

---

# Subspace Injections

---



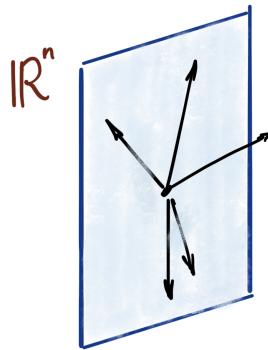
Joel A. Tropp  
Steele Family Professor of  
Applied & Computational Mathematics

Computing + Mathematical Sciences  
California Institute of Technology  
jtropp@caltech.edu

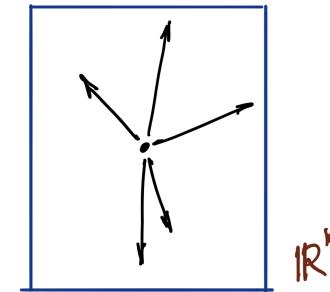
Collaborators: Chris Camaño ([Caltech](#)), Ethan Epperly (Berkeley), Raphael Meyer (Berkeley)

# Sketching: Crash Course

# Randomized Dimension Reduction



$$\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^k$$



- **Goals:** Reduce dimension, preserve geometry
- **Example:** Johnson–Lindenstrauss
  - Approximate pairwise  $\ell_2$  distances among  $N$  points embedded in  $O(\log N)$  dimensions
- **Example:** Subspace embedding
  - Approximate  $r$ -dimensional subspace of  $\mathbb{R}^n$  embedded in  $O(r)$  dimensions
- **How?** Apply a random matrix... Succeeds with high probability
- **Example:** Gaussian matrix
  - Matrix  $\Phi \in \mathbb{R}^{k \times n}$  has iid  $\text{NORMAL}(0, 1/k)$  entries

Sources: Johnson & Lindenstrauss 1984; Linial et al. 1995; Indyk & Motwani 1998; Frieze et al. 1998; Sarlós 2006; Woodruff 2014; Drineas & Mahoney 2017; Martinsson & Tropp 2020; Kireeva & Tropp 2023; ....

---

## Example: Generalized Nyström

---

- **Problem:** Find rank- $r$  approximation of  $\mathbf{A} \in \mathbb{R}^{m \times n}$

### Generalized Nyström:

- Draw random embeddings  $\Psi: \mathbb{R}^m \rightarrow \mathbb{R}^k$  and  $\Phi: \mathbb{R}^n \rightarrow \mathbb{R}^p$  ( $k = 2r, p = 4r$ )
- **Sketch:** Form row  $\mathbf{X} = \Psi \mathbf{A} \in \mathbb{R}^{k \times n}$  and column  $\mathbf{Y} = \Phi \mathbf{A}^* \in \mathbb{R}^{p \times m}$  sketches
- **Solve:** Solve reduced problem:

$$\mathbf{M}_\star = (\Psi \mathbf{Y})^\dagger \in \arg \min_{\mathbf{M} \in \mathbb{R}^{p \times k}} \|\mathbf{A} - \mathbf{Y}^* \mathbf{M} \mathbf{X}\|_{\text{F}}^2$$

- **Approximate:** Construct  $\widehat{\mathbf{A}} = \mathbf{Y}^* \mathbf{M}_\star \mathbf{X} \in \mathbb{R}^{m \times n}$
- **Goal:** Achieve error bound

$$\|\mathbf{A} - \widehat{\mathbf{A}}\|_{\text{F}}^2 \leq \text{Const} \cdot \min_{\text{rank } \mathbf{B} \leq r} \|\mathbf{A} - \mathbf{B}\|_{\text{F}}^2$$

Sources: Woolfe et al. 2008; Clarkson & Woodruff 2009; Halko et al. 2011; Tropp et al. 2017, 2019; Martinsson & Tropp 2020; Nakatsukasa 2020; Nakatsukasa & Tropp 2024; ....

