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Introduction

@ Much of real-world data is inherently multidimensional

e Many operators and models are natively multi-way
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Tensor Applications
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Application in computer vision <.~
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Batch alignment I‘:>’
Deformable
racking

Video surveillance, streaming

Mutiarget tracking

Latent semantic tensor indexing

Ivanov, Mathies, Vasilescu, Tensor subspace analysis for viewpoint recognition, ICCV, 2009

Shi, ng, Hu, Yuan, Xing, Multi-target tracking with motion context in tensor power iteration, CVPR, 2014
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Where the Truth Lies 7

o If this is true
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The Power of Representation

e Traditional matrix-based methods assuming data vectorization are generally
agnostic to possible high dimensional correlations

o What is that ?
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@ Observe the same data but in a different (matrix rather than vector) representatlon
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The Power of Representation

e Traditional matrix-based methods assuming data vectorization are generally
agnostic to possible high dimensional correlations

o What is that ?

@ Observe the same data but in a different (matrix rather than vector) representatlon

” o Representation matters! some correlations can
N only be realized in appropriate representation
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Background and Notation

e Notation : A"1*"2Xna _ Jth order tensor

» 0% order tensor - scalar
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Background and Notation

e Notation : A"1*"2Xna _ Jth order tensor

» 0% order tensor - scalar
[
» 15 order tensor - vector

» 274 grder tensor - matrix

» 374 order tensor ...
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Inside the Box

o Tube (Fiber) - a vector defined by fixing all but one index while varying the rest

mode-2 mode-3

A«L’,:,k A@,j,;, a;j

o Slice - a matrix defined by fixing all but two indices while varying the rest

lateral horizontal frontal
A:,j,:, Aj A@',:,: A:,:,ka A(k)
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Tensor Multiplication

Definition

o The k - mode multiplication of a tensor A € R™MX"2X"Xnd with a matrix U € R/*"
is denoted by Ax U and is of size m X - -+ X ng_1 X J X Ngy1 X -+ X ng

o Element-wise

ng
(AXkU)il"'ik_1jik+1"'id = E ai1i2...idu]'ik

ir=1

@ k-mode multiplication

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 8 /64



Tensor Network / Diagram Notation

e Tensor networks invariants / isomorphism offers means to analyze and identify (space
and time complexity) structure in high dimensional computation

vector  Uj

matrix

M

3-index
tensor

Tij

*

J

i—@—

J

Q = A.ijB]‘i = T‘I'[AB]
/

~0-0-

6660

> TijmVim
3

2 : s1 RS2 83 S4
AalBalazcazasDas

1,002,003

o Tensors are notated by nodes, while indices are represented by edges
e Connecting index edges implies contraction / summation over connected indices
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How Powerful are Tensor Networks ?

ey v |

nature

Article | Published: 23 October 2019

Quantum supremacy using a
programmable superconducting
processor

Frank Arute, Kunal Arya, [...] John M. Martinis &

Nature 574, 505-510(2019) | Cite this article

661k Accesses | 26 Citations | 6016 Altmetric | Metrics

Abstract
The promise of quantum computers is that certain computational tasks
might be fasterona p thanona

classical processor'. A fundamental challenge is to build a high-fidelity
processor capable of running quantum algorithms in an exponentially
large computational space. Here we report the use of a processor with
programmable superconducting qubits?3#:56.7 to create quantum states
on 53 qubits, corresponding to a computational state-space of dimension
253 (about 10'%). Measurements from repeated experiments sample the
resulting probability distribution, which we verify using classical
simulations. Our Sycamore processor takes about 200 seconds to sample
one instance of a quantum circuit a million times—our benchmarks

currently indicate that the equivalent task for a state-of-the-art classical

supercomputer would take approximately 10,000 years. This dramatic

increase in speed compared to all known classical algorithms is an
experimental realization of quantum supremacy®%10:1112.13.14 for this
specific computational task, heralding a much-anticipated computing

paradigm.

