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Introduction

Much of real-world data is inherently multidimensional

Many operators and models are natively multi-way
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Tensor Applications

Machine vision

Latent semantic tensor indexing

Medical imaging

Video surveillance, streaming

Ivanov, Mathies, Vasilescu, Tensor subspace analysis for viewpoint recognition, ICCV, 2009

Shi, Ling, Hu, Yuan, Xing, Multi-target tracking with motion context in tensor power iteration, CVPR, 2014
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Where the Truth Lies ?

If this is true

But also this is true...

Where the truth lies ?
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The Power of Representation

Traditional matrix-based methods assuming data vectorization are generally
agnostic to possible high dimensional correlations

What is that ?

Observe the same data but in a different (matrix rather than vector) representation

Representation matters! some correlations can
only be realized in appropriate representation
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Background and Notation

Notation : An1×n2...,×nd - dth order tensor
▶ 0th order tensor - scalar

▶ 1st order tensor - vector

▶ 2nd order tensor - matrix

▶ 3rd order tensor ...
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Inside the Box

Tube (Fiber) - a vector defined by fixing all but one index while varying the rest

Slice - a matrix defined by fixing all but two indices while varying the rest

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 7 / 64



Tensor Multiplication

Definition

The k - mode multiplication of a tensor A ∈ Rn1×n2×···×nd with a matrix U ∈ Rj×nk

is denoted by A×kU and is of size n1 × · · · × nk−1 × j × nk+1 × · · · × nd

Element-wise

(A×kU)i1···ik−1jik+1···id =

nk∑
ik=1

ai1i2···idujik

k-mode multiplication
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Tensor Network / Diagram Notation

Tensor networks invariants / isomorphism offers means to analyze and identify (space
and time complexity) structure in high dimensional computation

Tensors are notated by nodes, while indices are represented by edges
Connecting index edges implies contraction / summation over connected indices

https://tensornetwork.org/diagrams/Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 9 / 64



How Powerful are Tensor Networks ?

https://arxiv.org/abs/1710.05867
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Low Rank Structure
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Low Rank Property

Express a dth-order tensor A as the sum of rank-1 tensors,

A ≈
r∑

i=1

σi · u(1)i ◦ u(2)i ◦ ... ◦ u(d)i

We seek a dth-order tensor B of rank k ≤ r to optimize:

argmin
B

∥A − B∥F
s.t. B has rank k ≤ r

When d = 2, B is the matrix SVD truncated to k terms (Eckart-Young)
Is there is a similar theoretical result for higher order tensors ?

Theorem (Schmidt 1907; Eckart & Young 1936; Mirsky 1960)

Let A ∈ Cn1×n2 be a matrix with rank(A) = r. The truncated Singular Value
Decomposition (SVD) yields the best low-rank approximation; i.e., for k ≤ r,

Ak =

k∑
i=1

σiuiv
H
i = argmin

rank(B)≤k
∥A−B∥F
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Tensor Decompositions - CP (CANDECOMP-PARAFAC) 2

Find the best tensor rank-r fit1:

min
ai,bi,ci

∥X −
r∑

i=1

σi · ai ◦ bi ◦ ci∥F
▶ Extension of matrix rank

▶ Interpretable

▶ Summing k factors is sub-optimal

▶ Determining rank is NP-hard

The set of tensors of a given size that do not have a best rank-k approximation has
positive volume (i.e., positive Lebesgue measure) for at least some values of k,
implying that lack of best approximation is rather common

1
de Silva, Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, 2008

2
Hitchcock, J Math Phys, 1927; Harshman, 1970; Carroll, Chang, 1970
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Tensor Decompositions - Tucker 4

Find the best multi-linear rank-(k1, k2 ,k3) fit
3:

min
Ak1

,Bk2
,Ck3

∥X − G ×1 Ak1 ×2 Bk2 ×3 Ck3∥F

▶ Higher-order PCA

▶ Compressible

▶ Truncation of full orth. sub-optimal

▶ Hard to interpret
3
De Lathauwer, De Moor, Vandewalle, HOSVD, 2000; Cichocki, Zdunek, Phan, Amari, Nonnegative T&M Factorizations, 2009

