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Outline

® Background of hierarchical matrices
e Construction using randomization techniques

e Applications
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Exploit STRUCTURES

@ Sparsity structure: defined by {0,1} structure (Graphs).

® Factors are denser (fill-in)
® sparse LU: O(N?) flops and O(N*/3) memory, for typical 3D PDEs

® Low rank structure: in addition to structural sparsity, can find
data-sparse structure in dense (sub)matrices (approximation)
® Goal is to achieve O(N) or O(N polylog(N)) memory & flops for
compression, factorization ...
® Hierarchical matrices: H- & H2-matrix [Hackbusch et al. 1999] and
their subclasses.

[Bebendorf, Bini, Bérm, Chandrasekaran, Chow, Darve, Dewilde,
Grasedyck, Gu, Le Borne, Martinsson, Tygert, Van Barel, van der Veen,
Vandebril, Xia, ..., MANY MORE]
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Application 1: Applying integral operator (N-body

comput.)

(Kg)(x) = /Y K(x,y)g(y)dy, Xernel K:XxY — C

® Low rank property:
- \;\)\Q“‘ T
admissible(r,0) = 1, N —
. Di Di < r
i M < - Dist(r,0) § \)

® Many kernels have this property:
2
® Gaussian kernel: K(i,j) = exp —HX"_?'H?)
® Green's functions for Laplace equations:
1

2D: log(||xi — x;j|); 3D: ————
! (I1xi = 10)

® Green's functions for Helmholtz equations:
elklxi—x|

2D: Ho(k|xi — xi|); 3D: ——
okl — 1) —
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® Others: Fourier-type of kernel e’®*¥) where ®(x, y) is smooth; e™;

Bessel function Jo(xy)
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Hierarchical matrix approximation

® Same mathematical foundation as FMM [Greengard/Rokhlin 1987], put
in matrix form:
® Diagonal block (“near field") represented exactly
e Off-diagonal block (“far field") approximated via low-rank format

FMM Algebraic
separability of Green's function low rank off-diagonal
, D UiB1V,]
G(x,y) = >y fo(x)ge(y) | :

A=
LBV | D
xeX,yeyY

e Algebraic power: factorization, inversion, tensors, ...

Faster Linear Solvers January 2-6, 2026



Hierarchical organization is key to optimal algorithm
complexity

Example: Hierarchical Off-Diagonal Low Rank (HODLR)
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Hierarchical organization is key to optimal algorithm
complexity

Example: Hierarchical Off-Diagonal Low Rank (HODLR)

. ="
I E I,
J ==
15 15 Ig 15
T g st
L,

Algorithm can be top-down or bottom-up
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Application 2: discretized PDE

SO
AN
So{ SH PR
g
¢ Globally sparse, locally dense N N
® Can embed LR data-sparse in sparse EIEl EIEl EEl
multifrontal algorithm NN 2N 2N
" . ) -
® In addition to structural sparsity, further S E g;;arse
apply LR data-sparsity to dense frontal Sl /.,(\
matrices e ﬁl
v YOS 3
2A K L 2K A K
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Hierrarchical matrix structure

3Lk

Faster Linear Solvers

® Cluster the variables into
a cluster tree

® Define admissibility
condition to determine
whether a pair of clusters
admits a low rank block

© Hierarchically determine
admissible blocks using
a dual tree traversal on
the cluster tree




Cluster tree, Matrix tree

Iy o I I

10

Iis

Cluster tree /: pairs of clusters
define blocks in the matrix.

- Leaves form a block partitioning
- Red blocks = inadmissible leaves
- Green blocks = admissible blocks
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Cluster tree, Matrix tree

Iy ho I I

10

Iis

Matrix tree: generally not a complete tree
- Blue nodes = inadmissible blocks
- Red nodes = inadmissible leaves
- Green nodes = admissible leaves

Cluster tree /: pairs of clusters
define blocks in the matrix.

