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Outline

• Background of hierarchical matrices

• Construction using randomization techniques

• Applications
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Exploit STRUCTURES

1 Sparsity structure: defined by {0,1} structure (Graphs).
• Factors are denser (fill-in)
• sparse LU: O(N2) flops and O(N4/3) memory, for typical 3D PDEs

2 Low rank structure: in addition to structural sparsity, can find
data-sparse structure in dense (sub)matrices (approximation)
• Goal is to achieve O(N) or O(N polylog(N)) memory & flops for

compression, factorization ...
• Hierarchical matrices: H- & H2-matrix [Hackbusch et al. 1999] and

their subclasses.

[Bebendorf, Bini, Börm, Chandrasekaran, Chow, Darve, Dewilde,
Grasedyck, Gu, Le Borne, Martinsson, Tygert, Van Barel, van der Veen,
Vandebril, Xia, ..., MANY MORE]
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Application 1: Applying integral operator (N-body
comput.)

(Kg)(x) =

∫
Y
K (x , y)g(y)dy , Kernel K : X × Y → C

• Low rank property:

admissible(τ, σ) = 1,

if
Diam(τ) + Diam(σ)

2
≤ η · Dist(τ, σ)

• Many kernels have this property:

• Gaussian kernel: K (i , j) = exp
(
−∥xi−xj∥2

2

2h2

)
• Green’s functions for Laplace equations:

2D: log(||xi − xj |); 3D:
1

(||xi − xj ||)

• Green’s functions for Helmholtz equations:

2D: H0(k |xi − xj |); 3D:
e ik|xi−xj |

|xi − xj |

• Others: Fourier-type of kernel e iΦ(x,y) where Φ(x , y) is smooth; e ixy ;
Bessel function J0(xy)
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Hierarchical matrix approximation

• Same mathematical foundation as FMM [Greengard/Rokhlin 1987], put
in matrix form:
• Diagonal block (“near field”) represented exactly
• Off-diagonal block (“far field”) approximated via low-rank format

FMM Algebraic
separability of Green’s function low rank off-diagonal

G (x , y) ≈
∑r

ℓ=1 fℓ(x)gℓ(y) A =

[
D1 U1B1V

T
2

U2B2V
T
1 D2

]
x ∈ X , y ∈ Y

• Algebraic power: factorization, inversion, tensors, ...
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Hierarchical organization is key to optimal algorithm
complexity

Example: Hierarchical Off-Diagonal Low Rank (HODLR)

Algorithm can be top-down or bottom-up
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Application 2: discretized PDE

• Globally sparse, locally dense
• Can embed LR data-sparse in sparse

multifrontal algorithm

• In addition to structural sparsity, further
apply LR data-sparsity to dense frontal
matrices
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Hierrarchical matrix structure

1 Cluster the variables into
a cluster tree

2 Define admissibility
condition to determine
whether a pair of clusters
admits a low rank block

3 Hierarchically determine
admissible blocks using
a dual tree traversal on
the cluster tree
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Cluster tree, Matrix tree
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Cluster tree I : pairs of clusters
define blocks in the matrix.
- Leaves form a block partitioning
- Red blocks = inadmissible leaves
- Green blocks = admissible blocks
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Matrix tree: generally not a complete tree
- Blue nodes = inadmissible blocks
- Red nodes = inadmissible leaves
- Green nodes = admissible leaves

X.S. Li Faster Linear Solvers January 2-6, 2026 10 / 35



Cluster tree, Matrix tree

I15

I13

I14

I9

I10

I11

I12

I1

I2

I3

I4

I5

I6

I7

I8

I15

I13 I14

I9 I10 I11 I12

I1 I2 I3 I4 I5 I6 I7 I8

Cluster tree I : pairs of clusters
define blocks in the matrix.
- Leaves form a block partitioning
- Red blocks = inadmissible leaves
- Green blocks = admissible blocks

15,15

13,13

...

14,13

11,9

5,1 6,1 5,2 6,2

12,9 11,10 12,10

13,14

9,11

1,5 2,5 1,6 2,6

10,11 9,12 10,12

14,14

...