Tensor

SCIENCE  comems - Wews «  coreers - sourals -

SHARE

Google researchers in Santa Barbara, California, say their advance may lead to near-term applications of
quantum computers. s et

IBM casts doubt on Google’s claims of quantum
supremacy

By Adrian Cho | Oct 23,2019, 5:40 AM

Pareto-Efficient Quantum Circuit Simulation Using Tensor
Contraction Deferral*

Edwin Pednault'!, John A. Gunnels*', Giacomo Nannicini*!, Lior Horesh', Thomas
Magerlein?, Edgar Solomonik?, Erik W. Draeger*, Eric T. Holland*, and Robert Wisnieff'

'IBM T.J. Watson Research Center, Yorktown Heights, NY
2Tufts University, Medford, MA
3Dept. of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL
“Lawrence Livermore National Laboratory, Livermore, CA
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Low Rank Structure
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Low Rank Property

o Express a d"-order tensor A as the sum of rank-1 tensors,

A~ Zai Mo ugz) 0..0 ugd)
=1

7

o We seek a d"-order tensor B of rank k < r to optimize:
argmin || A — B||r
B

s.t. B hasrank &k <r

e When d = 2, B is the matrix SVD truncated to k terms (Eckart-Young)
o Is there is a similar theoretical result for higher order tensors 7

Theorem (Schmidt 1907; Eckart & Young 1936; Mirsky 1960)

Let A € C"*™2 pe a matriz with rank(A) = r. The truncated Singular Value
Decomposition (SVD) yields the llc)est low-rank approximation; i.e., for k <r,

A, = Zaiuile = argmin ||A — B|r
=il rank(B)<k
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Tensor Decompositions - CP (CANDECOMP-PARAFAC)

d)d)
®

e Find the best tensor rank-r fit!:

.
min ||X — Zal a; ob; o ci||p

a’L7b’L7CZ 1
i=
» Extension of matrix rank » Summing k factors is sub-optimal
» Interpretable » Determining rank is NP-hard

@ The set of tensors of a given size that do not have a best rank-k approximation has
positive volume (i.e., positive Lebesgue measure) for at least some values of k,
implying that lack of best approximation is rather common

1de Silva, Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, 2008
2Hitchcock, J Math Phys, 1927; Harshman, 1970; Carroll, Chang, 1970
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Tensor Decompositions - Tucker *

k
2z,
2 B
N ~ |Ag |l 9
j
o Find the best multi-linear rank-(ky, ko ,k3) fit3:
min X—gxlAk XgBk chkf F
p | 2B xa O |
» Higher-order PCA » Truncation of full orth. sub-optimal
» Compressible » Hard to interpret

3De Lathauwer, De Moor, Vandewalle, HOSVD, 2000; Cichocki, Zdunek, Phan, Amari, Nonnegative T&M Factorizations, 2009
4Tucker, Problems in Measuring Change, 1963
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Tensor Train Decomposition

Tensor Train format of a tensor A
Alir,....ig) = > SGi(ao,i1,1)Ga(an, iz, a2), ..., Galeg—1, iq, a)
QO Qg
Can be represented compactly as a matrix product:
Ai, - - ia) = G1[11] Galiz] - - - Galid]
——

N N
1xry riXry rq—1X1

@ G;: TT-cores (collections of matrices)
o r;: TT-ranks
@ r = max7;: the maximal TT-rank

TT uses O(dnr?) memory to store O(nd) elements

Efficient only when all ranks are small O ‘ ‘ L
Gi Ga

Oseledets. Tensor-train decomposition, 2011
Lior Horesh (IBM)
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Tensor Algebra Desired Properties

Powerful Simple Provable Matrix property
representation implementation superiority preservation
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Groups and Representations

A group is a set G with a binary operation o : G x G — G satisfying the following axioms:

Group Axioms

@ Closure: For all a,b € G, a0b e G

e Associativity: For all a,b,c € G, (aob)oc=ao(boc)

o Identity: There exists e € G such that for all a € G, eca=aoce=a

1 —il

o Inverses: For each a € G, there exists a™' € G such that aca™ ! =aloa=e
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Groups and Representations

A group is a set G with a binary operation o : G x G — G satisfying the following axioms:

Group Axioms
@ Closure: For all a,b € G, a0b e G

e Associativity: For all a,b,c € G, (aob)oc=ao(boc)
o Identity: There exists e € G such that for all a € G, eca=aoce=a

o Inverses: For each a € G, there exists a™' € G such that aca™ ! =aloa=e

A group representation is a homomorphism p : G — GL(V) G o(g)

mapping a group G to the general linear group of a vector space p a b c

V', preserving the group operation: i.e. p Z {
o(g1092) = o(g1)e(g2), V91,92 € G 9€G 7 plg) = Mari]
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Rings
A ring is a set R with two binary operations +: R X R — R and - : R x R — R satisfying:

Ring Axioms
e Abelian Group under +: (R, +) forms an abelian group with identity 0
e Associative Multiplication: For all a,b,c € R, (a-b)-c=a-(b-¢)
e Distributivity: For all a,b,c € R:

a-(b+c)=a-b+a-c(left distributivity)
(a+b)-c=a-c+b-c (right distributivity)
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Rings

A ring is a set R with two binary operations + : R x R — R and - : R X R — R satisfying:
Ring Axioms

e Abelian Group under +: (R, +) forms an abelian group with identity 0
e Associative Multiplication: For all a,b,c € R, (a-b)-c=a-(b-¢)
e Distributivity: For all a,b,c € R:

a-(b+c)=a-b+a-c(left distributivity)
(a+b)-c=a-c+b-c (right distributivity)

Additional properties may include:

@ Unity: Multiplicative identity 1 €« R with 1-a=a-1=aforalla € R
o Commutativity: a-b=05b-a for all a,b € R
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Rings
A ring is a set R with two binary operations + : R x R — R and - : R X R — R satisfying:

Ring Axioms
e Abelian Group under +: (R, +) forms an abelian group with identity 0
e Associative Multiplication: For all a,b,c € R, (a-b)-c=a-(b-¢)
e Distributivity: For all a,b,c € R:

a-(b+c)=a-b+a-c(left distributivity)
(a+b)-c=a-c+b-c (right distributivity)

Additional properties may include:
@ Unity: Multiplicative identity 1 €« R with 1-a=a-1=aforalla € R
o Commutativity: a-b=05b-a for all a,b € R

Examples: Z, Q[z]|, M, (R), Z/nZ

Lior Horesh (IBM)
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Modules

Let R be a ring. A left R-module is an abelian group (M, +) with scalar multiplication

-1 R x M — M satisfying:

Module Axioms

e Distributivity over module addition: - (m+n)=r-m+r-n

e Distributivity over ring addition: (r +s)-m=r-m+s-m

e Associativity: (rs)-m=r-(s-m)
@ Unity (if Rhas 1): 1-m=m
for all r,s € R and m,n € M.

Lior Horesh (IBM)
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Modules

Let R be a ring. A left R-module is an abelian group (M, +) with scalar multiplication
-1 R x M — M satisfying:

Module Axioms
e Distributivity over module addition: - (m+n)=r-m+r-n
e Distributivity over ring addition: (r +s)-m=r-m+s-m
e Associativity: (rs)-m=r-(s-m)
@ Unity (if Rhas 1): 1-m=m
for all r,s € R and m,n € M.

When R is a field, an R-module is precisely a vector space over R.

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 19 / 64



Modules

Let R be a ring. A left R-module is an abelian group (M, +) with scalar multiplication
-1 R x M — M satisfying:

Module Axioms
e Distributivity over module addition: - (m+n)=r-m+r-n
e Distributivity over ring addition: (r +s)-m=r-m+s-m
e Associativity: (rs)-m=r-(s-m)
@ Unity (if Rhas 1): 1-m=m
for all r,s € R and m,n € M.

When R is a field, an R-module is precisely a vector space over R.

Examples: Abelian groups (as Z-modules), R" (as R-module), Z/nZ (as Z-module)
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Algebra over Tubes

A tensor X € F™*PX™ ig an m X p matrix of tubes - F,, elements

Definition J

S/

xz €F, -tube X € F? - slice X e FP*P - tensor

where [}, is a free-module over the ring [F,,
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Tubal Operation
o Let M € F™ " be invertible. F,, denotes the ring (F1*1*™ + /).

axyb=M1'Ma®Mb)=M 1diag(M a)M b

7 -

1x1xmng 1x1xmng 1x1x n3
@ Tube fiber interpretation:

c = fold((M 'diag(a)M)vec(b))
= fold ((M_ldiag(b)M)vec(a))

e Commutativity, and characterization using set of diagonal matrices diagonalized by
M and its inverse

Kernfeld, Kilmer, Aeron, Linear Algebra and its Applications, NLA 2015
Avron, Mor, Demystifying Tubal Tensor Algebra. arXiv:2506.03311, 2025
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Tubal Operation

o Let M € F™*" be invertible. F,, denotes the ring (F'*1*" + /).

