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Tall-and-skinny QR Factorizations
I Given V ∈ Rn×m, with n� m, we want to compute V = QR,

with QTQ = I and R n × n upper triangular.

V = Q
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Tall-and-skinny QR Factorizations

I Necessary for many scientific & engineering applications,
including:
I large least squares problems
I dimensionality reduction methods for data analysis (e.g., PCA)
I block orthogonalization kernels for solving linear systems

and eigenvalue problems within block or s-step Krylov
methods

I require relatively robust and high performance TSQR
I requires 1 TSQR per iteration
I s-step methods produce matrix V formed using matrix powers

kernel → ill-conditioned



Matrix power kernel for s-step GMRES

Matrix Powers Kernel: V = MPK(A, b, s)

1: v1 = Ab
2: for k = 2, . . . , s do
3: vk = Av(k−1)

4: end for



Standard approaches

I Gram-Schmidt

I Modified Gram-Schmidt

I Use Givens rotations

I Use Householder reflections



Gram-Schmidt
Jorgen P. Gram (1850-1916) a Danish actuary presented the
orthogonalization method implicitly in 1883 (unaware that
Pierre-Simon Laplace (1749-1827) had earlier presented the
method).

Erhard Schmidt (1876-1959), a student of Herman Schwarz and
David Hilbert explicitly used the method in 1907.

Gram-Schmidt orthogonalization

1: q1 = v1/‖v1‖
2: for i = 2, . . . ,m do
3: wi = vi
4: for j=1, . . . , i-1 do
5: rji = vTi qj
6: wi = wi − rjiqj
7: end for
8: rii = ‖wi‖
9: qi = wi/rii

10: end for
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Gram-Schmidt is unstable. Use Modified Gram-Schmidt
I Gram-Schmidt is known to be unstable for numerical

computations at lease since 1965 [James Wilkinson].

I Many people looked for alternatives and Modified
Gram-Schmidt is a very good alternative. Essentially the same
operations in a different order. Extensively studied by Åke
Björk [LAA, 1994]
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Householder Triangulation

Alton Householder [1958]: Apply orthogonal reflections to
triangularize V , and obtain R.
The product of the reflections is QT . That is, QTV = R

It is as stable as Modified Gram-Schmidt.
(Some more details below).
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Our Goal for Tall-and-skinny QR Factorizations

I Numerically, we want an efficient algorithm with
||I − QTQ|| = O(u) and ‖V − QR‖/‖V ‖ = O(u) with few
restrictions on V . u is the unit of round-off.

I For performance, we also want to limit communication

I First idea: Householder QR

+ Does the job for any V
– Communication intensive → severe performance bottleneck
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What to do?
First recall that if V = QR, then V TV = RTQTQR = RTR.

V T

V

= RT R

In other words R is the Cholesky factor of the m ×m symmetric
positive definite matrix V TV .
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What to do? (cont.)

Idea: Compute the Cholesky factorization of V TV , obtaining R,
then

Find Q = VR−1 by solving m systems with triangular R.
Namely RTqTj = vTj , (vj , qj rows of V ,Q).
This is called Cholesky QR (CholQR).
Some history: This idea was around in the 1970’s and 80’s.
Implicit in the classic book by Gene Golub and Charles Van Loan
[First ed. 1983].
A paper by Walter Gander [ETH report 1980] indicates that
CholQR more accurate (stable) than Classical Gram-Schmidt, but
not as much as Modified GS, in other words:
This first idea is not very accurate!
A personal note: I recall in 1986, Pete Stewart suggesting CholQR
after a talk by Dianne O’Leary at a conference in Loen, Norway.
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What to do? (cont.)

CholQR brought back in the context of modern architectures and
high level BLAS by Stathopoulos and Wu [SISC, 2002]

But they explicitly said: Do not use it!
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What to do? (cont.)

Next idea:
Do it again: call what you did V = Q0R0, do “Cholesky QR” on
Q0 = Q1R1, obtaining V = Q1(R1R0).
This is Cholesky QR2
[Fukaya, Nakatsukasa, Yanagisawa, Yamamoto, 2014].

