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Randomized Dimension Reduction
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8 Goals: Reduce dimension, preserve geometry

6. Example: Johnson—-Lindenstrauss
8 Approximate pairwise ¢, distances among N points embedded in O (log N) dimensions

8- Example: Subspace embedding
: Approximate r-dimensional subspace of R” embedded in O (r) dimensions

: How? Apply a random matrix... Succeeds with high probability

:a- Example: Gaussian matrix
s Matrix ® € R¥*" has iid NORMAL(0, 1/ k) entries

Sources: Johnson & Lindenstrauss 1984; Linial et al. 1995; Indyk & Motwani 1998; Frieze et al. 1998; Sarlés 2006; Woodruff 2014; Drineas &
Mahoney 2017; Martinsson & Tropp 2020; Kireeva & Tropp 2023; ....
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Example: Generalized Nystrom

8 Problem: Find rank-r approximation of A € R"*"

Generalized Nystrom:

& Draw random embeddings ¥ : R"”" — R* and @ : R" — R” (k=2r,p=4r)
:a Sketch: Form row X = WA € R and column Y = ® A* € RP*"" sketches

8 Solve: Solve reduced problem:
M, = (YY)' € argmingeg |A-Y*"MX]|:

:a- Approximate: Construct A=Y*M,X € R"*"
:a. Goal: Achieve error bound

“A112 . 2
”A_A”F = Const - MINyank B<r ”A_B”F

Sources: Woolfe et al. 2008; Clarkson & Woodruff 2009; Halko et al. 2011; Tropp et al. 2017, 2019; Martinsson & Tropp 2020; Nakatsukasa
2020; Nakatsukasa & Tropp 2024; ...
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Fast Dimension Reduction

& Dimension reduction requires attention to...

:a- Speed: Minimize work to reduce problem data [sketching cost]
:8 Compression: Minimize embedding dimension [postprocessing cost]
8 Quality: Preserve relevant geometry [solution quality]

6 Example: GenNystrom with Gaussian matrix

: Speed: Slow... O (k-nnz(A)) for sketching
: Compression: Optimal... k =2r and p =4r
¢z Quality: Excellent... Const <4

‘8 |dea: Use faster dimension reduction method

:a Example: GenNystrom with SparseStack matrix

8 Sparse embeddings with { <« k nonzero entries per column
8 Speed: Fast... O({ -nnz(A)) for sketching

:a- Sparsity? Compression?

8 Quality?

Sources: Achlioptas 2001; Charikar et al. 2003; Ailon & Chazelle 2006; Woolfe et al. 2008; Liberty 2009; Tropp 2011; Clarkson & Woodruff
2011; Nelson & Nguyen 2012, 2013; Kane & Nelson 2014; ....
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Speed: Gaussian vs. SparseStack
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Gaussian —e— SparseStack

k = 2500
Speedup at { =4: 29.90 x
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@ Dense input matrix A € R™*" with n = 50,000

Runtime (s)

102_

101 4

100_

k = 25000
Speedup at { =4: 88.84 x

5 10 15
Sparsity level

.  Time to form sketch ® A € RX*" for embedding dimension k =500, 2500, 25000; median over 10 trials

®a Horizontal axis tracks column sparsity { of SparseStack; recommended sparsity { = 4
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Quality: Gaussian vs. SparseStack

SparseStack
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8 2,314 matrices from SparseSuite with dimensions 300 to 500,000
@ RSVD approximation with rank k = 200; SparseStack with column sparsity { =4
@ Ratio of SparseStack error to Gaussian error (Frobenius norm); 3 trials superimposed
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Embeddings VS.

Injections



Subspace Embeddings

& Fix an r-dimensional subspace L < R” (often unknown!)

:a Let @ : R" — R¥ be a random matrix with embedding dimension k

Definition 1 (Subspace embedding). The random matrix ® is an («, 3)-subspace
embedding for L with injectivity a € (0, 1] and dilation f = 1 when it satisfies

a-|x|I°<||[®dx|*<B-|x|* forallxelL  withprob.=99%

& Can implement linear algebra algorithms with subspace embeddings

& Challenge: Establish subspace embedding property for random matrix...