axyb=M1MaoMb)=M1diag(M a)M b

N

1x1xmng 1x1xmng 1x1xmng

o T :F} — F™ is a module homomorphism (T (ays b) = bxy T'(a)) if and only if
TB = Ax; B for some A € F/*P

Kernfeld, Kilmer, Aeron, Linear Algebra and its Applications, NLA 2015
Avron, Mor, Demystifying Tubal Tensor Algebra. arXiv:2506.03311, 2025
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The x);-Product Algebra

Given A € RI*PXn B ¢ RPX™*" and an invertible n x n matrix M, then
C=Axy B= (AA B) ><3M_1

where C € R&*™m*n - A = A x5 M, and » multiplies the frontal slices in parallel

*M xsM 4 . xgM !
A —_ LGN

Spatial domain Transform domain Spatial domain

Useful properties: tensor conjugate transpose, unitarity invariance, identity tensor,
connection to Fourier transform, circulant shifts invariance, ...
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*x37 SVD and Truncation Optimality

Theorem (Kilmer, Horesh, Avron, Newman, 2021)
Let the t-SVD of A € R*™™ be given by A =U xpr S xar VT, with £ x £ x n orthogonal
tensor U, m X m x n orthogonal tensor V, and £ X m X n f-diagonal tensor S
e For k < min(l,m), define ,
A =UCG 1 xSk, 1k )k VTG 10 k) = ZU(:,i, VxS (i, d, )V, 0,0) |
i=1
o Then X
Ay = argmin||A — A||
AeM
where M = {C = X %y YV | X € REXkxn 3 ¢ RExmxn]

! { n e *I\I s *Z\/I
d

. , u S v

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 23 / 64




Tensor Representation Superiority

e Why might we expect the tensor representation to be more informative than
matrix representation?

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
(IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 24 / 64




Tensor Representation Superiority

e Why might we expect the tensor representation to be more informative than
matrix representation?

Theorem (Kilmer, Horesh, Avron, Newman, 2021)

Let X (:,i) = unfold(A(:,1,:)). Let Ay denote the optimal k-term truncated ps
tensor-SVD approzimation to A, and let Ay denote the optimal k-term (i.e. rank-k)
matriz SVD approrimation to A. Then

A —Aillr < ||A— AkllF

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
Lior Horesh (IBM)
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How it Compares to Other Tensorial Frameworks?

e Theoretically, similar superiority results are proved over HOSVD and TT-SVD
@ Possible to interpret decompositions of the new tensor in CP form

K=290mKk =250mKx =210mK =170=xk = 130
mK=90 =mxk=50 =xk=10 k=1

+t-SVDMI, M = ZT
oTT-SVD

AaSVD

BHOSVD EK’, K,nz

+HOSVD (ky1,kp,k3), kj or kp = K

—_
o
S

—_
o
)

Compression Ratio
f—
=)
5]

Relative Error

De Lathauwer, De Moor, J. Vandewalle, A multilinear singular value decomposition, SIMAX 2000

Oseledets, Tensor-train decomposition, SISC 2011

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
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Tensor-Tensor Applications - Proper Orthogonal Decomposition
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Proper Orthogonal Decomposition (POD)

Motivation: Solving large-scale dynamical systems is computationally expensive
e Dynamic system: a%gt) = La(t) + f(a(t)) + q(t)

e For 2D grid n, x ny: state size is ngn, x 1, operator L is ngn, X ngn,

Matrix-based POD:
o Collect snapshots {a@!,...,a"s} into matrix A € R™"y>#s
e Compute SVD A=USV T
Use first k left singular vectors as projection basis Uy
Galerkin projection: U,;rUk% = U,;FLU;C a+ U,;rf(Uk&) + U,;r(j
——

kxk

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 27 / 64



Tensor Proper Orthogonal Decomposition (t-POD)

Key Idea: Preserve spatial structure using tensors
e Form snapshot tensor A4 € R™**#s*"y ingtead of matrix
o Compute k-term truncated t-SVD: A, = Uy, *pr Sk *s V,;r
o Use Uj, € R™>kXny for projection

Advantages:
e t-POD basis better captures spatial structure of solutions
e Significantly lower relative error vs. matrix POD for same number of snapshots