You can think of this as “iterative improvement” for QR.
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Current Practical Communication-Avoiding Tall-and-skinny
QR Factorizations

In other words,

I Alternative 1 : CholeskyQR

CholeskyQR:
[Q,R] = cholQR(V )

1: G = V TV
2: R = chol(G )
3: Q = VR−1

+ Only 1 processor communication
– Inaccurate: high orthog. error ||I − QTQ|| = O(κ2(V ) u)

[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]
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Another popular idea: CholeskyQR2

CholeskyQR2:
[Q,R] = cholQR2(V )

1: [Q0,R0] = cholQR(V )
2: [Q,R1] = cholQR(Q0)
3: R = R1R0

+ Uses highly parallelizable matrix operations only, 2
communications

– Unstable: requires κ2(V ) / u−1 to achieve
||I − QTQ|| = O(u) and ‖V − QR‖/‖V ‖ = O(u)
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Newer idea: shifted CholeskyQR3

Shifted CholeskyQR3:
[Q,R] = sCholQR3(V , ω)

1: G = V TV + ωI
2: R = chol(G )
3: Q0 = VR−10

4: [Q,R1] = cholQR2(Q0)
5: R = R1R0

+ More stable: for appropriately chosen shift ω, requires
κ(V ) / u−1 to achieve ||I − QTQ|| = O(u) and
‖V − QR‖/‖V ‖ = O(u)
[Fukaya, Kannan, Nakatsukasa, Yamamoto, Yanagisawa, 2020]

– 50% higher communication and computational cost of CholeskyQR2
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An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

I Has CholeskyQR2’s low computational cost with similar
operations
I This would give same number of communications as

CholeskyQR2

I Has better stability properties than CholeskyQR2, maybe
similar to shifted CholeskyQR3
I e.g., for any numerically full rank V (i.e., κ(V ) / u−1),
||I − QTQ|| = O(u) and ‖V − QR‖/‖V ‖ = O(u)

Tool to accomplish this: random sketching



An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

I Has CholeskyQR2’s low computational cost with similar
operations
I This would give same number of communications as

CholeskyQR2

I Has better stability properties than CholeskyQR2, maybe
similar to shifted CholeskyQR3
I e.g., for any numerically full rank V (i.e., κ(V ) / u−1),
||I − QTQ|| = O(u) and ‖V − QR‖/‖V ‖ = O(u)

Tool to accomplish this: random sketching



An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

I Has CholeskyQR2’s low computational cost with similar
operations
I This would give same number of communications as

CholeskyQR2

I Has better stability properties than CholeskyQR2, maybe
similar to shifted CholeskyQR3
I e.g., for any numerically full rank V (i.e., κ(V ) / u−1),
||I − QTQ|| = O(u) and ‖V − QR‖/‖V ‖ = O(u)

Tool to accomplish this: random sketching



Random Sketching
We can use a random sketch matrix S ∈ Rs×n for s � n to
compress V ∈ Rn×m while approximately preserving its condition
number. W = SV , κ(W ) ≈ κ(V ) with high probability.

S

V

= W
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Random Sketching (cont.)

Definition ((ε, d ,m) oblivious `2-subspace embedding)

The sketch matrix S ∈ Rs×n is an (ε, d ,m) oblivious `2-subspace
embedding if for any fixed m-dimensional subspace V ⊂ Rn,

√
1− ε ‖x‖2 ≤ ‖Sx‖2 ≤

√
1 + ε ‖x‖2, ∀x ∈ V

with probability at least 1− d .

Corollary

If S ∈ Rs×n is an (ε, d ,m) oblivious `2-subspace embedding, and
V ∈ Rn×m has rank m, then with probability at least 1− d,

κ(V ) ≤
√

1− ε
1 + ε

κ(SV ).

[Sarlos,2006]
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Idea of a Randomized QR Algorithm
Given a sketch S ∈ Rs×n and V ∈ Rn×m, with s � n, m� n,
consider:

Randomized QR Framework

1: Apply random sketch to compress V : W = SV ∈ Rs×m

2: Apply Householder QR to W : [Qtmp,R0] = HouseholderQR(W )
3: Approximately orthogonalize V : Q0 = VR−1

0

4: Reorthogonalize: [Q,R1] = cholQR(Q0)
5: Return R: R = R1R0

I Does it work?
I κ(Q0) = κ(VR−1

0 ) ≤
√

1−ε
1+ε κ(SVR−1

0 ) =
√

1−ε
1+ε = O(1)

I Since κ(Q0) = O(1), step 4 gives fully orthogonal Q (up to u).

