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Linear Algebra 101

Symmetric A1, . . . ,Ad ∈ Rn×n commute pairwise if and only if there

is orthogonal Q ∈ Rn×n that jointly diagonalizes them:

QTA1Q =

[
@
@@

]
, . . . , QTAdQ =

[
@
@@

]
.

Questions one might ask:

• How does one actually compute Q?

• Do commuting matrices ever show up in practice / applications?

• Why is randomization important?
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Linear Algebra 101

Symmetric A1, . . . ,Ad ∈ Rn×n commute pairwise if and only if there

is orthogonal Q ∈ Rn×n that jointly diagonalizes them:

QTA1Q =

[
@
@@

]
, . . . , QTAdQ =

[
@
@@

]
.

Structure of talk:

1. Motivating example:

Roots of polynomials

2. Detailed picture:

Randomized joint diagonalization of symmetric commuting matrices

3. Further extensions and applications

4. Back to the roots
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Roots of polynomials



Polynomial roots as eigenvalue problems

1 polynomial in 1 variable:

1. Build linearization, e.g., companion

matrix

2. Solve matrix eigenvalue problem

m polynomials in m variables:

1. Build m multiplication matrices

2. Solve joint matrix eigenvalue problem
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Construction of multiplication matrices

Example:

p1(x , y) = x2 − 1 = 0, p2(x , y) = y2 − 1 = 0.

Step 1: Build basis for quotient algebra

A = C[x , y ]/I

with ideal I = ⟨x2 − 1, y2 − 1⟩. Because x2 ≡ 1, y2 ≡ 1,

can choose

B = {1, x , y , xy}.

General construction involves Gröbner bases or

Sylvester-like / Macaulay-like resultant matrices.
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Construction of multiplication matrices

Step 2: Consider multiplication by x and y :

Lx : A → A, Lx : p(x , y) 7→ x · p(x , y),

Ly : A → A, Ly : p(x , y) 7→ y · p(x , y).

Find matrix representation with respect to B:

Mx =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , My =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

Key property: MxMy = MyMx

(reflects that multiplication by x and y commute).
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Eigenvalues of multiplication matrices

Slightly nontrivial: A common root (λx , λy ) of p1, p2 is a joint eigenvalue

Mxv = λxv , Myv = λyv ,

with joint eigenvector v (obtained from evaluating B in x = λx , y = λy ).

Problem:

Mx =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , My =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


have double eigenvalues ⇝

• v not well-defined by individual matrices

• difficult to pair eigenvalues of Mx and My
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Eigenvalues of multiplication matrices

Simple trick: Choose µx , µy ∼ N (0, 1) and form

M = µxMx + µyMy .

Eigenvalues of M are simple a.s.!

Rayleigh quotients with each of the four eigenvectors v of M recover

common roots:

λx = vTMxv , λy = vTMyv .

Idea has been around for long time in root finding [Corless et al.’1997].

Difficulties encountered in general case:

• Multiplication matrices are generally nonsymmetric

• Multiplication matrices quickly become huge

• Joint eigenvector method only works well in generic situations

(simple common roots / joint eigenvalues)

• Numerical stability issues [Graf/Townsend’2026]
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Joint diagonalization of

commuting symmetric matrices



Nearly commuting matrices

Linear Algebra 101 task

Given commuting symmetric matrices A1, . . . ,Ad , find orthogonal

matrix Q that jointly diagonalizes family:

QTA1Q =

[
@
@@

]
, . . . , QTAdQ =

[
@
@@

]
.

Problem: Not well-posed in finite-precision arithmetic. Roundoff destroys

commutativity. Moreover, in many applications, commutativity is just an

idealistic model assumption.

A,B are nearly commuting if ∃ ∥△A∥2 ≈ 0, ∥△B∥2 ≈ 0 such that

A+△A,B +△B commute.
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Nearly commuting matrices

Robustified Linear Algebra 101 task

Given nearly commuting symmetric matrices A1, . . . ,Ad find orthogonal

matrix Q that nearly diagonalizes A1, . . . ,Ad .