@ Orders of magnitude error reduction observed in diffusion equation experiments

Zhang, Kilmer, Horesh, Avron (2021); Zhang, Tufts PhD thesis, 2017
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Tensor Proper Orthogonal Decomposition - Example

. . . Oa(r,t
Diffusion Equation: % -V -kVa(r,t) =0
2-D Diffusion System
1th snapshot ath snapshot

o
o

x —
3th snapshot 12th snapshot

U=
o
0

¥ x> <y o o 3 —»

15th snapshot

X @
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Better Basis? - Numerical Support

Diffusion Equation: (r h_v. kVa(r,t) =0

2-D Diffusion System 2-D Diffusion System 2-D Diffusion System
1th basis from POD 2th basis from POD 3th basis from POD

-0.01 —
T -0.02 '
-0.03

-0.0a

«

Lior Horesh (IBM)



Tensor Proper Orthogonal Decomposition - Error vs. Snapshots Count

relative error

10°

1072

107

1078

10710

10712

10714

Comparison in Accuracy
| | |

—&— basis obtained by svd
— o— pasis obtained by tensor svd !

n, =150
n =150

Yy
n = 150
dx=10/(nx-1);
dy=10/(ny-1);
dt = .01;
r, =5

x
K =2

Yy
K = num of
snapshots

10

20 30 40 50 60 70 80
number of snapshots

Tensor Algebra ICERM, Randomized Algebra, 2026 31 / 64



Tensor-Tensor Neural Networks
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Tensor Neural Networks: Motivation

Key Idea: Replace matrix operations with tensor operations in neural networks

Standard Neural Network (Matrix):

ajr1=0(W;-aj+b;) forj=0,...,N—-1

Tensor Neural Network:
/Tj+1 = O'(Wj * 0 ffj + [D_;J)

Benefits of Tensor Formulation:

e Reduced parameters: n* 4+ n? — n? + n? for n x n images

@ Preserves multi-dimensional structure of data

e Mimetic structure: tensors are M-linear operators (analogous to matrices)

Lior Horesh (IBM)
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Stable Architectures via Hamiltonian Framework

Dynamic Perspective: Network layers = discrete time steps

%a(t) =o(W(t) a(t) +b(t)) forte[0,T]

Well-Posed Learning requires stability conditions on eigenvalues of Jacobian

Hamiltonian-Inspired System: Antisymmetric = inherently stable

- (LWOW "5

Leapfrog Integration: Stable for purely imaginary eigenvalues

0
(1)

d

dt

Alt) A(t)
Z(t) 4

Zn| "

4l j_%—hO'(WjT*M./Ij‘i‘B_;j), A’j+1=jj+ha(Wj*ng+ —|-[3_"])

1
2
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Tensor Neural Network Training

Forward Propagation: ffjﬂ =o(W; *um Xj + IS—’})
Objective Function:

1 S
E= §||WN -unfold(Ay) — c||%
Backward Propagation:
04 = WjT s (04541 © 0 (Z41))

Parameter Updates (Gradient Descent):

where §j+1 = Wj*m .Afj + ZS_’; and © is pointwise product

Lior Horesh (IBM)
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Mimetic Structure

e Update relations are analogous to their matrix counterparts by no coincidence
e In the M-product framework, tensors are M-linear operators just as matrices are
linear operators

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 36 / 64



Experimental Results

MNIST (28 x 28 grayscale, 60K train / 10K test)

e Tensor networks achieve comparable accuracy with 28 x fewer parameters
o Parameters: Matrix 28*N vs. Tensor 283N

CIFAR-10 (32 x 32 x 3 RGB, 50K train / 10K test)
o Tensor networks outperform matrix networks at same depth

@ Better accuracy with 32x fewer parameters

Key Findings:
e Hamiltonian + Leapfrog: stable even with large step sizes (h = 1)
e Standard ResNet: unstable, requires small h (< 0.25)

o Tensor formulation preserves spatial structure = better generalization

Newman, Horesh, Avron, Kilmer, Stable tensor neural networks for rapid deep learning,
Frontiers in Big Data, 2024

Lior Horesh (IBM)
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Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: a = 0.01, o0 = tanh, 50 epochs, batch size = 10, N = 32
Regularized: 5||lw;;1 — w;||% for 1 x 1 x 3 tubes w

Resnet with h = 0.5
aj+1 =aj+ho(w;j*a;+ bj)

