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Linear Algebra 101

Symmetric Ay, ..., Aqg € R™" commute pairwise if and only if there
is orthogonal @ € R"*" that jointly diagonalizes them:

QTAIQ = [\} L QTAQ = {\]

Questions one might ask:

e How does one actually compute Q7
e Do commuting matrices ever show up in practice / applications?

e Why is randomization important?



Linear Algebra 101

Symmetric Ay, ..., Aqg € R™" commute pairwise if and only if there
is orthogonal @ € R"*" that jointly diagonalizes them:

QTAIQ = [\} L QTAQ = {\]

Structure of talk:

1. Motivating example:
Roots of polynomials

2. Detailed picture:
Randomized joint diagonalization of symmetric commuting matrices

3. Further extensions and applications

4. Back to the roots



Roots of polynomials



Polynomial roots as eigenvalue problems

Numerical
Polynomial
Algebra

1 polynomial in 1 variable:

1. Build linearization, e.g., companion
matrix

2. Solve matrix eigenvalue problem
m polynomials in m variables:
1. Build m multiplication matrices

2. Solve joint matrix eigenvalue problem |




Construction of multiplication matrices

Example:

pi(x,y) =x*—1=0, px,y)=y>—1=0.

Step 1: Build basis for quotient algebra
A=C[x,y]/!

with ideal / = (x> — 1, y? — 1). Because x> =1, y2 =1,
can choose
B={1, x, y, xy}.

General construction involves Grobner bases or

Sylvester-like / Macaulay-like resultant matrices.



Construction of multiplication matrices

Step 2: Consider multiplication by x and y:
Li: A=A, Leip(x,y) = x - p(x,y),

L,:A—= A L,:plx,y)—=y-p(x,y).

Find matrix representation with respect to B:

01 0O 0 01 O0
M, — 1.0 0 0 .M, = 0 0 01
0 0 01 10 00
0 01 O 0100

Key property: MM, = M, M,
(reflects that multiplication by x and y commute).



Eigenvalues of multiplication matrices

Slightly nontrivial: A common root (A, A,) of p1, p» is a joint eigenvalue
Myv = A, Myv=2\v,

with joint eigenvector v (obtained from evaluating B in x = A, y = \)).

Problem:
01 00 0 01 0
M, — 1 0 0 O oM, = 0 0 0 1
0 0 0 1 1 0 0 O
0 01 0 01 00

have double eigenvalues ~~

e v not well-defined by individual matrices

e difficult to pair eigenvalues of M, and M,



Eigenvalues of multiplication matrices

Simple trick: Choose fiy, i1, ~ N(0,1) and form
M = p My + 11y M, .
Eigenvalues of M are simple a.s.!
Rayleigh quotients with each of the four eigenvectors v of M recover
common roots:
A = le\/IXv7 Ay = vTMyv.

Idea has been around for long time in root finding [Corless et al.'1997].

Difficulties encountered in general case:

e Multiplication matrices are generally nonsymmetric

e Multiplication matrices quickly become huge

e Joint eigenvector method only works well in generic situations
(simple common roots / joint eigenvalues)

e Numerical stability issues [Graf/Townsend'2026]



Joint diagonalization of
commuting symmetric matrices



Nearly commuting matrices

Linear Algebra 101 task
Given commuting symmetric matrices Aj, ..., Ay, find orthogonal
matrix Q that jointly diagonalizes family:

QTAIQ = [\} L QTAQ = [\}

Problem: Not well-posed in finite-precision arithmetic. Roundoff destroys
commutativity. Moreover, in many applications, commutativity is just an

idealistic model assumption.

A, B are nearly commuting if 3 [|AA]l, = 0, ||AB]|2 = 0 such that
A+ AA, B+ AB commute.



Nearly commuting matrices

Robustified Linear Algebra 101 task

Given nearly commuting symmetric matrices Aj, ..., Ay find orthogonal
matrix Q that nearly diagonalizes Ay, ..., Aq4.