---

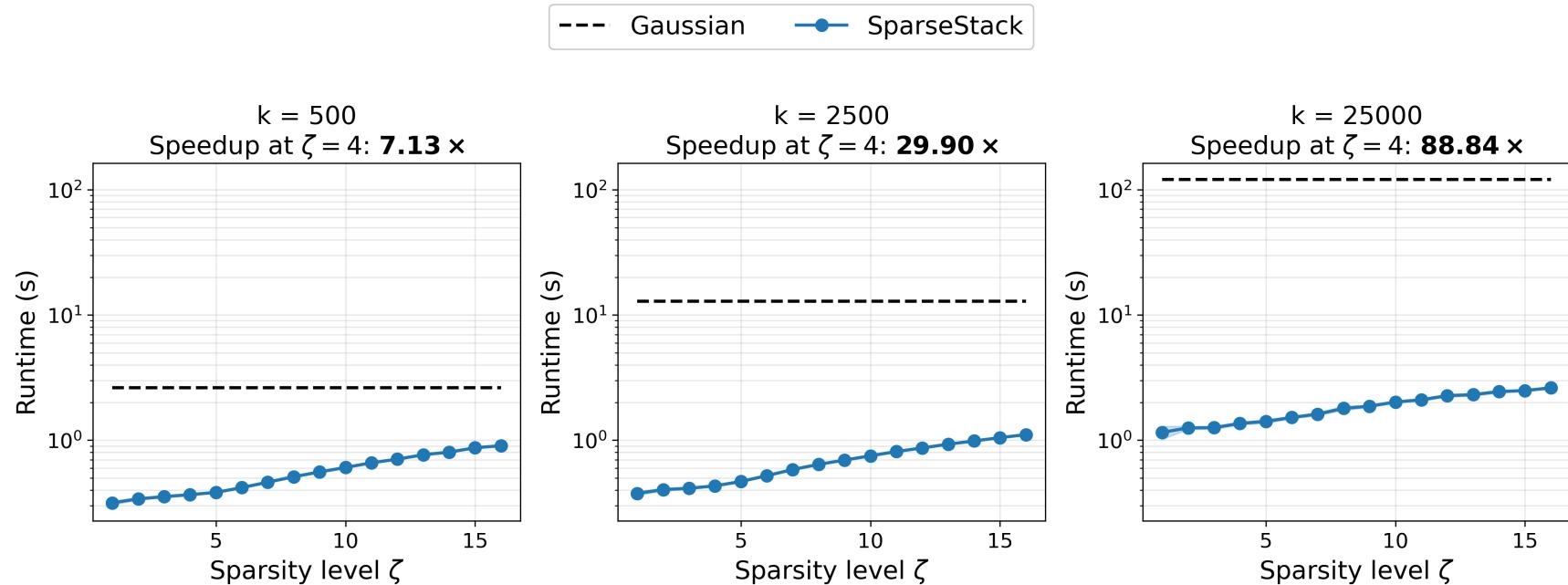
# Fast Dimension Reduction

---

- ❖ Dimension reduction requires attention to...
  - ❖ **Speed:** Minimize work to reduce problem data [sketching cost]
  - ❖ **Compression:** Minimize embedding dimension [postprocessing cost]
  - ❖ **Quality:** Preserve relevant geometry [solution quality]
- ❖ **Example:** GenNyström with Gaussian matrix
  - ❖ **Speed:** Slow...  $O(k \cdot \text{nnz}(A))$  for sketching
  - ❖ **Compression:** Optimal...  $k = 2r$  and  $p = 4r$
  - ❖ **Quality:** Excellent...  $\text{Const} \leq 4$
- ❖ **Idea:** Use faster dimension reduction method
- ❖ **Example:** GenNyström with SparseStack matrix
  - ❖ Sparse embeddings with  $\zeta \ll k$  nonzero entries per column
  - ❖ **Speed:** Fast...  $O(\zeta \cdot \text{nnz}(A))$  for sketching
  - ❖ **Sparsity? Compression?**
  - ❖ **Quality?**

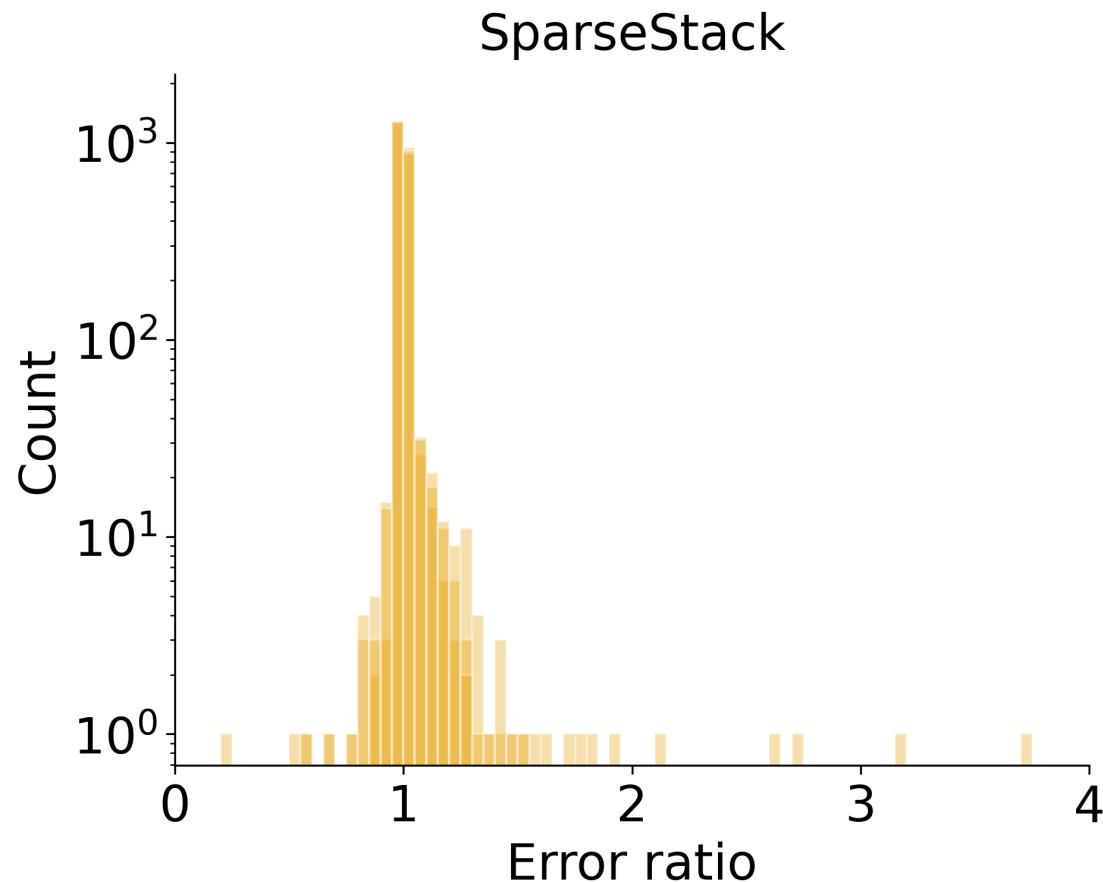
Sources: Achlioptas 2001; Charikar et al. 2003; Ailon & Chazelle 2006; Woolfe et al. 2008; Liberty 2009; Tropp 2011; Clarkson & Woodruff 2011; Nelson & Nguyen 2012, 2013; Kane & Nelson 2014; ....