- Leaves form a block partitioning
- Red blocks = inadmissible leaves
- Green blocks = admissible blocks
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Admissibility condition

Diam(7) + Diam(o)
2

admissible(r,0) =1, if < n-Dist(r,0)

Typically
® weak admissibility: n > 1 '@\ oy,
e.g., HODLR, HSS Q7 T
o p
® strong admissibility: 7 < 0.5 v
e.g., HH?
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Admissibility condition

Example: block partitioning of a matrix associated with a set of N = 2%°
points in 3D geometry
Smaller n leads to more refined partitioning of off-diagonal blocks

i

+§ :
t

T
e
i
:

g

n=0.7
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Nested basis leads to optimal complexity

® Represent parents in terms of their children using transfer matrices

- u! E!
U 12[ ! U.’} {E’.}}

® Every low rank block has the form Al = U!S/ VS’T
e Sl is the coupling matrix

. T
® Assume we have an orthogonal basis: U!" Ul =1
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Classes of hierarchical low rank matrices

Strong admissibility

Weak admissibility

Indep. bases H HODLR
Nested based H? HSS, HIF
Inverse FMM Recursive Skeletonization
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Classes of hierarchical low rank matrices

Strong admissibility Weak admissibility
Indep. bases H HODLR
Nested based H? HSS, HIF
Inverse FMM Recursive Skeletonization

weak admissibility

strong admissibility
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Deep dive: construction of hierarchical matrices

Low rank compression tool: adaptive randomized sketching

® Understanding probabilistic error
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Low rank compression via randomized sketch

Approximate range of A:
@ Pick random matrix . (k4p), k target rank, p small, e.g. 10
® Sample matrix S = AQ, with slight oversampling p
® Compute @ =ON-basis(5)

Benefits:
® Matrix-free, only need matvec

® \When embedded in sparse frontal solver, simplifies “extend-add”
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How to sketch only admissible blocks?

@ Preprocessing: Draw a big sketch using global A, S = AQ
Sketching cost:
® Dense matvec: O(rN?)
® FFT: O(rNlogN) (e.g., Toeplitz)
o FMM: O(rN)

Can it be faster using structured random €27

![Martinsson 2011; Xia 2013; Boukaram/Liu/Ghysels/L. 2025]
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How to sketch only admissible blocks?

@ Preprocessing: Draw a big sketch using global A, S = AQ
Sketching cost:

® Dense matvec: O(rN?)
® FFT: O(rNlogN) (e.g., Toeplitz)
* FMM: O(rN)

Can it be faster using structured random €27

® At each level, subtract small sketches corresponding to the
inadmissible blocks *
o Example: in HSS construction:
block diagonal matrix at level ¢: D) = diag(D-,, Dy, ..., D;,)

Off-diagonal sketch: S = (A - D(f)) Q=25"-Dp0g

![Martinsson 2011; Xia 2013; Boukaram/Liu/Ghysels/L. 2025]
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Unified view of sketching: Johnson-Lindenstrauss Lemma

- .

w e
g

Lind&nstraus

Existence of good subspace embedding

JL-Lemma [Johnson-Lindenstrauss 1984]
Given ¢ € (0,1), let m and d be positive integers such that

d > 4(2/2 —€3/3)"Llog m. For any set P of m points in R” there exists
f : R" — R such that for all u,v € P

(L= elu—v|? < [[f(u) = FW)IIP < (1 +e)l|lu—v]?.
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JL sketching operator: length preservation of a single
vector

Suppose D is a distribution over matrices of size d x n. We say that a
matrix R ~ D is a (n, d, d, €)-JL sketching operator if for any vector

x € R™ it satisfies
p [IRx12 — [|x]12|
R~D [l

® JL implies subspace embedding [Woodruff 2014]
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Distributional JL family: drawn from certain distribution

Provided d sufficiently large, the following all satisfy JL sketching operator
requirement:

® R ~ Gaussian(n,d), i.i.d. normal distribution with mean 0, variance
1/d [Dasgupta/Gupta 2003]

® R~ SRHT(n,d), R = PHD [Halko/Martinsson/Tropp 2011]
P: sample d coordinates from n uniformly at random

H: Hadamard matrix
D: diagonal matrix, entries drawn from {41, —1} uniformly at random

® R~ SJLT(n,d,«), Sparse JL Transform [Cohen/Jayrram/Nelson 2018]
@ nonzero entries per row
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Theory: Range-finder bound for general JL sketching
operator