Applications beyond root finding:

• Blind Source Separation: Separation of source signal by joint

diagonalization of cumulant tensor slices [Cardoso/Soloumiac’1993],

covariance matrices [Pham/Cardoso’2001], autocorrelation matrices

[Belouchrani et al.’1997].

• Parameter estimation in latent variable models through orthogonal

decomposition of moment tensors = joint diagonalization of slices

[Anandkumar et al.’2014]

• Manifold learning [Eynard et al.’2015]

• Parameter identification [Ehler et al.’2019]

• Computer graphics [Kovantsky et al.’2013]
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Existing optimization-based approaches

Most numerical algorithms for joint diagonalization based on

optimization:

min
QTQ=I

L(Q),

where loss function L measures distance from being diagonal.

Popular choices:

• General symmetric A1, . . . ,Ad :

L(Q) :=
d∑

k=1

∥∥offdiag(QTAkQ)
∥∥2
F
,

where offdiag extracts off-diagonal part of a matrix.

• Symmetric positive definite A1, . . . ,Ad :

L(Q) :=
1

2n

d∑
k=1

[log det diag(QTAkQ)− log det(QTAkQ)],

KL divergence [Pham’2001]
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Existing optimization-based approaches

Optimization algorithms:

• Jacobi-like algorithms = coordinate descent [Bunse-Gerstner et al.’1993]

• Block coordinate descent [Pham’2001]

• Quasi-Newton methods [Ziehe et al.’2003], [Ablin et al.’2018]

• Riemannian gradient descent [Afsari/Krishnaprasad’2004]

• Riemannian trust region [Absil/Gallivan’2006]

• Riemannian Newton [Alyani et al.’2017]

• . . .
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Randomized approach

Sketched family: A(µ) = µ1A1 + µ1A2 + · · ·+ µdAd for µ ∼ N (0, Id).

A1 A2 · · · Ad

A(µ)

µ1 µ2 µd

Simple idea: Obtain Q from diagonalizing symmetric matrix A(µ).

Proposed and applied several times in the literature:

• Parameter identification problems [Ehler et al.’2019]

• Joint eigenvector method for root finding [Corless et al.’1997]

• Orthogonal decomposition of tensors [Anandkumar et al.’2012/2014]

• CP and related decompositions for tensors [Evert et al.’2022],

[Telen/Vannieuwenhoven’2021], . . .

• . . . 12



How does randomness help?

Assume exact commutativity and n = 2.

Two cases:

• Every matrix A1, A2, , . . . , Ad has double eigenvalues:

A1 =

(
λ1 0

0 λ1

)
, A2 =

(
λ2 0

0 λ2

)
, . . . ,Ad =

(
λd 0

0 λd

)
.

Any orthogonal matrix Q will do.

• At least one matrix Ak has two simple eigenvalues ⇝

A(µ) = µ1A1 + µ2A2 + · · ·+ µdAd

has two simple eigenvalues a.s. and, in turn, Q is essentially

uniquely defined and can be obtained from diagonalizing A(µ).

New contribution [He/DK’2024]: Analysis when A1, . . . ,Ad nearly commute.

Note: Previous analyses either assume exact commutativity [Anandkumar et

al.’2014] or sufficiently large eigenvalue gaps [Ehler et al.’2019].
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Idea of analysis for nearly commuting family

A1, . . . ,Ad nearly commuting ⇝ ∃ commuting D1, . . . ,Dd s.t.

Ak = Dk + Ek , ∥E1∥2F + · · ·+ ∥Ed∥2F ≤ ε2.

Let x be joint eigenvector for simple (joint) eigenvalue (λ1, . . . , λd) of

D1, . . . ,Dk . Then

x̃ = x + (λ(µ)I − D(µ))†E (µ)x + O(ε2).

is corresp. eigenvector of A(µ) [Stewart/Sun’1990, Greenbaum/Li/Overton’2020].

Residual measures whether x̃ is a good eigenvector for Ak :

rk = λk x̃ − Ak x̃ .

Residuals determine off-diagonal part in QTAkQ.