# Speed: Gaussian vs. SparseStack



- Dense input matrix  $A \in \mathbb{R}^{n \times n}$  with  $n = 50,000$
- Time to form sketch  $\Phi A \in \mathbb{R}^{k \times n}$  for embedding dimension  $k = 500, 2500, 25000$ ; median over 10 trials
- Horizontal axis tracks column sparsity  $\zeta$  of SparseStack; recommended sparsity  $\zeta = 4$

# Quality: Gaussian vs. SparseStack



- 2,314 matrices from SparseSuite with dimensions 300 to 500,000
- RSVD approximation with rank  $k = 200$ ; SparseStack with column sparsity  $\zeta = 4$
- Ratio of SparseStack error to Gaussian error (Frobenius norm); 3 trials superimposed

# Embeddings vs. Injections

---

# Subspace Embeddings

---

- Fix an  $r$ -dimensional subspace  $L \subseteq \mathbb{R}^n$  (often unknown!)
- Let  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^k$  be a random matrix with *embedding dimension*  $k$

**Definition 1 (Subspace embedding).** The random matrix  $\Phi$  is an  $(\alpha, \beta)$ -subspace embedding for  $L$  with *injectivity*  $\alpha \in (0, 1]$  and *dilation*  $\beta \geq 1$  when it satisfies

$$\alpha \cdot \|x\|^2 \leq \|\Phi x\|^2 \leq \beta \cdot \|x\|^2 \quad \text{for all } x \in L \quad \text{with prob. } \geq 99\%$$

- Can implement linear algebra algorithms with subspace embeddings
- **Challenge:** Establish subspace embedding property for random matrix...
  - With embedding dimension  $k = O(r)$ , injectivity  $\alpha = \Omega(1)$ , and dilation  $\beta = O(1)$
  - With control on other parameters, such as sparsity
  - **Gaussian** meets these requirements, but what about other examples?

Sources: Sarlós 2006; Clarkson & Woodruff 2009; Woodruff 2014; Drineas & Mahoney 2017; Martinsson & Tropp 2020; Kireeva & Tropp 2023.

---

# Subspace Injections

---

- Fix an  $r$ -dimensional subspace  $L \subseteq \mathbb{R}^n$  (often unknown!)
- Let  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^k$  be a random matrix with *embedding dimension*  $k$

**Definition 2 (Subspace injection).** The random matrix  $\Phi$  is an  $\alpha$ -subspace injection for  $L$  with *injectivity*  $\alpha \in (0, 1]$  when it satisfies

- Isotropy.** The expectation  $\mathbb{E} \|\Phi x\|^2 = \|x\|^2$  for all  $x \in \mathbb{R}^n$
- Injectivity.** With probability at least 99%,

$$\alpha \cdot \|x\|^2 \leq \|\Phi x\|^2 \quad \text{for all } x \in L$$

- Want embedding dimension  $k = O(r)$  and injectivity  $\alpha = \Omega(1)$  for arbitrary  $L$
- Can we implement linear algebra algorithms with subspace injections?
- Why does this concept make our lives better?

Sources: Oymak & Tropp 2018; Martinsson & Tropp 2020; Tropp 2025; [CEMT25].

---

# Linear Algebra with Subspace Injections

---

**Theorem 3** (GenNyström with a Subspace Injection [CEMT25]).

*Consider the rank- $r$  approximation problem*

$$\text{minimize}_{\text{rank } \mathbf{B} \leq r} \|\mathbf{A} - \mathbf{B}\|_{\text{F}}^2 \quad \text{with } \mathbf{A} \in \mathbb{R}^{m \times n}$$

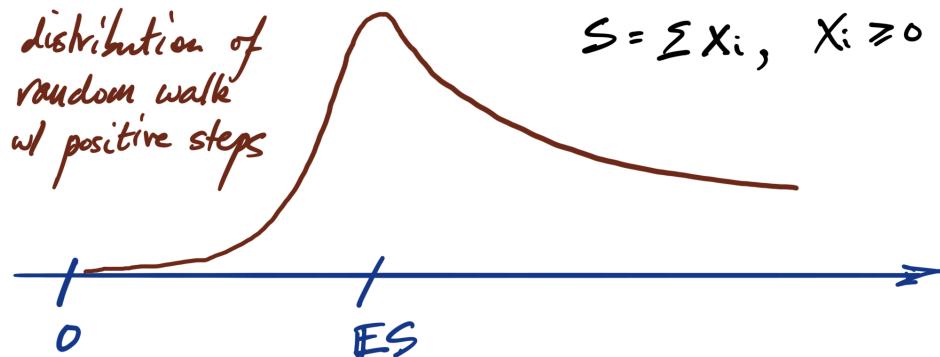
*Let  $\Psi : \mathbb{R}^m \rightarrow \mathbb{R}^k$  and  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^p$  be oblivious  $\alpha$ -subspace injections for subspaces with dimensions  $r$  and  $k$ . Then the GenNyström solution  $\widehat{\mathbf{A}}$  computed with  $\Phi, \Psi$  satisfies*

$$\|\mathbf{A} - \widehat{\mathbf{A}}\|_{\text{F}}^2 \leq \frac{\text{Const}}{\alpha^2} \cdot \min_{\text{rank } \mathbf{B} \leq r} \|\mathbf{A} - \mathbf{B}\|_{\text{F}}^2$$

- Reduce embedding dimension  $k, p$  for speed, increase injectivity  $\alpha$  for quality
- Can also justify RSVD, Nyström, and Sketch + Solve with subspace injections
- In practice,  $(1 + \varepsilon)$ -optimal error guarantees are overrated

Sources: Martinsson & Tropp 2020; Nakatsukasa & Tropp 2024; [CEMT25].