4
Tucker, Problems in Measuring Change, 1963
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Tensor Train Decomposition

Tensor Train format of a tensor A

A(i1, . . . , id) =
∑

α0,...,αd

G1(α0, i1, α1)G2(α1, i2, α2), . . . ,Gd(αd−1, id, αd)

Can be represented compactly as a matrix product:

A(i1, . . . , id) = G1[i1]︸ ︷︷ ︸
1×r1

G2[i2]︸ ︷︷ ︸
r1×r2

. . . Gd[id]︸ ︷︷ ︸
rd−1×1

Gi: TT-cores (collections of matrices)

ri: TT-ranks

r = max ri: the maximal TT-rank

TT uses O(dnr2) memory to store O(nd) elements

Efficient only when all ranks are small

Oseledets, Tensor-train decomposition, 2011
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Tensor Algebra Desired Properties
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Groups and Representations

A group is a set G with a binary operation ◦ : G×G → G satisfying the following axioms:

Group Axioms

Closure: For all a, b ∈ G, a ◦ b ∈ G

Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c)
Identity: There exists e ∈ G such that for all a ∈ G, e ◦ a = a ◦ e = a

Inverses: For each a ∈ G, there exists a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e

A group representation is a homomorphism ϱ : G → GL(V )
mapping a group G to the general linear group of a vector space
V , preserving the group operation: i.e.

ϱ(g1 ◦ g2) = ϱ(g1)ϱ(g2), ∀g1, g2 ∈ G
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Rings

A ring is a set R with two binary operations + : R×R → R and · : R×R → R satisfying:

Ring Axioms

Abelian Group under +: (R,+) forms an abelian group with identity 0

Associative Multiplication: For all a, b, c ∈ R, (a · b) · c = a · (b · c)
Distributivity: For all a, b, c ∈ R:

▶ a · (b+ c) = a · b+ a · c (left distributivity)
▶ (a+ b) · c = a · c+ b · c (right distributivity)

Additional properties may include:

Unity: Multiplicative identity 1 ∈ R with 1 · a = a · 1 = a for all a ∈ R

Commutativity: a · b = b · a for all a, b ∈ R

Examples: Z, Q[x], Mn(R), Z/nZ
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Modules

Let R be a ring. A left R-module is an abelian group (M,+) with scalar multiplication
· : R×M → M satisfying:

Module Axioms

Distributivity over module addition: r · (m+ n) = r ·m+ r · n
Distributivity over ring addition: (r + s) ·m = r ·m+ s ·m
Associativity: (rs) ·m = r · (s ·m)

Unity (if R has 1): 1 ·m = m

for all r, s ∈ R and m,n ∈ M .

When R is a field, an R-module is precisely a vector space over R.

Examples: Abelian groups (as Z-modules), Rn (as R-module), Z/nZ (as Z-module)
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Algebra over Tubes

Definition

A tensor X ∈ Fm×p×n is an m× p matrix of tubes - Fn elements

where Fp
n is a free-module over the ring Fn
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Tubal Operation

Let M ∈ Fn×n be invertible. Fn denotes the ring (F1×1×n,+, ⋆M ).

a ⋆M b = M−1(M a⊙M b) = M−1 diag(M a)M b

Tube fiber interpretation:

c = fold
(
(M−1diag(a)M)vec(b)

)
= fold

(
(M−1diag(b)M)vec(a)

)
Commutativity, and characterization using set of diagonal matrices diagonalized by
M and its inverse

Kernfeld, Kilmer, Aeron, Linear Algebra and its Applications, NLA 2015

Avron, Mor, Demystifying Tubal Tensor Algebra. arXiv:2506.03311, 2025
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The ⋆M -Product Algebra

Given A ∈ Rℓ×p×n, B ∈ Rp×m×n, and an invertible n× n matrix M , then

C = A ⋆M B =
(
Â A B̂

)
×3 M

−1

where C ∈ Rℓ×m×n, Â = A×3 M , and A multiplies the frontal slices in parallel

Useful properties: tensor conjugate transpose, unitarity invariance, identity tensor,
connection to Fourier transform, circulant shifts invariance, . . .