∥rk∥2 ≲ ∥ (λk I − Dk)(λ(µ)I − D(µ))†︸ ︷︷ ︸
wlog diagonal

∥2∥E (µ)∥2
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Idea of analysis for nearly commuting family

Norm of diagonal matrix

(λ1I − D1)(λ(µ)I − D(µ))†

measures (asymptotically) magnification of input error. Given another

joint eigenvalue (ξ1, . . . , ξd), diagonal entry takes the form

λ1 − ξ1
µ1(λ1 − ξ1) + µ2(λ1 − ξ2) + · · ·+ µd(λ1 − ξd)

=
1

µ1 + µ2
λ1−ξ2
λ1−ξ1

+ · · ·+ µd
λ1−ξd
λ1−ξ1

= ⟨µ, v⟩−1

Important observations:

• Cancellation of (small/problematic) gap λ1 − ξ1

• ⟨µ, v⟩ ∼ N (0, ∥v∥22) and ∥v∥2 ≥ 1
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Anticoncentration

−3 −2 −1 1 2 3

pdf of ⟨µ, v⟩ for Gaussian random µ

P
{
− R ≤ ⟨µ, v⟩−1 ≤ R

}
∼ R−1

Small probability that |⟨µ, v⟩| is large!
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Idea of analysis for nearly commuting family

Summary:

• Residual has norm ≤ O(Rε) with probability ≥ 1− R−1.

• Union bound: Off-diagonal parts of QTA1Q, . . . ,QTAdQ have norm

≤ O(Rε) with probability ≥ 1− R−1

BUT:

• Analysis assumes simple eigenvalues.

• Neglected higher-order terms in asymptotic perturbation result

critically depend on eigenvalue gaps.

Solution:

• Cluster eigenvalues and consider invariant subspaces belonging to

each cluster.

• Use non-asymptotic perturbation results for invariant subspaces

[Stewart’1971, Karow/DK’2014]
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Robust recovery

Robust recovery of Q [He/DK’2024]

Suppose that A1, . . . ,Ad is ε-near to a commuting family and Q

diagonalizes A(µ) = µ1 + · · ·+ µd for µ ∼ N(0, In). Then:

Q diagonalizes each matrix A1, . . . ,Ad up to error O(Rε)

with probability at least 1− R−1.

+ Universal result. No assumptions on eigenvalue gaps.

− Constant in O(Rε) proportional to n3.5.

DRJD = Increased accuracy by combining several samples through

successive deflation.
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Experiments for synthetic data

10 commuting randomly generated 100× 100 symm pos def matrices

only perturbed by roundoff error

Time (in msec) Offdiag error

QNDIAG 400 9.6× 10−10

FFDIAG 3600 8.3× 10−11

JADE 2200 2.6× 10−7

RJD 20 2.8× 10−11

DRJD 25 9.9× 10−12

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et

al.’2018].

FFDIAG Newton-like method for standard cost function [Ziehe et

al.’2003].

JADE Jacobi method [Bunse-Gerstner et al.’1993], [Cardoso/Souloumiac’1996].

RJD/DRJD Randomized algorithms (3 trials for RJD).
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Experiments for synthetic data

10 commuting randomly generated 100× 100 symm pos def matrices

perturbed by ≈ 10−5

Time (in msec) Offdiag error

QNDIAG 290 1.1× 10−5

FFDIAG 3400 9.5× 10−6

JADE 2070 9.5× 10−6

RJD 20 8.1× 10−4

DRJD 310 1.3× 10−5

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et

al.’2018].

FFDIAG Newton-like method for standard cost function [Ziehe et

al.’2003].

JADE Jacobi method [Bunse-Gerstner et al.’1993], [Cardoso/Souloumiac’1996].

RJD/DRJD Randomized algorithms (3 trials for RJD).
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Experiments for synthetic data

10 commuting randomly generated 100× 100 symm pos def matrices

perturbed by ≈ 10−1

Time (in msec) Offdiag error

QNDIAG 350 1.1× 10−1

FFDIAG 3830 9.5× 10−2

JADE 2530 9.5× 10−2

RJD 20 1.94

DRJD 318 1.4× 10−1

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et

al.’2018].

FFDIAG Newton-like method for standard cost function [Ziehe et

al.’2003].