# Injectivity is a Law of Nature



- Assume rows of  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^k$  are iid

$$\|\Phi x\|^2 = \sum_{i=1}^k |\langle \varphi_i, x \rangle|^2 = \text{sum of iid positive rvs}$$

- Norm is large if one summand is large (likely!)  $\Rightarrow$  dilation fails
- Norm is small only if all summands are small (unlikely!)  $\Rightarrow$  injectivity holds

- Many HDP tools provide control on  $\min_{x \in L} \|\Phi x\|^2 \dots$

- Small-ball method [Koltchinskii & Mendelson 2015]
- Fourth-moment theorem [Oliveira 2016]
- Gaussian comparison [T25, T26]

# Sparse Stacks

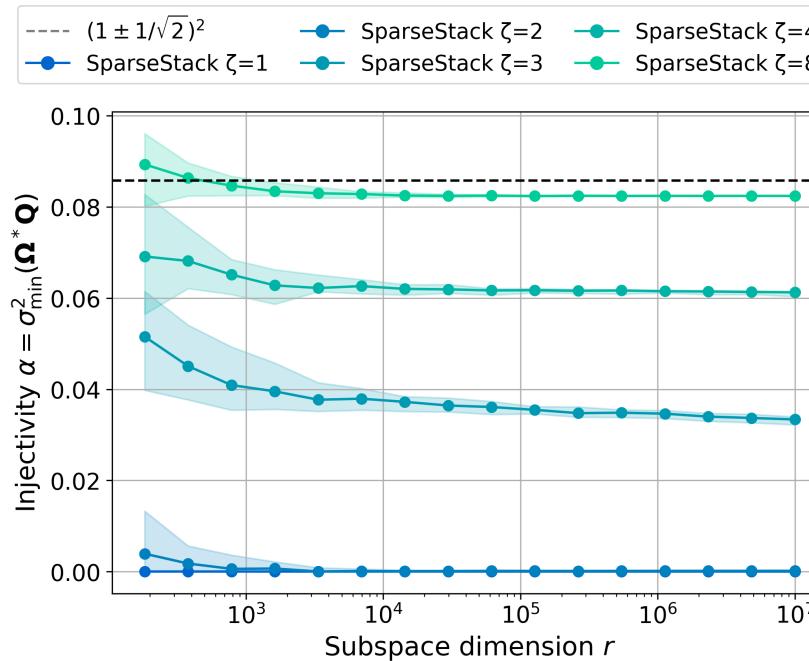
# SparseStack Construction

- **SparseStack** matrix  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^k$  with column sparsity  $\zeta$ 
  - Exactly  $\zeta$  blocks with  $b$  rows each, so embedding dimension  $k = \zeta b$
  - In each block, each column contains one nonzero entry, in a random position
  - Each nonzero entry is iid UNIFORM $\{\pm \zeta^{-1/2}\}$

- Matvec  $\mathbf{u} \mapsto \Phi\mathbf{u}$  uses  $O(\zeta \cdot \text{nnz}(\mathbf{u}))$  arithmetic (with sparse library)
- Extremely effective in practice. But how does it work in theory?

**Sources:** Nguyen & Nelson 2012, 2013; Kane & Nelson 2014; Cohen 2015; Chenakkod et al. 2023–2025; Tropp 2025; [CEMT25].

# SparseStacks are Subspace Injections



**Conjecture (Nelson & Nguyen 2013):** For any  $r$ -dimensional subspace, a SparseStack is a  $(1/2, 3/2)$ -subspace *embedding* for some  $k = O(r)$  and  $\zeta = O(\log r)$ . Still open!

**Theorem 4 (SparseStack [T25, T26]).** For any  $r$ -dimensional subspace, a SparseStack serves as a subspace *injection* with  $\alpha = 1/2$  for some  $k = O(r)$  and  $\zeta = O(\log r)$ .

Sources: Nelson & Nguyen 2013; Cohen 2015; Chenakkod et al. 2023–2025; Tropp 2025, 2026; [CEMT25].