Matrix tree: generally not a complete tree
- Blue nodes = inadmissible blocks
- Red nodes = inadmissible leaves
- Green nodes = admissible leaves

X.S. Li Faster Linear Solvers January 2-6, 2026 10 / 35



Admissibility condition

admissible(τ, σ) = 1, if
Diam(τ) + Diam(σ)

2
≤ η · Dist(τ, σ)

Typically

• weak admissibility: η ≥ 1
e.g., HODLR, HSS

• strong admissibility: η ≤ 0.5
e.g., H,H2
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Admissibility condition

Example: block partitioning of a matrix associated with a set of N = 215

points in 3D geometry
Smaller η leads to more refined partitioning of off-diagonal blocks

η = 0.5 η = 0.7
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Nested basis leads to optimal complexity

• Represent parents in terms of their children using transfer matrices

• U l−1
i =

[
U l
i1

U l
i2

] [
E l
i1

E l
i1

]
• Every low rank block has the form Al

ts = U l
tS

l
tsV

l
s
T

• S l
ts is the coupling matrix

• Assume we have an orthogonal basis: U l
t
T
U l
t = I

U15

U13
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Classes of hierarchical low rank matrices

Strong admissibility Weak admissibility

Indep. bases H HODLR

Nested based H2 HSS, HIF
Inverse FMM Recursive Skeletonization

weak admissibility

strong admissibility
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Deep dive: construction of hierarchical matrices

Low rank compression tool: adaptive randomized sketching

• Understanding probabilistic error
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Low rank compression via randomized sketch

Approximate range of A:

1 Pick random matrix Ωn×(k+p), k target rank, p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S)

Benefits:

• Matrix-free, only need matvec

• When embedded in sparse frontal solver, simplifies “extend-add”
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How to sketch only admissible blocks?

1 Preprocessing: Draw a big sketch using global A, S = AΩ
Sketching cost:
• Dense matvec: O(rN2)
• FFT: O(rN logN) (e.g., Toeplitz)
• FMM: O(rN)

Can it be faster using structured random Ω?

2 At each level, subtract small sketches corresponding to the
inadmissible blocks 1

o Example: in HSS construction:
block diagonal matrix at level ℓ: D(ℓ) = diag(Dτ1 ,Dτ2 , . . . ,Dτq)

Off-diagonal sketch: S (ℓ) =
(
A− D(ℓ)

)
Ω = S r − D(ℓ)Ω

1[Martinsson 2011; Xia 2013; Boukaram/Liu/Ghysels/L. 2025]
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Unified view of sketching: Johnson-Lindenstrauss Lemma

JL-Lemma [Johnson-Lindenstrauss 1984]

Given ε ∈ (0, 1), let m and d be positive integers such that
d ≥ 4(ε2/2− ε3/3)−1 logm. For any set P of m points in Rn there exists
f : Rn → Rd such that for all u, v ∈ P

(1− ε)∥u − v∥2 ≤ ∥f (u)− f (v)∥2 ≤ (1 + ε)∥u − v∥2.
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JL sketching operator: length preservation of a single
vector

Suppose D is a distribution over matrices of size d × n. We say that a
matrix R ∼ D is a (n, d , δ, ε)-JL sketching operator if for any vector
x ∈ Rn it satisfies

Pr
R∼D

[∣∣∥Rx∥2 − ∥x∥2∣∣
∥x∥2

> ε

]
< δ.

• JL implies subspace embedding [Woodruff 2014]
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Distributional JL family: drawn from certain distribution

Provided d sufficiently large, the following all satisfy JL sketching operator
requirement:

• R ∼ Gaussian(n, d), i.i.d. normal distribution with mean 0, variance
1/d [Dasgupta/Gupta 2003]

• R ∼ SRHT (n, d),R = PHD [Halko/Martinsson/Tropp 2011]

P: sample d coordinates from n uniformly at random
H: Hadamard matrix
D: diagonal matrix, entries drawn from {+1,−1} uniformly at random

• R ∼ SJLT (n, d , α), Sparse JL Transform [Cohen/Jayrram/Nelson 2018]