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 22 / 64



⋆M SVD and Truncation Optimality

Theorem (Kilmer, Horesh, Avron, Newman, 2021)
Let the t-SVD of A ∈ Rℓ×m×n be given by A = U ⋆M S ⋆M V⊤, with ℓ× ℓ× n orthogonal
tensor U , m×m× n orthogonal tensor V, and ℓ×m× n f-diagonal tensor S

For k < min(l,m), define

Ak = U(:, 1 : k, :)⋆MS(1 : k, 1 : k, :)⋆MV⊤(:, 1 : k, :) =

k∑
i=1

U(:, i, :)⋆MS(i, i, :)⋆MV(:, i, :)⊤

Then
Ak = argmin

Â∈M
∥A − Â∥

where M = {C = X ⋆M Y | X ∈ Rℓ×k×n,Y ∈ Rk×m×n}

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
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Tensor Representation Superiority

Why might we expect the tensor representation to be more informative than
matrix representation?

Theorem (Kilmer, Horesh, Avron, Newman, 2021)

Let X(:, i) = unfold(A(:, i, :)). Let Ak denote the optimal k-term truncated ⋆M
tensor-SVD approximation to A, and let Ak denote the optimal k-term (i.e. rank-k)
matrix SVD approximation to A. Then

∥A−Ak∥F ≤ ∥A−Ak∥F

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
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How it Compares to Other Tensorial Frameworks?

Theoretically, similar superiority results are proved over HOSVD and TT-SVD
Possible to interpret decompositions of the new tensor in CP form
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κ = 1

κ = 290

t-SVDMII, M = Z>
TT-SVD
SVD
HOSVD (κ,κ,n)
HOSVD (k1,k2,k3), k1 or k2 = κ

De Lathauwer, De Moor, J. Vandewalle, A multilinear singular value decomposition, SIMAX 2000

Oseledets, Tensor-train decomposition, SISC 2011

Kilmer, Horesh, Avron, Newman, Tensor-tensor products for optimal representation and compression, PNAS 2021
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Tensor-Tensor Applications - Proper Orthogonal Decomposition
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Proper Orthogonal Decomposition (POD)

Motivation: Solving large-scale dynamical systems is computationally expensive

Dynamic system: ∂ā(t)
∂t = Lā(t) + f(ā(t)) + q̄(t)

For 2D grid nx × ny: state size is nxny × 1, operator L is nxny × nxny

Matrix-based POD:

Collect snapshots {ā1, . . . , āµs} into matrix A ∈ Rnxny×µs

Compute SVD A = USV ⊤

Use first k left singular vectors as projection basis Uk

Galerkin projection: U⊤
k Uk

∂ã
∂t = U⊤

k LUk︸ ︷︷ ︸
k×k

ã+ U⊤
k f(Ukã) + U⊤

k q̄

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 27 / 64



Tensor Proper Orthogonal Decomposition (t-POD)

Key Idea: Preserve spatial structure using tensors

Form snapshot tensor A ∈ Rnx×µs×ny instead of matrix

Compute k-term truncated t-SVD: Ak = Uk ⋆M Sk ⋆M V⊤
k

Use Uk ∈ Rnx×k×ny for projection

Advantages:

t-POD basis better captures spatial structure of solutions

Significantly lower relative error vs. matrix POD for same number of snapshots

Orders of magnitude error reduction observed in diffusion equation experiments

Zhang, Kilmer, Horesh, Avron (2021); Zhang, Tufts PhD thesis, 2017
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Tensor Proper Orthogonal Decomposition - Example