---

# Sparse Linear Algebra with SparseStack

---

---

Best provable runtime

---

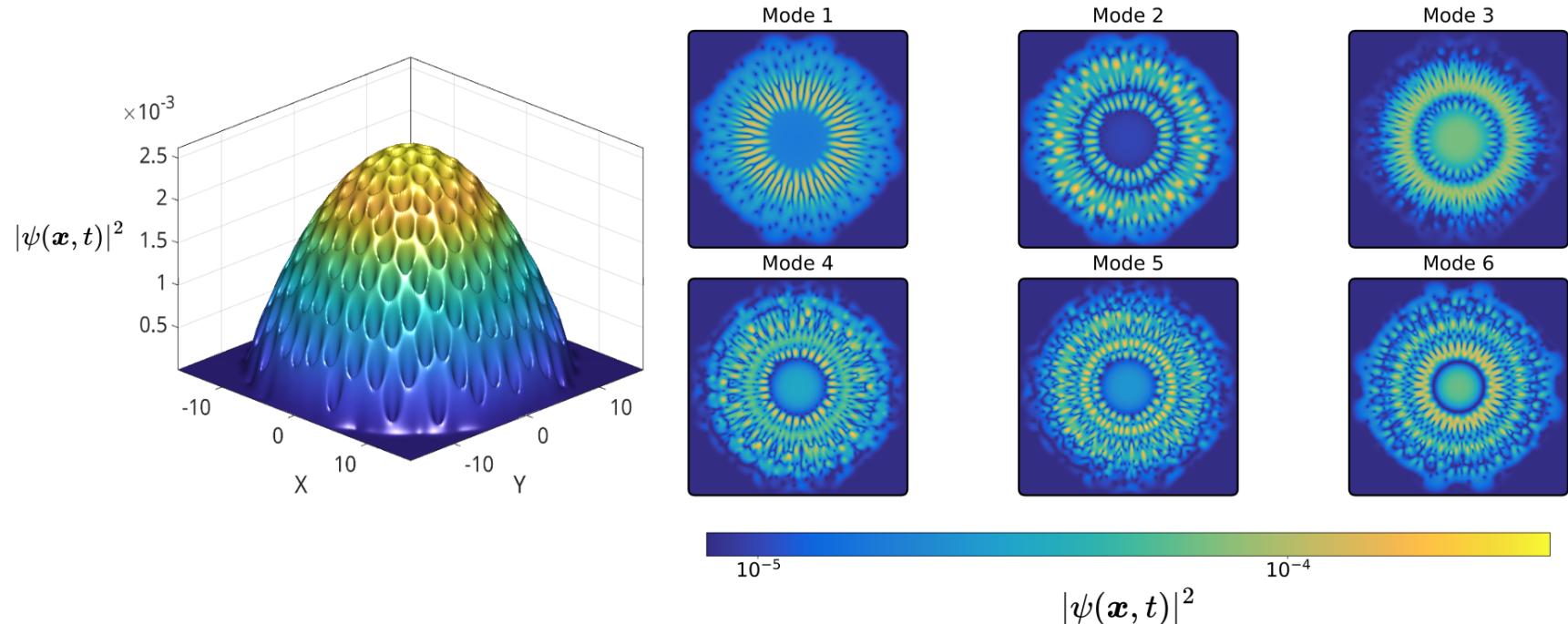
| Algorithm      | Gaussian                               | SparseStack                                  |
|----------------|----------------------------------------|----------------------------------------------|
| Sketch + Solve | $\text{nnz}(\mathbf{A})d + d^3$        | $\text{nnz}(\mathbf{A})\log(d) + d^3$        |
| GenNyström     | $\text{nnz}(\mathbf{A})r + (n + d)r^2$ | $\text{nnz}(\mathbf{A})\log(r) + (n + d)r^2$ |

---

- Matrix  $\mathbf{A}$  has dimension  $n \times d$ , and  $r$  is the approximation rank
- Linear algebra algorithms implemented with Gaussian or with SparseStack matrices
- Runtime to solve problem to constant-factor accuracy
- Big- $O$  symbols suppressed for legibility
- SparseStack results improve over prior work**

Sources: Clarkson & Woodruff 2009, 2011; Halko et al. 2011; Nelson & Nguyen 2012; Cohen 2015; Tropp et al. 2017, 2019; Nakatsukasa 2020; Chenakkod et al. 2023–2025; [CEMT25]; ....

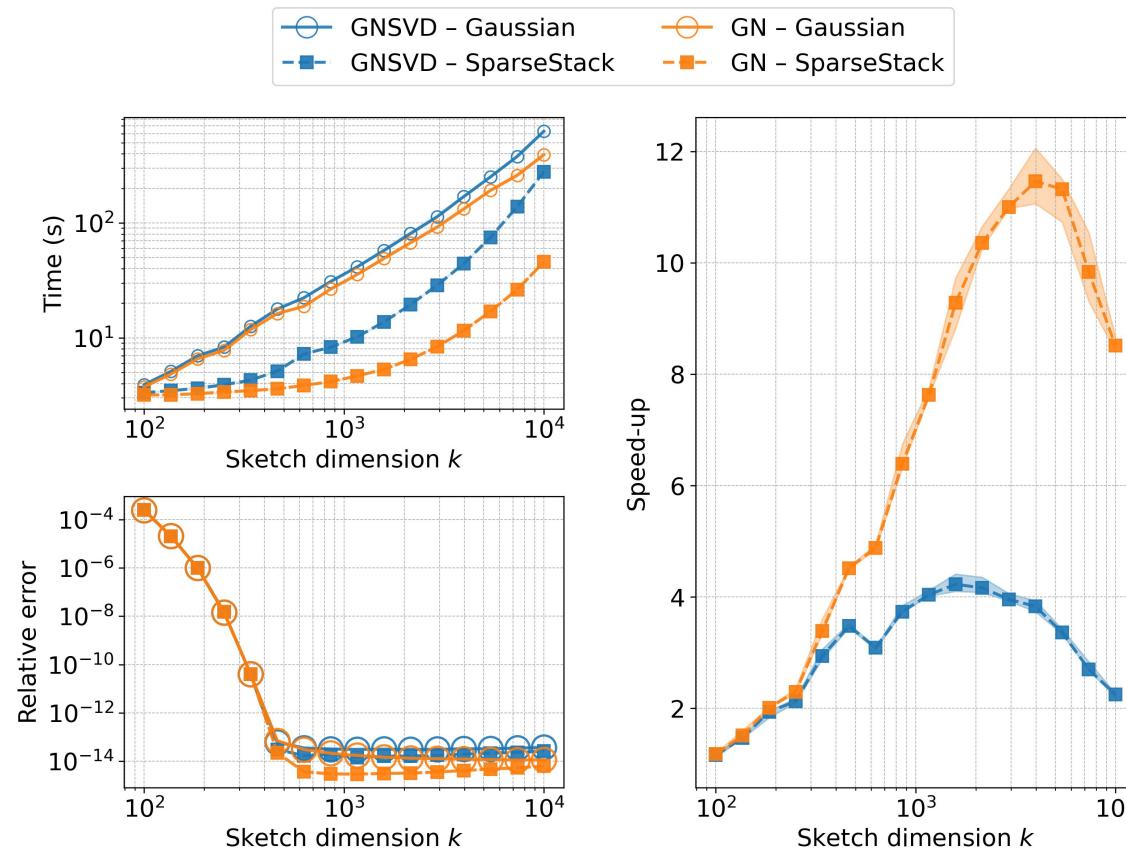
# Example: Scientific Simulation with SparseStack