Applications beyond root finding:

e Blind Source Separation: Separation of source signal by joint
diagonalization of cumulant tensor slices [Cardoso/Soloumiac'1993],
covariance matrices [Pham/Cardoso'2001], autocorrelation matrices
[Belouchrani et al."1997].

e Parameter estimation in latent variable models through orthogonal
decomposition of moment tensors = joint diagonalization of slices
[Anandkumar et al.’2014]

e Manifold learning [Eynard et al.”2015]

e Parameter identification [Ehler et al.’2019]

e Computer graphics [Kovantsky et al.'2013]



Existing optimization-based approaches

Most numerical algorithms for joint diagonalization based on
optimization:

Jmin L(Q),

where loss function £ measures distance from being diagonal.

Popular choices:

e General symmetric Ay, ..., Aq:
d
£(Q) =Y ||offdiag(QT AkQ)| |2
k=1

where offdiag extracts off-diagonal part of a matrix.
e Symmetric positive definite Ay, ..., Ag:
d

1
£(Q) = 5 kZ[Iog det diag(Q" AxQ) — log det(Q" A« Q)],
=il,

KL divergence [Pham’2001]
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Existing optimization-based approaches

Optimization algorithms:

e Jacobi-like algorithms = coordinate descent [Bunse-Gerstner et al.'1993]
e Block coordinate descent [Pham'2001]
e Quasi-Newton methods [Ziehe et al.”2003], [Ablin et al.'2018]

e Riemannian gradient descent [Afsari/Krishnaprasad'2004]

Riemannian trust region [Absil/Gallivan'2006]

e Riemannian Newton [Alyani et al.’2017]
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Randomized approach

Sketched family: A(p) = p1Ar + p1As + - - + pgAqg for o~ N(0, Iy).

Proposed and applied several times in the literature:

A1

Ao

Simple idea: Obtain Q from diagonalizing symmetric matrix A(u).

Parameter identification problems [Ehler et al.’2019]

Joint eigenvector method for root finding [Corless et al.'1997]
Orthogonal decomposition of tensors [Anandkumar et al.’2012/2014]
CP and related decompositions for tensors [Evert et al.’2022],

[Telen/Vannieuwenhoven'2021], . . .

250

A(w)

Hd

Ad
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How does randomness help?

Assume exact commutativity and n = 2.
Two cases:
e Every matrix Ay, Ay, ,..., Ay has double eigenvalues:
A O A2 O Ad O
A=t LA =72 A= ‘
0 )\1 0 /\2 0 )\d
Any orthogonal matrix Q will do.
e At least one matrix Ax has two simple eigenvalues ~~

Alp) = AL + Ao + -+ + pigAg
has two simple eigenvalues a.s. and, in turn, Q is essentially
uniquely defined and can be obtained from diagonalizing A(u).

New contribution [He/DK'2024]: Analysis when Ay, ..., Ay nearly commute.

Note: Previous analyses either assume exact commutativity [Anandkumar et

al.2014] or sufficiently large eigenvalue gaps [Ehler et al.’2019]. 5



Idea of analysis for nearly commuting family

A1, ..., Aq nearly commuting ~~ 3 commuting D, ..., Dy s.t.
A= Di+Eey I|EIZ +-- + |Eoll? < &2

Let x be joint eigenvector for simple (joint) eigenvalue (A1,...,\g) of
Di,...,Dg. Then

% = x+ (M) — D(w)) E(u)x + O(?).
is corresp. eigenvector of A(/1) [Stewart/Sun’1990, Greenbaum/Li/Overton'2020].
Residual measures whether X is a good eigenvector for Ag:
re = MeX — AkX.
Residuals determine off-diagonal part in QT AxQ.

Irellz S 1F (Al = D)) = D())" |12l E (1) 12

wlog diagonal
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Idea of analysis for nearly commuting family

Norm of diagonal matrix
(M = Dy)(A()! — D(w))"

measures (asymptotically) magnification of input error. Given another

joint eigenvalue (&1, ...,&y), diagonal entry takes the form
—&
p1(A = &) + pa(A — &) + -+ + pa(M — &a)
1 =
= 1, v
1t R 4 g3 =

Important observations:

e Cancellation of (small/problematic) gap A\; — &
o (u,v) ~N(O,[v]3) and |v]l2 > 1

15



Anticoncentration

pdf of (u, v) for Gaussian random p

P{—-R<(uv) '<R}~R!