Diffusion Equation: ∂a(r,t)
∂t −∇ · κ∇a(r, t) = 0

Figure: Sample snapshots of solution āj , j = 1 , 3, 7, 9, 12, 15
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Better Basis? - Numerical Support

Diffusion Equation: ∂a(r,t)
∂t −∇ · κ∇a(r, t) = 0

Figure: First 3 basis slices from matrix POD (top) and t-POD (bottom)
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Tensor Proper Orthogonal Decomposition - Error vs. Snapshots Count
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Tensor-Tensor Neural Networks
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Tensor Neural Networks: Motivation

Key Idea: Replace matrix operations with tensor operations in neural networks

Standard Neural Network (Matrix):

aj+1 = σ(Wj · aj + bj) for j = 0, . . . , N − 1

Tensor Neural Network:

A⃗j+1 = σ(Wj ⋆M A⃗j + B⃗j)

Benefits of Tensor Formulation:

Reduced parameters: n4 + n2 → n3 + n2 for n× n images

Preserves multi-dimensional structure of data

Mimetic structure: tensors are M-linear operators (analogous to matrices)

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 33 / 64



Stable Architectures via Hamiltonian Framework

Dynamic Perspective: Network layers = discrete time steps

d

dt
a(t) = σ(W (t) a(t) + b(t)) for t ∈ [0, T ]

Well-Posed Learning requires stability conditions on eigenvalues of Jacobian

Hamiltonian-Inspired System: Antisymmetric ⇒ inherently stable

d

dt

[
A⃗(t)

Z⃗(t)

]
= σ

([
0 W(t)

−W(t)⊤ 0

]
⋆M

[
A⃗(t)

Z⃗(t)

]
+

[
−B⃗(t)
B⃗(t)

])

Leapfrog Integration: Stable for purely imaginary eigenvalues

Z⃗j+ 1
2
= Z⃗j− 1

2
− hσ(W⊤

j ⋆M A⃗j + B⃗j), A⃗j+1 = A⃗j + hσ(Wj ⋆M Z⃗j+ 1
2
+ B⃗j)
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Tensor Neural Network Training

Forward Propagation: A⃗j+1 = σ(Wj ⋆M A⃗j + B⃗j)

Objective Function:

E =
1

2
∥WN · unfold(A⃗N )− c∥2F

Backward Propagation:

δA⃗j = W⊤
j ⋆M (δA⃗j+1 ⊙ σ′(Z⃗j+1))

Parameter Updates (Gradient Descent):

δWj = (δA⃗j+1 ⊙ σ′(Z⃗j+1)) ⋆M A⃗⊤
j

δB⃗j = δA⃗j+1 ⊙ σ′(Z⃗j+1)

where Z⃗j+1 = Wj ⋆M A⃗j + B⃗j and ⊙ is pointwise product
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Mimetic Structure

Update relations are analogous to their matrix counterparts by no coincidence

In the M-product framework, tensors are M-linear operators just as matrices are
linear operators

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 36 / 64



Experimental Results

MNIST (28× 28 grayscale, 60K train / 10K test)

Tensor networks achieve comparable accuracy with 28× fewer parameters

Parameters: Matrix 284N vs. Tensor 283N

CIFAR-10 (32× 32× 3 RGB, 50K train / 10K test)

Tensor networks outperform matrix networks at same depth

Better accuracy with 32× fewer parameters

Key Findings:

Hamiltonian + Leapfrog: stable even with large step sizes (h = 1)

Standard ResNet: unstable, requires small h (≤ 0.25)

Tensor formulation preserves spatial structure ⇒ better generalization

Newman, Horesh, Avron, Kilmer, Stable tensor neural networks for rapid deep learning,
Frontiers in Big Data, 2024

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 37 / 64



Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: α = 0.01, σ = tanh, 50 epochs, batch size = 10, N = 32

Regularized: 1
2h ||wj+1 −wj ||2F for 1× 1× 3 tubes wj

Resnet with h = 0.5
aj+1 = aj + hσ(wj ∗ aj + bj)
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Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: α = 0.01, σ = tanh, 50 epochs, batch size = 10, N = 32