- Simulation of ground state of Bose–Einstein condensate, trapped in potential field, via Gross–Pitaevskii equation
- Use GenNyström SVD for proper orthogonal decomposition (POD)
- Dense matrix  $131,072 \times 40,000$ ; SparseStack with  $\zeta = 4$ ; embedding dimensions  $k = 1000$  and  $p = 1500$

Source: Tropp et al. 2017, 2019; [CEMT25].

# Example: Scientific Simulation with SparseStack



- ❖ Simulation of ground state of Bose–Einstein condensate, trapped in potential field, via Gross–Pitaevskii equation
- ❖ Use GenNyström for compression and for GenNyström SVD for proper orthogonal decomposition (POD)
- ❖ Dense matrix  $131,072 \times 40,000$ ; SparseStack with  $\zeta = 4$ ; embedding dimensions  $k = 1000$  and  $p = 1.5k$

# Khatri–Rao Products

---

# Khatri–Rao Dimension Reduction

---

- ❖ Can we perform efficient dimension reduction for exponentially long vectors?
- ❖ **Khatri–Rao** matrix  $\Phi : \bigotimes^{\ell} \mathbb{R}^{d_0} \rightarrow \mathbb{R}^k$  with tensor order  $\ell$ 
  - ❖ Isotropic base distribution  $\mathbf{v} \in \mathbb{R}^{d_0}$  (Spherical, ...)
  - ❖ Form  $\boldsymbol{\varphi} = \boldsymbol{\omega}^{(1)} \otimes \cdots \otimes \boldsymbol{\omega}^{(\ell)} \in \bigotimes^{\ell} \mathbb{R}^{d_0}$  where  $\boldsymbol{\omega}^{(j)} \sim \mathbf{v}$  iid
  - ❖ Matrix  $\Phi$  has iid rows  $\boldsymbol{\varphi}_i \sim k^{-1/2} \boldsymbol{\varphi}$
- ❖ **Applications:**
  - ❖ Bilinear access model (Nonlinear eigenvalues, operator learning, ...)
  - ❖ Matrix equations (Sylvester, Lyapunov, Riccati, ...)
  - ❖ Tensor algorithms (CP decomposition, ...)
  - ❖ Quantum science (Partition functions, ground states, ...)
- ❖ Exciting recent research, but not well understood
- ❖ How to analyze linear algebra algorithms with Khatri–Rao dimension reduction?

Sources: Rudelson 2012; Sun et al. 2018; Jin et al. 2020; Malik & Becker 2020; Rebrova et al. 2021; Bujanović et al. 2025; Meyer et al. 2023–2025; Saibaba et al. 2025; [CEMT25]; ....

---

# (Some) Khatri–Rao Matrices are Subspace Injections

---

**Theorem 5 (Khatri–Rao [CEMT25]).**

- Let  $\Phi : \bigotimes^\ell \mathbb{R}^{d_0} \rightarrow \mathbb{R}^k$  be a Khatri–Rao matrix
- Real spherical base distribution  $\mathbf{v} \sim \text{UNIFORM}\{\mathbf{u} \in \mathbb{R}^{d_0} : \|\mathbf{u}\|^2 = d_0\}$
- For any  $r$ -dimensional subspace,  $\Phi$  is an  $\alpha$ -subspace injection with
  - Injectivity  $\alpha = 1/2$  for some embedding dimension  $k = O(3^\ell r)$
  - Injectivity  $\alpha = e^{-O(\ell)}$  for some embedding dimension  $k = O(r)$
- Both results are qualitatively correct for worst-case subspaces

- $\alpha = 1/2$  uses fourth-moment method; improvements for small  $d_0$ ; extends to many distributions
- $\alpha = e^{-O(\ell)}$  uses small-ball method; somewhat delicate
- But dilation  $\beta$  expected to grow like  $(\log r)^\ell$

Sources: Koltchinskii & Mendelson 2015; Oliveira 2016; Guédon et al. 2015; Hu & Paouris 2024; Meyer et al. 2023–2025; Tropp 2025; [CEMT25]; Saibaba 2025; Bandeira et al. 2025; ....

