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Things that we don’t know in the absence of spherical symmetry

In absence of spherical symmetry, threshold of black hole formation significantly more
complicated

¢ threshold solution not exactly self-similar?
® threshold solution not unique?

® in some cases evidence for bifurcation?

® single or multiple accumulation points?

Revisit critical collapse of gravitational waves
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GW initial data: Teukolsky waves

Wave-like solution to linearized Einstein equations [Teukolsky, 1982; Rinne, 2008],
“dressed up" to satisfy constraints

® E.g.. choose moment of time symmetry: momentum constraint satisfied identically
e Construct spatial metric from seed functions F = F(r £ t) and its derivatives, e.g.

r r2 r3 r4 r5

1 /(F® 2F® 9F@ 21F(1)  21F
C:Z( + + + + )

e Adopt spatial metric as conformally related metric

® Solve Hamiltonian constraint to construct (non-linear) initial data:
invert non-flat Laplace operator

Adopted by Abrahams & Evans (1993) (see also Rostworowski, 2025)
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GW initial data: Brill waves

Construct time-symmetric vacuum initial data [Brill, 1959]
® choose axisymmetric seed function, e.g.

q(r,0) = Ar’sin® fe " = Ap e~ (P+2%)
e deform conformally related spatial metric (in cylindrical coordinates)
di? = ¢* (eq(dp2 +d2) + p2dgb2)

® solve linear flat elliptic equation for conformal factor

2y V(00 O%q
VY= 8<8p2+622

Adopted by almost everybody since Abrahams & Evans (1993)

22/34



Evolution

® Many previous attempts used 1+log
slicing,

(0; — B'0))a = —a*f(Q)K
with
fla) =2/«

[Bona et.al., 1995]

® \ery successful in many cases, but can
lead to coordinate shocks...
[Alcubierre, 1997; 2003]

0.0 25 50 75 100 125 150 17.5 200

0.0 0.2 0.4 0.6 08 1.0
[TWB, Gundlach & Hilditch, 2023]
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Evolution

Consider alternatives...
® sphGR: shock-avoiding slicing condition

in BSSN: use on
0.51 ! N 0
fa) =1+1/a? ? N ;’““.
0.0 1 i
[Alcubierre, 1997; TWB & Hilditch, 00 25 50 75 100 125 150 17.5 20.0
2022] ‘
® prague: approximate maximal slicing 2 nga\mdmg
in BSSN ¥ ol [ R N _
[Ledvinka & Khirnov, 2018] 1 1|
0.0 0.2 04 06 08 1.0

® bamps: gauge-source functions in
generalized harmonic formalism
[Hilditch et.al., 2017]

z

[TWB, Gundlach & Hilditch, 2023]
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Code comparison

Choose Brill initial data with both
A>0and A<O

plot maximum attained curvature
invariant / for subcritical data

all three codes agree very well

But: no evidence for universal power
law

|~ |A—A|™

plus periodic wiggles with universal

1012 x

1010

1084

Imax

106,

104,

% x  bamps
o prague
o sphGR

1076

1073 1074 103 1072 1071 10°
A—A.|

[TWB et.al., 2023]
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Universality...

Unlike in spherically symmetric case...
® ~ depends on family
® threshold solution family-dependent

® No clear evidence for threshold
solutions being DSS

But: do gravitational-wave families with
DSS threshold solutions exist??

)

i e TA A=0 58
g TA A=0 A
——#—— Brill A=0 /
o * Brill A< ail
4 e =t
et - e
| ra o
s . _.,d-d.! i
F e
T i
(W e ’,‘2,./-9'
. e
D’Jl . R__.-"'O-
_i""
£
2 i [ & 1] 12 14
—log JA-A"|

[Ledvinka & Khirnov, 2021]
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Evolution of Teukolsky waves

e Consider superposition of quadrupolar
(¢ = 2) Teukolsky waves

® Use sphGR code (BSSN in spherical
polar coordinates)

® evolve with shock-avoiding slicing
condition

® analyze Weyl scalar 7
[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

o

In(]Z[**4)

® Weyl scalar Z for near-critical ¢ = 2
solution in equatorial plane

® plot as function of R and 7...

[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

® Weyl scalar Z for near-critical ¢ =2
solution in equatorial plane

® plot as function of R and ...
® plot as function of £ and T ...

In((t+ = ) |Z|¥%)

0.0 0.5 1.0 15 2.0
3

[TWB, Gundlach & Hilditch, 2023]
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Quadrupolar wave

1.0
Weyl scalar Z for near-critical ¢ = 2 ' e —
solution in equatorial plane 05 >0
. 255+
plot as function of R and 7... 0ol ES
. 2.0 —
plot as function of £ and T ... s
plot as function of null coordinates A e 10
and Tnull 10 0.5
Approximate DSS with period A ~ 0.52, 15
0.0 0.2 0.4 0.6 0.8 1.0
A

consistent with Abrahams & Evans (1993) J

[
Toun

[TWB, Gundlach & Hilditch, 2023]
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Hexadecapolar wave

® Repeat analysis for { = 4

e find approximate DSS with period
A~0.1

log (T« — T)|7|Y¥%)

Quadrupolar and hexadecapolar threshold
solutions are distinct

[TWB, Gundlach & Hilditch, 2023]
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GW initial data: Nakamura waves

Analytical wave-like solution to linearized Einstein equations [Nakamura, 1984], “dressed
up” to satisfy constraints

® E.g.: choose moment of time when ;; = 7;

e Construct analytical solution to momentum constraint from seed functions
F = F(r £ t), and its derivatives

® Solve Hamiltonian constraint to construct (non-linear) initial data:
invert flat Laplace operator
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Quadrupolar Teukolsky and Nakamura waves

102,
® For both families find approximate
scaling with
™ 101
v ~0.25
® threshold solutions appear to be
100_

approximately, but not exactly DSS

Tax: TEU

1/a
Iy, Nak

1/4

(As = A)0

(As — ANA~

107> 107% 10— 1072 107! 10°
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Does every family have DSS threshold solution?

® Consider Z for Brill waves with A > 0
(focus of most previous studies)

® No evidence for self-similarity with
accumulation point at center

[TWB et.al., 2023]
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Summary

Critical phenomena in gravitational collapse
Universality, self-similarity, and scaling
Well understood in spherical symmetry...

... but less so in absence of spherical symmetry
Recent progress for vacuum gravitational waves:
® replace 1+log slicing with other choice
good agreement between independent codes
no evidence for universal critical solution
for some families there exist at least approximate DSS threshold solutions...
... but possibly not for others
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Why has it been so difficult to reproduce Abrahams & Evans?

® Numerical issues:
® popular slicing condition (1+log) fails in these particular applications
® use different slicing condition

® Absence of uniqueness:

e different families of initial data lead to different threshold solutions (at least at current level
of fine-tuning)
® does not present conflict with Abrahams & Evans (1993)
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