: With embedding dimension k = O(r), injectivity & = 2(1), and dilation = 0(1)
- With control on other parameters, such as sparsity
8 Gaussian meets these requirements, but what about other examples?

Sources: Sarlos 2006; Clarkson & Woodruff 2009; Woodruff 2014; Drineas & Mahoney 2017; Martinsson & Tropp 2020; Kireeva & Tropp 2023.
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Subspace Injections

2 Fix an r-dimensional subspace L < R” (often unknown!)

:a Let @ : R" — R¥ be a random matrix with embedding dimension k

Definition 2 (Subspace injection). The random matrix ® is an a-subspace injection
for L with injectivity a € (0, 1] when it satisfies

:a- |sotropy. The expectation E | ®x|* = || x| for all x € R"
& Injectivity. With probability at least 99%,

a- x|’ <|®x||* forallxel

8 Want embedding dimension k = O (r) and injectivity @ = Q2(1) for arbitrary L

8 Can we implement linear algebra algorithms with subspace injections?
& Why does this concept make our lives better?

Sources: Oymak & Tropp 2018; Martinsson & Tropp 2020; Tropp 2025; [CEMT25].
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Linear Algebra with Subspace Injections

Theorem 3 (GenNystrom with a Subspace Injection [CEMT25]).
Consider the rank-r approximation problem

minimize <, |A— Bz  with Ae R™"

Let ¥ : R — R* and @ : R — RP” be oblivious a-subspace injections for subspaces
with dimensions r and k. Then the GenNystrém solution A computed with ®, ¥

satisfies
Const

A2 . 2
”A_A”F = * MINpank B<r ”A_B”F

aZ

8 Reduce embedding dimension k, p for speed, increase injectivity a for quality

& Can also justify RSVD, Nystrom, and Sketch + Solve with subspace injections

@ |n practice, (1 + £)-optimal error guarantees are overrated

Sources: Martinsson & Tropp 2020; Nakatsukasa & Tropp 2024; [CEMT25].
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Injectivity is a Law of Nature
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& Assume rows of @ : R” — R* are iid
k . .
I®@x)°=) " [{p; x)|°=sum of iid positive rvs

8 Norm is large if one summand is large (likely!) = dilation fails
28 Norm is small only if all summands are small (unlikely!) = injectivity holds

:&- Many HDP tools provide control on min, | ®x|°...

:a Small-ball method [Koltchinskii & Mendelson 2015]
s8¢ Fourth-moment theorem [Oliveira 2016]
:a Gaussian comparison [T25, T26]
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Sparse

St acks
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SparseStack Construction

:a. SparseStack matrix @ : R” — R¥ with column sparsity ¢

8 Exactly ¢ blocks with b rows each, so embedding dimension k= (b
& In each block, each column contains one nonzero entry, in a random position

:&. Each nonzero entry is iid UNIFORM{+{ 12}

% -

fE e
¥

T ey

H

‘& Matvec u — ®u uses O (( - nnz(u)) arithmetic
- Extremely effective in practice. But how does it work in theory?

(with sparse library)

Sources: Nguyen & Nelson 2012, 2013; Kane & Nelson 2014; Cohen 2015; Chenakkod et al. 2023-2025; Tropp 2025; [CEMT25].
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SparseStacks are Subspace Injections

s (1= 11V2)2 —e— SparseStack {=2 —@— SparseStack (=4
—8— SparseStack (=1 —@— SparseStack (=3 —®— SparseStack (=8
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Conjecture (Nelson & Nguyen 2013): For any r-dimensional subspace, a SparseStack is a

(1/2,3/2)-subspace embedding for some k = O(r) and { = O(logr). Still open!

Theorem 4 (SparseStack [T25, T26]). For any r-dimensional subspace, a SparseStack
serves as a subspace injection with & = 1/2 for some k = O(r) and { = O (logr).

Sources: Nelson & Nguyen 2013; Cohen 2015; Chenakkod et al. 2023—-2025; Tropp 2025, 2026; [CEMT25].
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Sparse Linear Algebra with SparseStack

Best provable runtime

Algorithm Gaussian SparseStack
Sketch + Solve  nnz(A)d + d° nnz(A)log(d) + d°

GenNystrom  nnz(A)r+(n+d)r*> nnz(A)log(r) + (n+d)r?