---

# Linear Algebra with Khatri–Rao Matrices

---

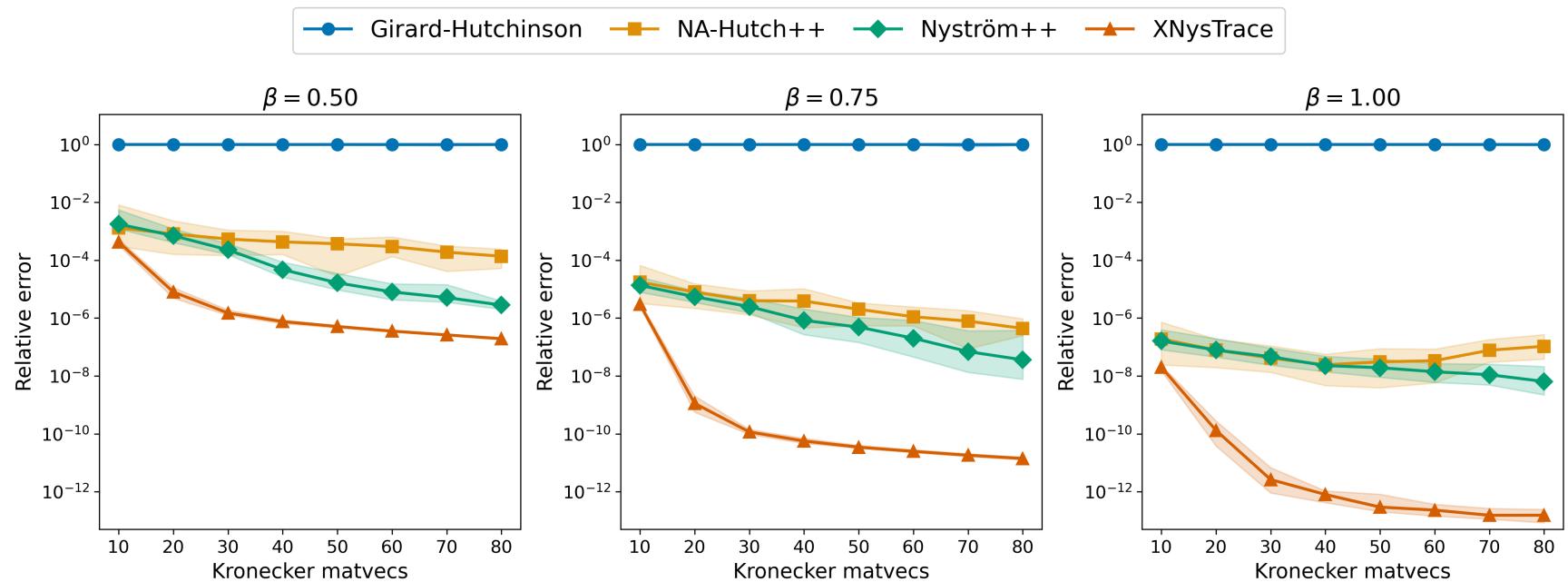
**Theorem 6** (Matrix Recovery from Bilinear Queries [CEMT25]).

- Fix an  $r$ -dimensional subspace of matrices  $\mathcal{F} := \text{span}\{\mathbf{M}_1, \dots, \mathbf{M}_r\} \subseteq \mathbb{R}^{n \times n}$ 
  - Banded matrices, Toeplitz, Hankel, ...
- Fix a target matrix  $\mathbf{B} \in \mathbb{R}^{n \times n}$  with *bilinear access*  $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^\top \mathbf{B} \mathbf{y}$
- Form a *real spherical Khatri–Rao matrix*  $\Phi : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^k$  with  $k = O(r)$
- Given data  $\Phi(\mathbf{B}) \in \mathbb{R}^k$ , use *Sketch + Solve* to find  $\tilde{\mathbf{B}} \in \mathcal{F}$
- Then the approximation satisfies the error bound

$$\|\mathbf{B} - \tilde{\mathbf{B}}\|_{\text{F}}^2 \leq \text{Const} \cdot \min_{\mathbf{M} \in \mathcal{F}} \|\mathbf{B} - \mathbf{M}\|_{\text{F}}^2 \quad \text{with prob. } \geq 99\%$$

- No previous work would imply correct sample complexity  $k = \Theta(r)$

# Example: Partition Functions via XNysTrace



- Partition function of transverse-field Ising model  $\text{trace}[A] = \text{trace}[e^{-\beta H}]$  with Hamiltonian  $H \in (\mathbb{C}^2)^\ell \times (\mathbb{C}^2)^\ell$
- Khatri–Rao matrix  $\Phi : (\mathbb{C}^2)^\ell \times (\mathbb{C}^2)^\ell \rightarrow \mathbb{C}^k$  with  $\ell = 16$
- Baseline: Girard–Hutchinson estimator  $\text{trace}[A] \approx \text{trace}[\Phi^*(A\Phi)]$
- Comparison: Variance-reduced trace estimators, using low-rank approximation
- Low-rank approximation with Khatri–Rao justified via subspace injection theory**

Sources: Girard 1989; Hutchinson 1990; Meyer et al. 2021; Epperly et al. 2024; [CEMT25]; ....