α nonzero entries per row
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Theory: Range-finder bound for general JL sketching
operator

[Y. Yaniv, O.A. Malik, P. Ghysels, X.L.; CAMCoS 2025]

Theorem (Distributional JL implies Range-finder Bound)

Suppose A ∈ Cm×n is a matrix and let 0 < r < min(m, n) be the target
rank. If R is a (n, d , δ

2max(52r ,n)
, ε
12)-JL sketching operator with

ε/12, δ ∈ (0, 1) and d = r + p with p ≥ 0, then the following holds with
probability at least 1− δ:

||(I − PY )A|| ≤

(√
1 +

n(1 + ε)

(1− ε)

)
σr+1(A), (1)

where Y = AR = QΩ with PY = QQ†.
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Theory: Range-finder bound for special JL sketching
operator: R ∼ Gaussian(n, d)

Theorem ([Halko/Martinsson/Tropp 2011])

Choose oversampling parameter p ≥ 4 and target rank r ≥ 2, where
r + p ≤ min(m, n). Draw R ∈ Rn×(r+p), Y = AR = QΩ and PY = QQ∗,
t then the norm squared approximation error is

||(I − PY )A|| ≤
(
1+16

√
1 +

r

p + 1

)
σr+1(A)+

8
√
r + p

p + 1

(∑
j>r

σ2
j (A)

)1/2

,

with probability at least 1− 3e−p.
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Theory: Range-finder bound for special JL sketching
operator: R ∼ SJLT (n, d , α)

Theorem ([Yaniv/Malik/Ghysele/L. 2025])

A target rank r < min(m, n). Fix ε, δ ∈ (0, 1). If α = Θ(log3(r/δ)/ε),
d = Ω(r log6(r/δ)/ε2), Y = AR = QΩ and PY = QQ∗ then

||(I − PY )A|| ≤ σr+1(A)

√
1 +

1

(1− ε)
max

(e2nα
d

, log
(2d

δ

)
− nα

d

)
.

(2)
with probability 1− δ.
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Frobenius norm concentration bound for any JL sketching
operator

• Theorem [Yaniv/Malik/Ghysele/L. 2025]

Let A ∈ Rm×n and ε, δ ∈ (0, 1). If R ∈ Rn×d is a (n, d , δ′, ε)-JL
matrix where δ′ = δ/m, then the following holds with probability at
least 1− δ:

(1− ε)∥A∥2F ≤ ∥AR∥2F ≤ (1 + ε)∥A∥2F .

• Furthermore, we established the following stochastic relationship

between ||A||F and ||S = AR||F : E
[

1√
d
||S ||2F

]
= ||A||2F

• In practice, leads to robust stopping criteria in adaptive sketching

Absolute: ||(I − QQ∗)A||F ≈ ||(I − QQ∗)S ||F ≤ εa
Relative: ||((I−QQ∗)A||F

||A||F ≈ ||(I−QQ∗)S||F
||S||F ≤ εr
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Sparse JLT is a highly structured random sparse matrix

Mitigate dense sampling cost

• SJLT [Kane/Nelson 2014; Cohen/Jayram/Nelson 2018]

An SJLT matrix R of size n × d has a fixed number α ∈ [d ] nonzero
entries per row. The nonzero entries are drawn independently from
two values {1/

√
α,−1/

√
α} with equal probability. Example:

R ∼ SJLT (4, 3, 2)

R =
1√
2


1 0 −1
0 −1 −1
1 −1 0
1 0 1

 =
1√
2



1 0 0
0 0 0
1 0 0
1 0 1

−

0 0 1
0 1 1
0 1 0
0 0 0




• Sketching AR only involves add/subtract; no multiplication

• Implementation is no harder than sparse matrix-vector multiplication
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SJLT-sketching in HSS construction: accuracy & runtime

• Compared to Gaussian sketching; with varying sparsity level, varying
compression tolerance
Example: the top frontal matrix of 3D Poisson

α = 4 is sufficient!