Matrix A has dimension 7 x d, and r is the approximation rank

Linear algebra algorithms implemented with Gaussian or with SparseStack matrices
Runtime to solve problem to constant-factor accuracy

Big-O symbols suppressed for legibility

£ & & &

SparseStack results improve over prior work

Sources: Clarkson & Woodruff 2009, 2011; Halko et al. 2011; Nelson & Nguyen 2012; Cohen 2015; Tropp et al. 2017, 2019; Nakatsukasa 2020;
Chenakkod et al. 2023—-2025; [CEMT25]; ....
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Example: Scientific Simulation with SparseStack

(=, )|

@ Simulation of ground state of Bose—Einstein condensate, trapped in potential field, via Gross—Pitaevskii equation
@ Use GenNystrom SVD for proper orthogonal decomposition (POD)
@ Dense matrix 131,072 x 40,000; SparseStack with { = 4; embedding dimensions k = 1000 and p = 1500

Source: Tropp et al. 2017, 2019; [CEMT25].
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Example: Scientific Simulation with SparseStack

——=— GNSVD - Gaussian ——— GN - Gaussian
-#®- GNSVD - SparseStack -#- GN - SparseStack
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@ Simulation of ground state of Bose—Einstein condensate, trapped in potential field, via Gross—Pitaevskii equation
@ Use GenNystrom for compression and for GenNystrém SVD for proper orthogonal decomposition (POD)
@ Dense matrix 131,072 x 40,000; SparseStack with { = 4; embedding dimensions k = 1000 and p = 1.5k
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Khatri-Rao

Pro&uets
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Khatri-Rao Dimension Reduction

8 Can we perform efficient dimension reduction for exponentially long vectors?

:a Khatri-Rao matrix @ : ®‘ R% — R* with tensor order ¢

:a |sotropic base distribution v € R% (Spherical, ...)
@ Formp=w® - 0w c @ R% where o ~ v iid
8 Matrix @ has iid rows @; ~ k™% ¢

8 Applications:

:8 Bilinear access model (Nonlinear eigenvalues, operator learning, ...)
@ Matrix equations (Sylvester, Lyapunov, Riccati, ...)
: Tensor algorithms (CP decomposition, ...)
& Quantum science (Partition functions, ground states, ...)

8 Exciting recent research, but not well understood
& How to analyze linear algebra algorithms with Khatri-Rao dimension reduction?

Sources: Rudelson 2012; Sun et al. 2018; Jin et al. 2020; Malik & Becker 2020; Rebrova et al. 2021; Bujanovic et al. 2025; Meyer et
al. 2023-2025; Saibaba et al. 2025; [CEMT25]; ....
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(Some) Khatri—-Rao Matrices are Subspace Injections

Theorem 5 (Khatri-Rao [CEMT25]).

2 Let @ : Q°R% — R¥ be a Khatri—Rao matrix
& Real spherical base distribution v ~ UNIFORM{u € R% : |u|? = dy}
& For any r-dimensional subspace, ® is an a-subspace injection with

:a Injectivity @ = 1/2 for some embedding dimension k = O (3°r)
2o Injectivity a = e °“) for some embedding dimension k = O (r)

& Both results are qualitatively correct for worst-case subspaces

@ g = 1/2 uses fourth-moment method; improvements for small dy; extends to many distributions
@ a=e 9® uses small-ball method; somewhat delicate
:a But dilation 8 expected to grow like (logr)¢

Sources: Koltchinskii & Mendelson 2015; Oliveira 2016; Guédon et al. 2015; Hu & Paouris 2024; Meyer et al. 2023-2025; Tropp 2025; [CEMT25];
Saibaba 2025; Bandeira et al. 2025; ....
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Linear Algebra with Khatri—Rao Matrices

Theorem 6 (Matrix Recovery from Bilinear Queries [CEMT25]).

& Fix an r-dimensional subspace of matrices F :=span{M;,...,M,} S R"*"

*a Banded matrices, Toeplitz, Hankel, ...