---

## To learn more...

---

Email: [jtropp@caltech.edu](mailto:jtropp@caltech.edu)

Web: <https://tropp.caltech.edu/>

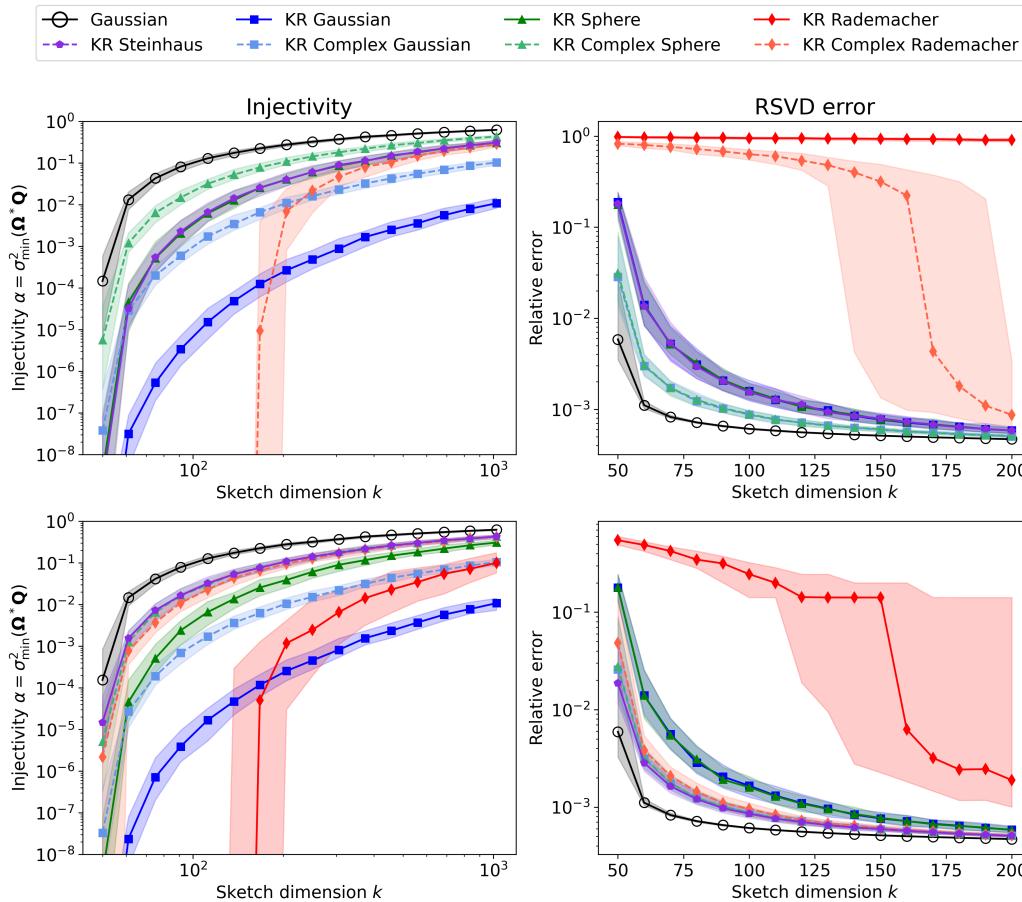
### Related Papers:

- Camaño, Epperly, Meyer & Tropp, "Faster linear algebra algorithms with structured random matrices," arXiv:2508.21189
- Camaño, Epperly & Tropp, "Successive randomized compression: A randomized algorithm for the compressed MPO-MPS product," arXiv:2504.06475
- Tropp, "Comparison theorems for the minimum eigenvalue of a random positive-semidefinite matrix," arXiv:2501.16578
- Tropp, "Comparison theorems for the maximum eigenvalue of a random symmetric matrix," forthcoming
- Epperly, Tropp & Webber, "XTrace: Making the most of every sample in stochastic trace estimation," *SIAM* 2024, arXiv:2301.07825
- Nakatsukasa & Tropp, "Fast & accurate randomized algorithms for linear systems and eigenvalue problems," *SIAM* 2024, arXiv:2111.00113
- Tropp, Yurtsever, Udell & Cevher, "Streaming low-rank matrix approximation with an application to scientific simulation," *SISC* 2019, arXiv:1902.08651
- Sun, Guo, Tropp & Udell, "Tensor random projection for low-memory dimension reduction," *NeurIPS* 2018, arXiv:2105.00105
- Tropp, Yurtsever, Udell & Cevher, "Practical sketching algorithms for low-rank matrix approximation," *SIAM* 2017, arXiv:1609.00048

### Surveys:

- Kireeva & Tropp, "Randomized matrix computations: Themes and variations," *CIME Lecture Notes*, arXiv:2402.17873
- Tropp & Webber, "Randomized algorithms for low-rank matrix approximation: Design, analysis, and applications," arXiv:2306.12418
- Martinsson & Tropp, "Randomized numerical linear algebra: Foundations and algorithms," *Acta Numerica* 2020, arXiv:2002.01387
- Tropp, "An introduction to matrix concentration inequalities," *Found. Trends Mach. Learning* 2015, arXiv:1501.01571
- Halko, Martinsson & Tropp, "Finding structure with randomness: Probabilistic algorithms for computing approximate matrix decompositions," *SIREV* 2011, arXiv:0909.4061

# Role of Khatri–Rao Base Distribution



- Khatri–Rao matrices with base dimension  $d_0 = 2$  and tensor order  $\ell = 10$ , so dimension  $n = 2^{10}$
- [left] Injectivity estimate for hard subspace with  $r = 50$ ; [right] RSVD approximation of hard  $n \times n$  matrix

Sources: Meyer et al. 2023–2025; [CEMT25].