Small probability that |(u, v)| is large!
16



Idea of analysis for nearly commuting family

Summary:

e Residual has norm < O(Re) with probability > 1 — R~
e Union bound: Off-diagonal parts of QT A:1Q, ..., QT A4Q have norm
< O(Re) with probability > 1 — R~!

BUT:

e Analysis assumes simple eigenvalues.
e Neglected higher-order terms in asymptotic perturbation result
critically depend on eigenvalue gaps.

Solution:

e Cluster eigenvalues and consider invariant subspaces belonging to
each cluster.

e Use non-asymptotic perturbation results for invariant subspaces
[Stewart'1971, Karow/DK'2014]
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Robust recovery

Robust recovery of @ [He/DK’2024]

Suppose that A;,..., Ay is e-near to a commuting family and Q

diagonalizes A(y) = pi1 + -+ + pg for g~ N(O, I,). Then:

Q diagonalizes each matrix Ay, ..., Aq up to error O(Re)

with probability at least 1 — R~

+ Universal result. No assumptions on eigenvalue gaps.

— Constant in O(Re) proportional to n3>.

DRJD = Increased accuracy by combining several samples through

successive deflation.
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Experiments for synthetic data

10 commuting randomly generated 100 x 100 symm pos def matrices
only perturbed by roundoff error

Time (in msec) | Offdiag error

QNDIAG 400 9.6 x 1010
FFDIAG 3600 8.3 x 1071
JADE 2200 2.6 x 1077
RJD 20 2.8 x 1071
DRJD 25 9.9 x 10712

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et
al."2018].

FFDIAG Newton-like method for standard cost function [Ziehe et
al.’2003].
JADE Jacobi method [Bunse-Gerstner et al.'1993], [Cardoso/Souloumiac'1996].
RJD/DRJD Randomized algorithms (3 trials for RJD).
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Experiments for synthetic data

10 commuting randomly generated 100 x 100 symm pos def matrices
perturbed by ~ 10~

Time (in msec) | Offdiag error
QNDIAG 290 1.1x 1075
FFDIAG 3400 9.5 x 107°
JADE 2070 9.5 x 107°
RJD 20 8.1x107*
DRJD 310 1.3x 1075

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et
al.’2018].
FFDIAG Newton-like method for standard cost function [Ziehe et
al’2003].
JADE Jacobi method [Bunse-Gerstner et al.'1993], [Cardoso/Souloumiac'1996].
RJD/DRJD Randomized algorithms (3 trials for RJD).
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Experiments for synthetic data

10 commuting randomly generated 100 x 100 symm pos def matrices
perturbed by ~ 107!

Time (in msec) | Offdiag error
QNDIAG 350 1.1x 1071
FFDIAG 3830 9.5 x 1072
JADE 2530 9.5 x 1072
RJD 20 1.94
DRJD 318 1.4 x 1071

QNDIAG Quasi-Newton method for Pham’s cost function [Ablin et
al.’2018].
FFDIAG Newton-like method for standard cost function [Ziehe et
al’2003].
JADE Jacobi method [Bunse-Gerstner et al.'1993], [Cardoso/Souloumiac'1996].
RJD/DRJD Randomized algorithms (3 trials for RJD).

21



Fun application: Diagonalizing normal matrices

Linear Algebra 101

Square matrix A is normal iff its Hermitian part (A + A*)/2 and
skew-Hermitian part (A — A*)/2 commute.

Structure-exploiting approach for diagonalizing normal matrix:

[U,”] = eig(randn*(A+A’)+1lixrandn*(A-A’));
D = diag(diag(U’*A*U));

Requires 0.55 seconds and attains residual 3 x 107! for 1000 x 1000
unitary matrix.

Versus unstructured approach:
[U,S] = schur(A); D = diag(diag(S));

Requires 3.4 seconds and attains residual 3 x 10714,
22



Partial joint diagonalization




Spectral clustering

Spectral clustering [von Luxburg'2007] uses eigenvectors belonging to smallest
k nonzero eigenvalues of graph Laplacian L to cluster data.