Z
& & A b oM & 0 @

a

y : X
(=Jb(+)
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Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: a = 0.01, o0 = tanh, 50 epochs, batch size = 10, N = 32
Regularized: 5||lw;;1 — w;||% for 1 x 1 x 3 tubes w

Resnet with h = 0.25
a;+1 = a;+ hO'(’wj * @+ bj)

-5

Y ” X
(=)e(+)

Lior Horesh (IBM)
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Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: a = 0.01, o = tanh, 50 epochs, batch size = 10, N = 32
Regularized: 5-||w;11 — w;[|% for 1 x 1 x 3 tubes w;

Leapfrog with h =1
zj+% :zj7% —ho'('ij *aj “'bj)
aj+1 = a;j tho(wjxz; 1 +0b;)

z
& & A b O N 2 O @

=

) = . X
(=Je(+)
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Tensor-Tensor Graph Convolutional Neural Networks

Lior Horesh (IBM) Tensor Algebra



TensorGCN: Motivation and Method

Motivation

e Graphs — popular data structures to effectively represent interactions

@ Real world applications involve time evolving graphs; learning representations of
dynamic graphs essential

Proposed Approach

e Novel tensor variant of graph convolutional network (GCN)

e Captures correlation over time via tensor M-product framework

Two-Layer TensorGCN Model:

Z = softmax (E *\ O (ﬁ *as X s W(O)) *a W(1)>

Graph Tasks: Link prediction, Edge classification, Node classification

Lior Horesh (IBM)
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TM-GCN

Adjacency tensor

4,

Embedding
Graph tasks
Link prediction
= TensorGCN ) | ©ige classification
— / Node classification
X;

Dynamic graph

Feature Tensor

BiE

M unfolded tensor output

(IBM)



TensorGCN: Experimental Results (Edge Classification)

Table 1: Results without symmetrizing adjacency matrices (higher is better)

Method Bitcoin OTC Bitcoin Alpha Reddit  Chess
WD-GCN 0.2062 0.1920 0.2337 0.4311
EvolveGCN 0.3284 0.1609 0.2012  0.4351
GCN 0.3317 0.2100 0.1805  0.4342
TensorGCN (Ours) 0.3529 0.2331 0.2028 0.4708

Table 2: Results with symmetrized adjacency matrices (higher is better)

Method Bitcoin OTC Bitcoin Alpha Reddit  Chess
WD-GCN 0.1009 0.1319 0.2173 0.4321
EvolveGCN 0.0913 0.2273 0.1942  0.4091
GCN 0.0769 0.1538 0.1966  0.4369
TensorGCN (Ours) 0.3103 0.2207 0.2071  0.4713

Malik, Ubaru, Horesh, Kilmer, Avron, Dynamic graph convolutional networks using the tensor

M-Product, STAM SDM, 2021
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Optimal Symmetry-Aware Compression of Multiway Data
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The Universal Importance of Symmetry

Noether’s Theorem: Symmetry < Conservation
SYMMETRY NOETHER LINK CONSERVATION

(group action) (invariant action / Lagrangian) (Noether charge)

Invariant action: S[x] = [ L(x, X) dt is unchanged under g € G
Time translation

iy  Energy
tot+ At E
—n
o Spatial translation > L{x+8x) = L(x) > Linear momentum
X = X + Ax P
Rotation > L(Rx) = L{x) > Angular momentum
50(3) L
@ General symmetry. > L(g'x) = L(x) > Conserved charge
Lie group G QG
Implication for ML
Models that respect symmetry inherit conservation properties automatically

(IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 44 / 64



Symmetries in Data

o Real-world data exhibit fundamental symmetries

Graphs: Permutation symmetry r\
Molecules: 3D rotational symmetry permute
Images/Videos: Translational symmetry e e o

Time series: Temporal invariance
Crystals/Fingerprints: Reflection symmetry
Financial/Medical data: Scale invariance

o Groups mathematically model data symmetries:
A set closed under an associative operation, with r\ ?5/%%
identity and inverse elements rotate

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 45 / 64
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Equivariant Models

o Equivariant models respect data symmetries
o Definition: A function f is equivariant to group G if:
flg-z)=g-f(x) Vge&

o If we transform the input, the output transforms consistently

rotate
%@{' o

predict predict
bond bond
angles angles

% rotate
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Translating Physical Symmetries into Machine Learning Language