JADE Jacobi method [Bunse-Gerstner et al.’1993], [Cardoso/Souloumiac’1996].

RJD/DRJD Randomized algorithms (3 trials for RJD).
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Fun application: Diagonalizing normal matrices

Linear Algebra 101

Square matrix A is normal iff its Hermitian part (A+ A∗)/2 and

skew-Hermitian part (A− A∗)/2 commute.

Structure-exploiting approach for diagonalizing normal matrix:

[U,~] = eig(randn*(A+A’)+1i*randn*(A-A’));

D = diag(diag(U’*A*U));

Requires 0.55 seconds and attains residual 3× 10−11 for 1000× 1000

unitary matrix.

Versus unstructured approach:

[U,S] = schur(A); D = diag(diag(S));

Requires 3.4 seconds and attains residual 3× 10−14.
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Partial joint diagonalization



Spectral clustering

Spectral clustering [von Luxburg’2007] uses eigenvectors belonging to smallest

k nonzero eigenvalues of graph Laplacian L to cluster data.

Eigenvectors X ∈ Rn×k belonging to smallest k eigenvalues minimizes

trace(XTLX )

among all matrices satisfying XTX = I , XT1 = 0.
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Multi-modal spectral clustering

Graph Laplacians L1, . . . , Ld capturing different modalities of the same

data. Taking different modalities into account can improve robustness of

clustering.

Existing multi-modal spectral clustering methods [Dodero et al.’2013, Eynard et

al.’2015, Khachatrian et al.’2021] aim at computing shared approximate basis of

eigenvectors across modalities. Computed through optimization-based

joint diagonalization of L1, . . . , Ld .

Measure for quality of joint embedding:

s(X ) =
∥∥[trace(XTL1X ), . . . , trace(XTLdX )

]∥∥
∞.
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Multi-modal spectral clustering

Theorem [He/Pados/DK’2025]

Letting ∆d−1 denote standard d-dimensional simplex, it holds that

min
XT 1=0
XTX=Ik

s(X ) = max
µ∈∆d−1

k∑
i=1

λi (L(µ)).

Proof via duality.

Extends result for k = 1 by [Coifman/Marshall/Steinerberger’2023].

⇝ Simple randomized method:

• Sample several random µ ∈ ∆d−1.

• Choose L(µ) = µ1L1 + · · ·+ µdLd that has largest sum of k smallest

eigenvalues.

• Return X = eigenvectors belonging to smallest k eigenvalues of

L(µ).
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Results on benchmark examples

Clustering performance in terms of normalized mutual information

(NMI); higher is better:

RJD-BASE = random. method. (200 samples)

BASE Smoothness = projected GD applied to s(X ).
26



Simultaneous diagonalization by

congruence



Simultaneous diagonalization by congruence (SDC)

SDC

Family of symmetric matrices A1, . . . ,Ad ∈ Rn×n is SDC if there exists

invertible X such that

XTA1X =

[
@
@@

]
, . . . , XTAdX =

[
@

@@

]
.

[He/Nguyen’2022]: Family is SDC if and if there is invertible P such that

PTA1P, . . .P
TAdP commute pairwise.

Important special case: If ∃θ such that

A(θ) = θ1A1 + · · ·+ θdAd is positive definite,

can choose P = L−1 for Cholesky factorization A(θ) = LLT .
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Simultaneous diagonalization by congruence (SDC)

Applications:

• SDC equivalent to tensor rank-n CP decomposition of third-order

tensor with partial symmetries [Domanov/de Lathauwer’2015]

• Blind Source Separation [Chabriel et al.’2014]

• Remote sensing [Khachatrian et al.’2021]

• Quadratic Programming [Jiang/Li’2016]

All previous algorithms optimization-based:

• General case: Riemannian optimization to minimize off-diagonal

norm over OB(n, n).
Riemannian trust region [Absil/Gallivan’2006], Riemannian BFGS [Bouchard

et al.’2020], . . .

• Positive definite case: Minimization of KL divergence.

Jacobi-like [Pham’2001], Quasi-Newton [Ablin/Cardoso/Gramfort’2018], . . .
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Randomized SDC (RSDC)

Randomized SDC (RSDC)

Choose two independent θ, µ ∼ N (0, Id) and form

A(µ) = µ1A1 + · · ·+ µdAd , A(θ) = θ1A1 + · · ·+ θdAd .