• Seral runtime up to 2.5X faster
• Parallel runtime with 32 MPI prrocesses:

Sketching time up to 17X faster
Total time up to 14X faster
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Applications

• Iterative linear solvers:
Hierarchical matrix-vector multiplication

• Direct linear solvers:
Factoization/inversion: ULV, H-LU, H2-LU 2, ...

2
on GPU: [Boukaram/Keyes/L./Liu/Turkiyyah 2026]
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STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• Fully algebraic solvers/preconditioners
• Dense: Can take user input of cluster tree & block partitioning

• HSS, BLR, H2 (soon)
• ButterflyPACK integration/interface: Butterfly, HODLR, HODBF

• Sparse multifrontal direct solver

• Approximate sparse factorization preconditioner

• C++, MPI + OpenMP + CUDA, real & complex, 32/64 bit integers

• BLAS, LAPACK, Metis

• Optional: MPI, ScaLAPACK, ParMETIS, (PT-)Scotch,
cuBLAS/cuSOLVER, SLATE, ZFP
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Kernel Ridge Regression: Ridge Regression + Kernel Trick

1. Training stage to compute model parameters:
Need to minimize the cost function:

argminw C (w) =
∑
i

(yi −wTxi )
2 + λ∥w∥2

• xi ’s are data points (rows of the data matrix X n×d)
• yi ’s are their labels
• w is the normal vector to the target hyperplane

Can derive the optimal weights for the prediction model:

w = XT (λI + XXT )−1y

2. Prediction stage: given a new vector x1 from the test set, compute:

y1 := wTx1 = [(λI + XXT )−1y]TXx1

≈ [(λI +K(X ,X ))−1y]T · K(X , x1)← kernel trick

=⇒ Binary classification: class label predicted by the sign of y1
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STRUMPACK Python interface to Scikit-learn

• Scikit-learn: machine Learning in Python,
http://scikit-learn.org/stable/
• contains classifiers and regressors
• but only provides shared-memory parallelism

• STRUMPACKKernel Python class:
• derived from scikit-learn base classes BaseEstimator and ClassifierMixin
• implements member functions: fit, predict and decision function
• can leverege all the other functions in scikit-learn
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Time comparison between scikit-learn and HSS

Use Gaussian kernel K (i , j) = exp
(
−∥xi−xj∥22

2h2

)

40k 60k 100k 200k 500k 1M
101

102

103

Training dataset size (n)

F
it
ti
m
e
(s
)

scikit-learn (32 cores)

HSS-ANN (32 cores)

HSS-ANN (1280 cores)

SUSY dataset (particle physics):
classification to distinguish between
a signal process which produces
supersymmetric particles and a
background process which does not
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Rank structured multifrontal sparse factorization

Compressing large dense blocks in the multifrontal tree
Combining Hierarchically Off-Diagonal Butterfly (HODBF) and Block Low
Rank (BLR)

• Largest: HODBF

• Medium: BLR

• Smaller: dense or
lossy compression
(ZFP)
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3D visco-acoustic wave propagation

Governed by the Helmholtz equation: x = (x1, x2, x3)(∑
i

ρ(x)
∂

∂xi

1

ρ(x)

∂

∂xi

)
p(x) +

ω2

κ2(x)
p(x) = −f (x)

• Solution method: FD on staggered grids using a 27-point stencil, 8
PML absorbing boundary layers
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Summary: Stages of operation

• Data clustering, matrix reordering

• Compression – usually dominating cost
• Complexity depends on: black-box Av and AT v , black-box entry

evaluation A(i , j)
• Goal: O(N logαN)

• Building solvers
• Iterative solver: matrix-vector multiplication
• Direct solvers: factorization (e.g., ULV, H-LU), solve, inversion

• Principal tool for efficient implementation and parallelization
Sweeping through “trees” upward / downward: cluster tree, separator
tree, ...
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Open Problems

• How to choose α in SJLT (n, d , α)?

• Subsampled randomized trig transform (SRTT), or Fourier transform
(SRFT)

• Does it make sense to do H, H2-QR? How?

• Spectral analysis for matrices preconditioned by low-rank factorization

• Data-sparse rank analysis for matrix inverse

• Data-sparse for tensor computations
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