We express symmetry in models through two primary properties: Invariance and Equivariance

Invariance (The prediction doesn’t change)

A function f is invariant to a transformation g if
the output remains identical:

flg(x)) = f(=)

Example: Classifying a 3D object. The label
(“airplane”) should not change if the object is
rotated

f(x)

X——Y

g(xﬂ [id

e

Equivariance (The prediction transforms
with the input)

A function f is equivariant if transforming the
input and then applying the function is the same
as applying the function and then transforming the
output:

flg(@)) = g(f (=)

Example: Predicting a force field on a molecule.
If the molecule rotates, the force vectors must
rotate with it

X—
f(g(=))
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Translating Physical Symmetries into Machine Learning Language
We express symmetry in models through two primary properties: Invariance and Equivariance

invariance equivariance

segment

—_—

classify

"cat" reflect *

¢ reflect

classify

segment

Credits: Maurice Weiler
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https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/

The Brute-Force Approach vs. Principled Design

How can a model learn to respect symmetries?

Learning by Rote (Data Augmentation) Generalizing by Design
Present the model with the same data in many (Equivariant Architecture)
different transformed states (e.g., rotated, Constrain the model’s hypothesis space to
translated) functions that are guaranteed to be equivariant
— Computationally Expensive: Requires — The model does not need to learn the
massive datasets and long training times. symmetry; it is an inherent property of its
— Incomplete: Can never cover the full operations
continuum of transformations (e.g., all — This ‘bakes in’ the equivariance, leading to
possible rotations). automatic generalization across all

— Not Robust: Only achieves approximate transformations within the group

invariance/equivariance
Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 49 / 64




A Paradigm Shift: From Architectural Constraint to Intrinsic Property

E— A A
[0 ;N

iy A-¥% -G
Yy / N/
A
The Old Question: “How can we The New Question: “How can we define
design a network architecture that is an algebra where group symmetry is an
equivariant to group G?” = inherent property of multiplication itself?”
ENNs: Symmetry by Design *c Algebra: Symmetry by Definition

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 50 / 64



Two Paths to Symmetry: A Comparison

Feature

*c Algebra

Symmetry Handling

Flexibility

Composition

Underlying Math

Analogy

Equivariant Neural Networks
(ENNSs)

An architectural constraint, en-
forced layer by layer

Architectures are often group-
specific

Complex; may require framework re-
design

Constrained function approxima-
tion

Building a house from a
blueprint

specific

An algebraic property, intrinsic to
the features

Universal. Any finite group G can de-
fine an algebra

Seamless via direct product groups

(G1><G2><~~-><Gm)

Group representation theory

Writing sentences in a universal lan-
guage

Lior Horesh (IBM)
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Structure-Aware Tensor Compression

e We look for tensor approximation that preserves
@ Symmetries in data
@ Number of modes of the original tensor
e Why symmetries matter: Enable simpler models, better sample efficiency, and
improved generalization

o Why preserve modes: Maintain higher-order correlations lost in the matricization
/ vectorization process

order 3 tensor Higher-order tensors
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Definition: Convolution Tensor

Definition (Convolution Tensor)

Given a finite group G of order n, its corresponding convolution tensor 7 € R™"*"*"

defined by

is

1 ifab=c

0 otherwise

T(a,b,c) = {

for all a,b,c € G

Key Property: For each a € G, T(a,:,:)" = p(a)
The horizontal slices of T give the regular representation of group G

Lior Horesh (IBM)
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Convolution as Tensor Contraction

The convolution of functions f,g: G — R satisfies

(f*a9)(©) =Y f(a)g(®b)T(a,b,c) c:@ c
@

a€G bed

forallce G

Proof idea: The condition ab = c is equivalent to b = a~!c, so T (a,b,c) = Oba-1e

@ Reduces the double sum to the standard convolution definition

@ The convolution tensor 7 acts as a multiplication table in tensor form, enabling
efficient computation of group convolutions through tensor contractions

Lior Horesh (IBM)
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Decomposing the Engine with the Peter-Weyl Theorem

The Peter-Weyl theorem allows us to decompose the convolution tensor 7 into its
fundamental algebraic components:

e Factor Matrices (F(): Generalized
Fourier Transforms that map data from the

group domain into a new ‘symmetry basis’.
r F;t For any finite group, F'(a,:) = rvec(p(a))

e Core Tensor (C): The Peter-Weyl
Tensor: The algebraic "heart” of the group
convolution tensor