Diagonalize matrix pencil

XTA(µ)X − λXTA(θ)X =

[
@
@@

]
− λ

[
@

@@

]
,

using, e.g., QZ algorithm (this may not be possible).

Exact recovery: If A1, . . . ,Ad is exactly SDC then X diagonalizes family

by congruence a.s.
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RSDC: Robust recovery

Robust recovery [He/DK’2024]

Suppose that A1, . . . ,Ad is ε-near to SDC and X diagonalizes

A(µ)− λA(θ) for [µ, θ] ∼ N(0, I2n). Then:

X diagonalizes each matrix A1, . . . ,Ad up to error O(R2∥X∥22ε)

with probability at least 1− R−1.

Simplifications when A1, . . . ,Ad are positive (semi-)definite:

• Choose θ1 = · · · = θd = 1/d .

• Diagonalization of A(µ)− λA(θ) via Cholesky of A(θ).

• Robust recovery guarantee improves to O(R∥X∥22ε).
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Application to BSS

Blind Source Separation for EEG recordings [Congedo et al.’2014]:

Joint diagonalization of sample covariance

matrices by congruence:

Randomized SDC [He/DK’2024]

+ quasi-Newton opt [Ziehe et al.’2004]

requires 3s vs. 280s for SOTA (Pham’s

Jacobi-like method) applied to eye-blinking

benchmark, at comparable accuracy.
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Back to the roots



Eigenvalues of multiplication matrices

Recall that computing roots of d-variate polynomials requires computing

joint eigenvalues of (commuting) multiplication matrices:

Mx1 , Mx2 , . . . ,Mxd .

Randomized approaches based on linear combination

M(µ) = µ1Mx1 + µ2Mx2 + · · ·+ µdMxd , µ ∼ Unif
(
Sd−1
C
)
.

RQ1 Compute (right) eigenvectors v of M(µ) and obtain

common roots from (one-sided) Rayleigh quotients:

λ1 =
vTMx1v

vT v
, λ2 =

vTMx2v

vT v
, . . . , λd =

vTMx1v

vT v
.

RQ2 Compute right and left eigenvectors v ,w of M(µ) and

obtain common roots from (two-sided) Rayleigh quotients:

λ1 =
wTMx1v

wT v
, λ2 =

wTMx2v

wT v
, . . . , λd =

wTMx1v

wT v
.
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Results for randomized approaches

Robust computation of simple roots [He/DK/Plestenjak’2025]

Let λ = (λ1, . . . , λd) be simple common root of d-variate polynomial

system. Suppose that λ̃RQ1 is computed from applying RQ1 to

multiplication matrices perturbed by error of norm ≤ ε. Then∥∥λ− λRQ1
∥∥ ≲ R · cond(λ) · ε+ O(ε2)

holds with probability 1− R−2.

• Improved tail behavior R−2 thanks to using complex random

numbers: µ ∼ Unif
(
Sd−1
C
)
.

• cond(λ): condition number of λ as a joint eigenvalue of

multiplication matrices.

• Result extends to semi-simple roots.

• Analysis of RQ2 more complicated / more pessimistic, although RQ2

performs better in practice.
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Results for randomized approaches

Accuracy of different methods for computing common roots of four

standard benchmark examples.

Rschur Common roots via Schur decomposition of randomized

linear combination of multiplication matrices [Telen/Van

Barel’2018].

schur Common roots via Schur decomposition of first

multiplication matrix [Vermeersch/de Moor’2023]

RQ2 Our method.

Timing nearly identical as compt of multiplication matrices expensive. 34



Conclusions



Conclusions

• Randomization turns complicated joint eigenvalue problems into

standard eigenvalue problems that can be solved with off-the-shelve

software.

• Randomization yields highly competitive performance (time,

accuracy) in a wide range of applications.

For joint diagonalization tasks, randomization replaces

optimization-based approaches or delivers excellent initial iterates.

• Analysis based on (lots of) perturbation analysis + anticoncentation.
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