K-means Spectral clustering
- _/f\ - _/.l\.\.
g t g C l
2 J s o 2.4 P
0 oo 0 r
I I 1 T I T I T I
10 00 05 10 1.0 00 05 10

Eigenvectors X € R"** belonging to smallest k eigenvalues minimizes
trace(X " LX)

among all matrices satisfying X7 X =/, XT1 = 0.
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Multi-modal spectral clustering

Graph Laplacians Ly, ..., Ly capturing different modalities of the same
data. Taking different modalities into account can improve robustness of

clustering.

Existing multi-modal spectral clustering methods [Dodero et al.'”2013, Eynard et
al.’2015, Khachatrian et al.’2021] aim at computing shared approximate basis of
eigenvectors across modalities. Computed through optimization-based
joint diagonalization of L, ..., Ly.

Measure for quality of joint embedding:

s(X) = ||[trace(X T L1X), ... trace(X " LaX)]|| .-

24



Multi-modal spectral clustering

Theorem [He/Pados/DK’2025]

Letting A9~! denote standard d-dimensional simplex, it holds that

k
min s(X) = (L .
Jpin (X) 2, . (L))
XTX:Ik fi=1l

Proof via duality.
Extends result for k = 1 by [Coifman/Marshall/Steinerberger'2023].

~> Simple randomized method:

e Sample several random p € A9~1

e Choose L(p) = p1ly + -+ + pgly that has largest sum of k smallest
eigenvalues.

e Return X = eigenvectors belonging to smallest k eigenvalues of
L(k).
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Results on benchmark examples

Clustering performance in terms of normalized mutual information
(NMI); higher is better:

Method Weighted Caltech-7 Digits

SBM

0.158 (Gabor)

0.640 (1) 0.322 (Wavelet)
Single Laplacians 0.512 (2) 0.355 (Centrist) | 0.665 (DCT)

0.624 (3) 0.421 (HOG) | 0.607 (Patch)

0.659 (4) 0.341 (GIST)

0.507 (LBP)

RID Average 0.711 (£0.012) | 0.491 (£0.002) | 0.650 (£0.001)
RJD-BASE 0.803 0.531 0.665
QN-Diag 0.743 0.285 0.627
QN-Diag (RJD-BASE init.) | 0.743 0.274 0.627
JADE 0.773 0.415 0.650
JADE (RJD-BASE init.) 0.601 0.024 0.075
MVSC 0.737 0.476 0.661
CoReg-MVSC 0.688 0.431 0.679
MV-KMeans - - 0.489
MV-SphKMeans - - 0.528
Single-Dir. Smoothness 0.774 0.499 0.682
BASE Smoothness 0.780 0.530 0.682

RJD-BASE = random. method. (200 samples)

BASE Smoothness = projected GD applied to s(X). 2



Simultaneous diagonalization by
congruence




Simultaneous diagonalization by congruence (SDC)

SDC

Family of symmetric matrices Aj,...,Aqg € R"*" is SDC if there exists
invertible X such that

XTAX = [\} s XTAGX = {\} .

[He/Nguyen'2022]: Family is SDC if and if there is invertible P such that
PTAP,...PTAyP commute pairwise.

Important special case: If 30 such that
A(0) = 01A1 + -+ 04Aq s positive definite,

can choose P = L~ for Cholesky factorization A(#) = LL.

27



Simultaneous diagonalization by congruence (

Applications:

e SDC equivalent to tensor rank-n CP decomposition of third-order
tensor with partial symmetries [Domanov/de Lathauwer'2015]

e Blind Source Separation [Chabriel et al.’2014]
e Remote sensing [Khachatrian et al.’2021]

e Quadratic Programming [Jiang/Li'2016]
All previous algorithms optimization-based:

e General case: Riemannian optimization to minimize off-diagonal
norm over OB(n, n).
Riemannian trust region [Absil/Gallivan'2006], Riemannian BFGS [Bouchard
et al.’2020], ...

e Positive definite case: Minimization of KL divergence.
Jacobi-like [Pham2001], Quasi-Newton [Ablin/Cardoso/Gramfort'2018], . . .