Lior Horesh (IBM)
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New Equivariant Tensor Algebra

e View order p tensors as matrices whose entries are order d = p — 2 tensors with
entry-wise addition and multiplication given by convolution along each mode:

(Aik %6 Brj)(er, .. ca) = > Awlar,...,aq)Bii(ay et .. ag'cq),
(a1 ad)GG
o Equivariant product of two of these | | r
matrices is defined by: wﬂ ]L ’ f% Bl
N D ?
(.A *G B)U = Z Azk *Q Bkj ! !i E Boi
k=1 c — [/

Useful properties: Notions of conjugate transpose, identity tensor, unitary tensor.

Connection to Fourier analysis

Lior Horesh (IBM) Tensor Algebra
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Tensor xz-SVD

@ The SVD decomposition of a tensor A is @ g

Azur*GS*GVH D3| = %g% ] g@
= U(,i,0) %a S(iyi,:) xa VI (2,1,1) Jo J7
i=1
with U,V unitary and S f-diagonal. A u S VH

@ The t-rank k£ approximation is

Ae=U(: 1k, ) xa S k1 ks ) %g V(0,10 k, 0)
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Optimal Compression Guarantee

o Eckart-Young-like equivariant result for tensors:

Theorem (Hoyos, Ubaru, Huh, Clarkson, Kilmer, Horesh (2025))

Given a finite group G, let A =U g S g V! be an SVD decomposition for the tensor
AEKéxm. Define A, =U(: ,1: k,: )*xa S(1: k,1: k,: Y *g VH(: ,1: k,: ). Then Ay, is
the best t-rank k approximation of the tensor A. The squared error is

T
A= AxllE =D lIsill%,

1=k+1

where r is the t-rank of A.

e For any t-rank k tensor B, we have that

A = Al < [lA - BlIE

Lior Horesh (IBM)
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Benefit 1: Seamless Composition of Symmetries

@ The x¢g algebra naturally handles direct
product groups: G =G; X Gy X ... X Gy

o Allows the creation of a single algebraic
system that is simultaneously equivariant to
multiple, distinct symmetry groups

Example: An algebra defined by the group

G = SO(3) x S, can natively handle data that is both
rotatable (SO(3)) and contains permutable parts (Sy,).
This is achieved without re-engineering network layers

Lior Horesh (IBM) Tensor Algebra

Group
—>| G =G, XG,x - *G

Permutation
sn
Y.
k4

Translation
73)

Rotation SO(3)
Permutation S,

Translation T'(3)

I
Group

G:G1XG2X...
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Benefit 2: The Native Language of High-Order Symmetries

o Built upon group representation
theory, the mathematical language of
quantum mechanics and field theory

o Can natively represent symmetries
beyond simple geometric
transformations, such as the SU(N)
gauge symmetries crucial in Lattice

QCD

e Provides a principled, first-principles
way to incorporate deep
physical/geometrical priors directly
into machine learning models

SO(3) = Point Groups - SU(2, SU3)
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Benefit 3: Optimal Equivariant Compression

o The g algebra offers a Singular Value
Decomposition, and an Eckart-Young-like
theorem holds:

lﬁ l@@] A=U*GS*GVH

where U and V' are xg-unitary

B8e 00 .
e The truncated xz-SVD provides the
A U S vH provably best low-rank approximation
to a tensor within the space of G-equivariant
structures

o This is not possible with standard SVD or Tucker
decompositions, which are blind to symmetry

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 61 / 64



Summary

*yr Algebra:
e Elementary units are tubes, not scalars
o Matrix-mimetic with optimal representations
e Preserves operator/data structure duality
@ Scalable algorithms with seamless retrofit
*g Algebra:
e Elementary units are d = p — 2 tensors
o Extends to general group symmetries

o Reveals hidden equivariants in
high-dimensional data

Take Away Message

Instead of forcing our world into a simple math,
we can adapt our math to the shape of the world

Lior Horesh (IBM) Tensor Algebra
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@ TM-GCN Pytorch code - https://github.com/IBM/TM-GCN

Covid transmission Matlab simulation : https://github.com/Shashankaubaru/GraphSEIR_aPCE
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