Regularized: 1
2h ||wj+1 −wj ||2F for 1× 1× 3 tubes wj

Resnet with h = 0.25
aj+1 = aj + hσ(wj ∗ aj + bj)
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Stability in Motion

Data: 1200 train, concentric spheres (417 black, 466 red, 317 blue)
Parameters: α = 0.01, σ = tanh, 50 epochs, batch size = 10, N = 32

Regularized: 1
2h ||wj+1 −wj ||2F for 1× 1× 3 tubes wj

Leapfrog with h = 1{
z
j+1

2
= z

j− 1
2

− hσ(w⊤
j ∗ aj + bj)

aj+1 = aj + hσ(wj ∗ z
j+1

2
+ bj)

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 38 / 64



Tensor-Tensor Graph Convolutional Neural Networks
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TensorGCN: Motivation and Method

Motivation

Graphs – popular data structures to effectively represent interactions

Real world applications involve time evolving graphs; learning representations of
dynamic graphs essential

Proposed Approach

Novel tensor variant of graph convolutional network (GCN)

Captures correlation over time via tensor M-product framework

Two-Layer TensorGCN Model:

Z = softmax
(
L ⋆M σ

(
L ⋆M X ⋆M W(0)

)
⋆M W(1)

)
Graph Tasks: Link prediction, Edge classification, Node classification
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TM-GCN

X1

TensorGCN

T

2 Embedding

1

Time

A1

Graph tasks
Link prediction 

Edge classification

Node classification

Dynamic graph

Adjacency tensor

Feature Tensor
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TensorGCN: Experimental Results (Edge Classification)

Table 1: Results without symmetrizing adjacency matrices (higher is better)

Method Bitcoin OTC Bitcoin Alpha Reddit Chess

WD-GCN 0.2062 0.1920 0.2337 0.4311
EvolveGCN 0.3284 0.1609 0.2012 0.4351
GCN 0.3317 0.2100 0.1805 0.4342
TensorGCN (Ours) 0.3529 0.2331 0.2028 0.4708

Table 2: Results with symmetrized adjacency matrices (higher is better)

Method Bitcoin OTC Bitcoin Alpha Reddit Chess

WD-GCN 0.1009 0.1319 0.2173 0.4321
EvolveGCN 0.0913 0.2273 0.1942 0.4091
GCN 0.0769 0.1538 0.1966 0.4369
TensorGCN (Ours) 0.3103 0.2207 0.2071 0.4713

Malik, Ubaru, Horesh, Kilmer, Avron, Dynamic graph convolutional networks using the tensor
M-Product, SIAM SDM, 2021
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Optimal Symmetry-Aware Compression of Multiway Data
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The Universal Importance of Symmetry

Noether’s Theorem: Symmetry ⇔ Conservation

Implication for ML

Models that respect symmetry inherit conservation properties automatically
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Symmetries in Data

Real-world data exhibit fundamental symmetries:

▶ Graphs: Permutation symmetry
▶ Molecules: 3D rotational symmetry
▶ Images/Videos: Translational symmetry
▶ Time series: Temporal invariance
▶ Crystals/Fingerprints: Reflection symmetry
▶ Financial/Medical data: Scale invariance

Groups mathematically model data symmetries:
A set closed under an associative operation, with
identity and inverse elements
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Equivariant Models

Equivariant models respect data symmetries
Definition: A function f is equivariant to group G if:

f(g · x) = g · f(x) ∀g ∈ G

If we transform the input, the output transforms consistently
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Translating Physical Symmetries into Machine Learning Language

We express symmetry in models through two primary properties: Invariance and Equivariance

Invariance (The prediction doesn’t change)

A function f is invariant to a transformation g if
the output remains identical:

f(g(x)) = f(x)

Example: Classifying a 3D object. The label
(“airplane”) should not change if the object is
rotated