28



Randomized SDC (RSDC)

Randomized SDC (RSDC)
Choose two independent 6, u ~ N(0, ;) and form

A(p) = pA1L+ -+ paAd,  AB) = 01A; + - + OgAq.

Diagonalize matrix pencil

XTA(u)X = AXTA@O)X = {\] - [\} ;

using, e.g., QZ algorithm (this may not be possible).

Exact recovery: If Aj,..., Ay is exactly SDC then X diagonalizes family
by congruence a.s.

29



RSDC: Robust recovery

Robust recovery [He/DK’2024]

Suppose that A;, ..., Ay is e-near to SDC and X diagonalizes
A(p) — MNA(9) for [p, 0] ~ N(O, k). Then:

X diagonalizes each matrix Ay, ..., Ay up to error O(R?||X||3¢)

with probability at least 1 — R~

Simplifications when Ay, ..., Ay are positive (semi-)definite:

e Choose 01 =--- =04 =1/d.
e Diagonalization of A(u) — AA(6) via Cholesky of A(0).

e Robust recovery guarantee improves to O(R||X|3¢).

30



Application to BSS

Blind Source Separation for EEG recordings [Congedo et al.’2014]:
Joint diagonalization of sample covariance
matrices by congruence:

Randomized SDC [He/DK'2024]
+ quasi-Newton opt [Ziehe et al.’2004]

requires 3s vs. 280s for SOTA (Pham's
Jacobi-like method) applied to eye-blinking

benchmark, at comparable accuracy.
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Back to the roots




Eigenvalues of multiplication matrices

Recall that computing roots of d-variate polynomials requires computing
joint eigenvalues of (commuting) multiplication matrices:

My, My, ... M.
Randomized approaches based on linear combination

M(p) = 1My, + p2My, + -+ + prgMy,, o~ Unif (ST71).

RQ1 Compute (right) eigenvectors v of M(u) and obtain
common roots from (one-sided) Rayleigh quotients:
A = v M, v L= v M,,v Ay = v M, v
viv -’ viv 7 viv
RQ2 Compute right and left eigenvectors v, w of M(x) and
obtain common roots from (two-sided) Rayleigh quotients:
)\1 _ WTIWXIV’)\2 _ WTMXZV7,..7)\d _ WTMXIV'
wlv wlv wly
32



Results for randomized approaches

Robust computation of simple roots [He/DK/Plestenjak'2025]

Let A = (A1,...,Aq) be simple common root of d-variate polynomial
system. Suppose that ARQ! is computed from applying RQ1 to
multiplication matrices perturbed by error of norm < e. Then

[A = AR < R-cond(N) - € + O(c?)
holds with probability 1 — R—2.

e Improved tail behavior R~2 thanks to using complex random
numbers: p ~ Unif(S(‘éfl).

e cond(\): condition number of A as a joint eigenvalue of
multiplication matrices.

e Result extends to semi-simple roots.

e Analysis of RQ2 more complicated / more pessimistic, although RQ2
performs better in practice.
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Results for randomized approaches

random rose katsura7 redeco8
Rschur 1.31e-11 1.98e-08 1.74e-10 3.09e-12
schur 5.58e-12 1.12e-08 8.19¢-10 2.75e-12
RQ2 9.72e-14 9.26e-09 1.61e-11 3.52e-12

Accuracy of different methods for computing common roots of four
standard benchmark examples.

Rschur Common roots via Schur decomposition of randomized
linear combination of multiplication matrices [Telen/Van
Barel’2018].

schur Common roots via Schur decomposition of first

multiplication matrix [Vermeersch/de Moor'2023]
RQ2 Our method.

Timing nearly identical as compt of multiplication matrices expensive. 34



Conclusions




Conclusions

e Randomization turns complicated joint eigenvalue problems into
standard eigenvalue problems that can be solved with off-the-shelve
software.

e Randomization yields highly competitive performance (time,
accuracy) in a wide range of applications.

For joint diagonalization tasks, randomization replaces
optimization-based approaches or delivers excellent initial iterates.

o Analysis based on (lots of) perturbation analysis + anticoncentation.
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