¢a Fix a target matrix B € R"™*" with bilinear access (x,y) — x*'By
:a Form a real spherical Khatri—Rao matrix ® : R"**" — R* with k = O(r)

:a Given data ®(B) € R*, use Sketch + Solve to find B € ‘F

& Then the approximation satisfies the error bound

IB-B|52 < Const- minyes |B—M|3 withprob. =99%

@ No previous work would imply correct sample complexity k = O(r)
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Example: Partition Functions via XNysTrace

—e— Girard-Hutchinson —#— NA-Hutch++ —4@— Nystrom++4+ —A— XNysTrace

B=0.50 B=0.75 B=1.00
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Kronecker matvecs Kronecker matvecs Kronecker matvecs
:8 Partition function of transverse-field Ising model trace[A] = trace[e #H] with Hamiltonian H € (C?)¢ x (C?)*
. Khatri-Rao matrix @ : (C?)¢ x (C?)¢ — C* with £ =16
@ Baseline: Girard—Hutchinson estimator trace[A] = trace[®" (A®)]
@ Comparison: Variance-reduced trace estimators, using low-rank approximation
@ Low-rank approximation with Khatri—Rao justified via subspace injection theory

Sources: Girard 1989; Hutchinson 1990; Meyer et al. 2021; Epperly et al. 2024; [CEMT25]; ....
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To learn more...

Email: jtropp@caltech.edu Web: https://tropp.caltech.edu/

Related Papers:

2 ¥

4 8

1 ¥

2 ¥

s ¥

s ¥

e 8

Camanio, Epperly, Meyer & Tropp, “Faster linear algebra algorithms with structured random matrices,” arXiv:2508.21189

Camario, Epperly & Tropp, “Successive randomized compression: A randomized algorithm for the compressed MPO-MPS product;’
arXiv:2504.06475

Tropp, “Comparison theorems for the minimum eigenvalue of a random positive-semidefinite matrix,” arXiv:2501.16578

Tropp, “Comparison theorems for the maximum eigenvalue of a random symmetric matrix,” forthcoming

Epperly, Tropp & Webber, “XTrace: Making the most of every sample in stochastic trace estimation;” SIMAX 2024, arXiv:2301.07825
Nakatsukasa & Tropp, “Fast & accurate randomized algorithms for linear systems and eigenvalue problems,” SIMAX 2024, arXiv:2111.00113

Tropp, Yurtsever, Udell & Cevher, “Streaming low-rank matrix approximation with an application to scientific simulation,” SISC 2019,
arXiv:1902.08651

Sun, Guo, Tropp & Udell, “Tensor random projection for low-memory dimension reduction,” NeurlPS 2018, arXiv:2105.00105
Tropp, Yurtsever, Udell & Cevher, “Practical sketching algorithms for low-rank matrix approximation,” SIMAX 2017, arXiv:1609.00048

Surveys:

s ¥

e 8

2 ¥

2 9

b 9

Kireeva & Tropp, “Randomized matrix computations: Themes and variations,” CIME Lecture Notes, arXiv:2402.17873

Tropp & Webber, “Randomized algorithms for low-rank matrix approximation: Design, analysis, and applications,” arXiv:2306.12418
Martinsson & Tropp, “Randomized numerical linear algebra: Foundations and algorithms,” Acta Numerica 2020, arXiv:2002.01387
Tropp, “An introduction to matrix concentration inequalities,” Found. Trends Mach. Learning 2015, arXiv:1501.01571

Halko, Martinsson & Tropp, “Finding structure with randomness: Probabilistic algorithms for computing approximate matrix
decompositions,” SIREV 2011, arXiv:0909.4061

Joel A. Tropp (Caltech), Subspace Injections, ICERM, Providence, 4 February 2026 24


jtropp@caltech.edu
https://tropp.caltech.edu/

Role of Khatri—Rao Base Distribution
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aa  Khatri—Rao matrices with base dimension d, = 2 and tensor order ¢ = 10, so dimension n = 21°
@ [left] Injectivity estimate for hard subspace with r = 50; [right] RSVD approximation of hard 7 x n matrix

Sources: Meyer et al. 2023-2025; [CEMT25].

Joel A. Tropp (Caltech), Subspace Injections, ICERM, Providence, 4 February 2026