X Y

X Y

f(x)

g(x) id

f(g(x))

Equivariance (The prediction transforms
with the input)

A function f is equivariant if transforming the
input and then applying the function is the same
as applying the function and then transforming the
output:

f(g(x)) = g(f(x))

Example: Predicting a force field on a molecule.
If the molecule rotates, the force vectors must
rotate with it

X Y

X Y

f(x)

g(x) g(y)

f(g(x))
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Translating Physical Symmetries into Machine Learning Language

We express symmetry in models through two primary properties: Invariance and Equivariance

Credits: Maurice Weiler

Lior Horesh (IBM) Tensor Algebra ICERM, Randomized Algebra, 2026 48 / 64

https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/


The Brute-Force Approach vs. Principled Design

How can a model learn to respect symmetries?

Learning by Rote (Data Augmentation)
Present the model with the same data in many
different transformed states (e.g., rotated,
translated)

– Computationally Expensive: Requires
massive datasets and long training times.

– Incomplete: Can never cover the full
continuum of transformations (e.g., all
possible rotations).

– Not Robust: Only achieves approximate
invariance/equivariance

“In order for a FC layer to learn that a cer-
tain pattern is translation invariant, you need
to data augment it to all possible positions
(roughly N2 extra training examples)”

Generalizing by Design
(Equivariant Architecture)

Constrain the model’s hypothesis space to
functions that are guaranteed to be equivariant

– The model does not need to learn the
symmetry; it is an inherent property of its
operations

– This ‘bakes in’ the equivariance, leading to
automatic generalization across all
transformations within the group
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A Paradigm Shift: From Architectural Constraint to Intrinsic Property

The Old Question: “How can we
design a network architecture that is
equivariant to group G?”

ENNs: Symmetry by Design

=⇒
The New Question: “How can we define
an algebra where group symmetry is an
inherent property of multiplication itself?”

⋆G Algebra: Symmetry by Definition
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Two Paths to Symmetry: A Comparison

Feature Equivariant Neural Networks
(ENNs)

⋆G Algebra

Symmetry Handling An architectural constraint, en-
forced layer by layer

An algebraic property, intrinsic to
the features

Flexibility Architectures are often group-
specific

Universal. Any finite group G can de-
fine an algebra

Composition Complex; may require framework re-
design

Seamless via direct product groups
(G1 ×G2 × · · · ×Gm)

Underlying Math Constrained function approxima-
tion

Group representation theory

Analogy Building a house from a specific
blueprint

Writing sentences in a universal lan-
guage
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Structure-Aware Tensor Compression

We look for tensor approximation that preserves
1 Symmetries in data
2 Number of modes of the original tensor

Why symmetries matter: Enable simpler models, better sample efficiency, and
improved generalization

Why preserve modes: Maintain higher-order correlations lost in the matricization
/ vectorization process
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Definition: Convolution Tensor

Definition (Convolution Tensor)

Given a finite group G of order n, its corresponding convolution tensor T ∈ Rn×n×n is
defined by

T (a, b, c) =

{
1 if ab = c

0 otherwise

for all a, b, c ∈ G

Key Property: For each a ∈ G, T (a, :, :)⊤ = ρ(a)
The horizontal slices of T give the regular representation of group G
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Convolution as Tensor Contraction

The convolution of functions f, g : G → R satisfies

(f ⋆G g)(c) =
∑
a∈G

∑
b∈G

f(a)g(b)T (a, b, c)

for all c ∈ G

f ⋆G g
c

=

f

T
g

a

b

c

Proof idea: The condition ab = c is equivalent to b = a−1c, so T (a, b, c) = δb,a−1c

Reduces the double sum to the standard convolution definition

The convolution tensor T acts as a multiplication table in tensor form, enabling
efficient computation of group convolutions through tensor contractions
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Decomposing the Engine with the Peter-Weyl Theorem

The Peter-Weyl theorem allows us to decompose the convolution tensor T into its
fundamental algebraic components:

Factor Matrices (FG): Generalized
Fourier Transforms that map data from the
group domain into a new ‘symmetry basis’.
For any finite group, F (a, :) = rvec(ρ(a))

Core Tensor (C): The Peter-Weyl
Tensor: The algebraic ”heart” of the group
convolution tensor
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New Equivariant Tensor Algebra

View order p tensors as matrices whose entries are order d = p− 2 tensors with
entry-wise addition and multiplication given by convolution along each mode:

(Aik ⋆G Bkj)(c1, . . . , cd) =
∑

(a1...,ad)∈G

Aik(a1, . . . , ad)Bkj(a
−1
1 c1, . . . , a

−1
d cd),

Equivariant product of two of these
matrices is defined by:

(A ⋆G B)ij =
m∑
k=1

Aik ⋆G Bkj

Useful properties: Notions of conjugate transpose, identity tensor, unitary tensor.
Connection to Fourier analysis
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Tensor ⋆G-SVD

The SVD decomposition of a tensor A is

A = U ⋆G S ⋆G VH

=

r∑
i=1

U(:, i, :) ⋆G S(i, i, :) ⋆G VH(:, i, :)

with U ,V unitary and S f -diagonal.

The t-rank k approximation is

Ak = U( : , 1: k, : ) ⋆G S(1 : k, 1: k, : ) ⋆G VH( : , 1: k, : )
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Optimal Compression Guarantee

Eckart-Young-like equivariant result for tensors:

Theorem (Hoyos, Ubaru, Huh, Clarkson, Kilmer, Horesh (2025))

Given a finite group G, let A = U ⋆G S ⋆G VH be an SVD decomposition for the tensor
A ∈ Kℓ×m

G . Define Ak = U( : , 1: k, : ) ⋆G S(1 : k, 1: k, : ) ⋆G VH( : , 1: k, : ). Then Ak is
the best t-rank k approximation of the tensor A. The squared error is

∥A −Ak∥2F =

r∑
i=k+1

∥si∥2F ,

where r is the t-rank of A.

For any t-rank k tensor B, we have that

∥A −Ak∥2F ≤ ∥A− B∥2F
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Benefit 1: Seamless Composition of Symmetries

The ⋆G algebra naturally handles direct
product groups: G = G1 ×G2 × . . .×Gd

Allows the creation of a single algebraic
system that is simultaneously equivariant to
multiple, distinct symmetry groups

Example: An algebra defined by the group
G = SO(3)× Sn can natively handle data that is both
rotatable (SO(3)) and contains permutable parts (Sn).
This is achieved without re-engineering network layers

Rotation SO(3)

Permutation Sn

Translation T (3)
⇓

Group
G = G1 ×G2 × . . .

=⇒ ⋆G
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Benefit 2: The Native Language of High-Order Symmetries

Built upon group representation
theory, the mathematical language of
quantum mechanics and field theory

Can natively represent symmetries
beyond simple geometric
transformations, such as the SU(N)
gauge symmetries crucial in Lattice
QCD

Provides a principled, first-principles
way to incorporate deep
physical/geometrical priors directly
into machine learning models
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Benefit 3: Optimal Equivariant Compression

The ⋆G algebra offers a Singular Value
Decomposition, and an Eckart-Young-like
theorem holds:

A = U ⋆G S ⋆G V H

where U and V are ⋆G-unitary

The truncated ⋆G-SVD provides the
provably best low-rank approximation
to a tensor within the space of G-equivariant
structures

This is not possible with standard SVD or Tucker
decompositions, which are blind to symmetry
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Summary

⋆M Algebra:

Elementary units are tubes, not scalars

Matrix-mimetic with optimal representations

Preserves operator/data structure duality

Scalable algorithms with seamless retrofit

⋆G Algebra:

Elementary units are d = p− 2 tensors

Extends to general group symmetries

Reveals hidden equivariants in
high-dimensional data

Take Away Message

Instead of forcing our world into a simple math,
we can adapt our math to the shape of the world
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