[Y. Yaniv, O.A. Malik, P. Ghysels, X.L.; CAMCoS 2025]

Theorem (Distributional JL implies Range-finder Bound)

Suppose A€ C™*" s a matrix and let 0 < r < min(m, n) be the target
rank. If R is a (n,d, m, 15)-JL sketching operator with

£/12,6 € (0,1) and d = r + p with p > 0, then the following holds with
probability at least 1 — §:

1 = Py)All < ( 1+ ”((fff))) or1(A), ¢y

where Y = AR = QQ with Py = QQT.
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Theory: Range-finder bound for special JL sketching
operator: R ~ Gaussian(n, d)

Theorem ([Halko/Martinsson/Tropp 2011])

Choose oversampling parameter p > 4 and target rank r > 2, where
r+p < min(m,n). Draw R € R™("+P) 'Y = AR = QQ and Py = QQ*,
t then the norm squared approximation error is

10 -Poal s (1016, e a2 R (S o)

j>r

with probability at least 1 — 3e™P.
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Theory: Range-finder bound for special JL sketching
operator: R ~ SJLT(n,d, «)

Theorem ([Yaniv/Malik/Ghysele/L. 2025])

A target rank r < min(m, n). Fixe,d € (0,1). If a = ©(log®(r/d)/e),
d = Q(rlog®(r/8)/e%), Y = AR = QQ and Py = QQ* then

(1 = Py)A]| < ar+1(A)\/1 +a 1  max (ei’/’o‘,log (%) _ ”70‘)

with probability 1 —§.

()
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Frobenius norm concentration bound for any JL sketching
operator

® Theorem [Yaniv/Malik/Ghysele/L. 2025]
Let A€ R™" and £,6 € (0,1). If R€ R"™ % isa (n,d, o, e)-JL
matrix where ' = §/m, then the following holds with probability at
least 1 — :

(1= )NAIIE < IARIIE < (1 + )] AlIZ.

e Furthermore, we established the following stochastic relationship
between [|AllF and ||S = AR|[r : E[LS|12] = [AlI2

® In practice, leads to robust stopping criteria in adaptive sketching

Absolute: [|(I — Q*)A|lr = ||(I — QR*)S||F < e,

ve: LU=QRHAl[F  [IU=QQ")S|lF
Relative: AT S TSIl <e,
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Sparse JLT is a highly structured random sparse matrix

Mitigate dense sampling cost

® SILT [Kane/Nelson 2014; Cohen/Jayram/Nelson 2018]
An SJLT matrix R of size n x d has a fixed number « € [d] nonzero

entries per row. The nonzero entries are drawn independently from
two values {1/y/a, —1/+/a} with equal probability. Example:

R ~ SJLT(4,3,2)

1 0 -1 100] [001
p_ L0 -1 -1f _ 1 []ooof Jou11
V211 -1 ol ||t ool Jo1o

1 0 1 101 000

e Sketching AR only involves add/subtract; no multiplication

® |mplementation is no harder than sparse matrix-vector multiplication
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SJLT-sketching in HSS construction: accuracy & runtime

® Compared to Gaussian sketching; with varying sparsity level, varying
compression tolerance

Example: the top frontal matrix of 3D Poisson
N =100? N = 1502 N = 2002

10°
101
1072 ) ° .

1073 Le ° o ° ° o o+ o o
1074 i i x

10—
1076
10-7

A= Hlr/IAlr
.
[ ]
L]

* * *

GSIS2SISSH GSIS2SIS8SH G SIS2stss H
oe—10"2me=10"44e =105 H

o = 4 is sufficient!

® Seral runtime up to 2.5X faster

® Parallel runtime with 32 MPI prrocesses:
Sketching time up to 17X faster
Total time up to 14X faster
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Applications

® |terative linear solvers:
Hierarchical matrix-vector multiplication

® Direct linear solvers:
Factoization /inversion: ULV, H-LU, H2-LU 2, ..

2on GPU: [Boukaram/Keyes/L./Liu/Turkiyyah 2026]
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STRUMPACK — STRUctured Matrices PACKage

http://portal.nersc.gov/project/sparse/strumpack/

e Fully algebraic solvers/preconditioners
® Dense: Can take user input of cluster tree & block partitioning

® HSS, BLR, H? (soon)
® ButterflyPACK integration/interface: Butterfly, HODLR, HODBF

e Sparse multifrontal direct solver

® Approximate sparse factorization preconditioner

® C++, MPI + OpenMP + CUDA, real & complex, 32/64 bit integers
e BLAS, LAPACK, Metis

e Optional: MPI, ScaLAPACK, ParMETIS, (PT-)Scotch,
cuBLAS/cuSOLVER, SLATE, ZFP
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Kernel Ridge Regression: Ridge Regression + Kernel Trick

1. Training stage to compute model parameters:
Need to minimize the cost function:

argmin,, C(w) = Z(yi - WTXi)2 + )\HWHZ

i

® x;'s are data points (rows of the data matrix X"*9)
® y;'s are their labels
® w is the normal vector to the target hyperplane

Can derive the optimal weights for the prediction model:
w=XT(\M+XxxT)1y
2. Prediction stage: given a new vector x; from the test set, compute:

yii=wlxg = [(M+XXT) "y T Xx;
~ [(M+K(X, X)) ty]T - K(X,x1) < kernel trick

= Binary classification: class label predicted by the sign of-y;
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STRUMPACK Python interface to Scikit-learn

e Scikit-learn: machine Learning in Python,
http://scikit-learn.org/stable/
® contains classifiers and regressors
® but only provides shared-memory parallelism

e STRUMPACKKernel Python class:
® derived from scikit-learn base classes BaseEstimator and ClassifierMixin
® implements member functions: fit, predict and decision_function
® can leverege all the other functions in scikit-learn
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Time comparison between scikit-learn and HSS

; C _ Ixi—xli3
Use Gaussian kernel K(i,)) = exp >h2

10% |

SUSY dataset (particle physics):
classification to distinguish between
a signal process which produces
~eikitlonn (32 cores) supersymmetric particles and a

—=— HSS-ANN (32 cores) | | background process which does not
—— HSS-ANN (1280 cores)

10! 1 1 T T T T
40k 60k 100k 200k 500k 1M

Training dataset size (n)

Fit time (s)

10% |
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Rank structured multifrontal sparse factorization

Compressing large dense blocks in the multifrontal tree

Combining Hierarchically Off-Diagonal Butterfly (HODBF) and Block Low
Rank (BLR)

HODBF

® |largest: HODBF
® Medium: BLR

® Smaller: dense or

lossy compression
(ZFP)

HODBF! HODBF!

X.S. Li Faster Linear Solvers January 2-6, 2026 32/35



3D visco-acoustic wave propagation

Governed by the Helmholtz equation: x = (x1, x2, x3)
0 w?
- = — _f
W o e ) P+ el = ()

e Solution method: FD on staggered grids using a 27-point stencil, 8
PML absorbing boundary layers

—a— BLR(Hybrid)
—— BLR(RL) 5000
—e— HODBF
HODBF_BLR(Hybrid) A =
® i HODBF_BLR(Hybyl} ZFH 3
gle+6r . Nlogz(N) - 2 1000
2 56415 | < | e
5 £ 500
2 —
o
s S 200
1e+15 8 B
6e+14 : 1001
2e+14f] ‘ ‘ R
2008 2508  300° 350% 400%450° 2003 2508  300° 350° 400° 450°
KB=N k=N
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Summary: Stages of operation

Data clustering, matrix reordering

e Compression — usually dominating cost

® Complexity depends on: black-box Av and AT v, black-box entry
evaluation A(/, )
® Goal: O(N log®N)

e Building solvers

® [terative solver: matrix-vector multiplication

® Direct solvers: factorization (e.g., ULV, H-LU), solve, inversion
(]

Principal tool for efficient implementation and parallelization
Sweeping through “trees” upward / downward: cluster tree, separator
tree, ...
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Open Problems

How to choose «v in SJLT (n,d, a)?

Subsampled randomized trig transform (SRTT), or Fourier transform
(SRFT)

Does it make sense to do H, H2-QR? How?

Spectral analysis for matrices preconditioned by low-rank factorization

e Data-sparse rank analysis for matrix inverse

® Data-sparse for tensor computations
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