I Is it a good idea?
I If S reduces the size of V sufficiently in step 1, step 2 is cheap
I If sketching is cheap, similar arithmetic cost to CholeskyQR2,

and also only requires 2 communications ⇒ similar
performance to CholeskyQR2

I Good idea if sketching is cheap and W = SV is sufficiently
small
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Simple Efficient Examples of (ε, d ,m) oblivious
`2-subspace embeddings

I Gaussian Sketch: S = 1√
s
G ∈ Rs×n where gi ,j are i.i.d.

Gaussian random variables

+ Requires sketch size s = O(m)
I random QR framework does HouseholderQR on small

O(m)×m matrix → fast

– Applying to V ∈ Rn×m has O(nm2) complexity
I Sketching cost dominates

I CountSketch: S = 1√
s
C ∈ Rs×n where C is sparse with one

±1 per column placed in a random row

+ Applying to V ∈ Rn×m has O(nm) complexity
I Sketching is cheap

– Requires sketch size s = O(m2)
I random QR framework must do HouseholderQR on

O(m2)×m matrix → potential bottleneck
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Randomized Householder-Cholesky QR
I What if we use two sketches S1,S2 where we apply a

S1 ∈ RO(m2)×n CountSketch matrix to V and then reduce the
size again with a smaller S2 ∈ RO(m)×O(m2) Gaussian

+ Sketching is cheap (same asymptotic cost as 1 CountSketch)
+ Must do Householder QR on O(m)×m matrix S2S1V ... fast!

S2
S1

V

=
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Randomized Householder-Cholesky QR

I We call this algorithm rand cholQR
I Is this actually more numerically stable than CholeskyQR2?
I Is its performance similar to CholeskyQR2 in practice?
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Key Numerical Properties of rand cholQR

First, we define a set of assumptions stating V is numerically full
rank (i.e., κ(V ) ≤ O(u−1)), V is tall-and-skinny, and that the
sketch matrices S1,S2 simultaneously satisfy the subspace
embedding properties with probability at least 1− d .

Assumptions (Matrix Conditioning and Embedding)
Suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are (ε1, d1,m) and
(ε2, d2,m) oblivious `2-subspace embeddings respectively,
generated independently. Define d = d1 + d2 − d1d2,
εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2, where

εL ∈
[
0, 616625 −

9
625εH

)
. Further, suppose V ∈ Rn×m has full rank

and 1 < m ≤ p2 ≤ p1 ≤ n where nmu ≤ 1
12 , p1

√
p2u ≤ 1

12 , and

δ :=
383

(√
1 + εH p2m

3/2 +
√
m‖S2‖2(p1

√
p2
√

1 + ε1 + n‖S1‖F )
)

√
1− εL

u κ(V ) ≤ 1.
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Key Numerical Properties of rand cholQR

Theorem (Higgins, S., Boman, Yamazaki, 2023)
Suppose the matrix conditioning and embedding assumptions are
satisfied. With probability at least 1− d, the computed Q̂, R̂ factors
obtained with rand cholQR has O(u) orthogonality error and relative
factorization error. That is,

‖Q̂T Q̂ − I‖2 ≤ c1(n,m, εL, εH) u,

‖V − Q̂R̂‖2/‖V ‖2 ≤ c2(n,m, εL, εH) u



Empirical Verification of Numerical Properties

Tested stability of Multi-Sketch rand cholQR, cholQR2, sCholQR3, and
Householder QR
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Figure: Orthogonality (left) and relative factorization error (right),
m = 70. Indicated by a large dot, lines for cholQR2 end at κ(V ) = 108,
as the method fails beyond this point.



Parameters for our Numerical Experiments for
Multisketching

I S1 ∈ Rp1×n a CountSketch with ε1 = 0.9 requiring sketch size
p1 = d8.24(m2 + m)e to produce a (0.9, 0.15,m) oblivious
`2-subspace embedding

I S2 ∈ Rp2×p1 a Gaussian sketch with p2 = d74.3 log(p1)e giving
ε2 = 0.49 to give a (0.49, 1/m,m) oblivious `2-subspace
embedding.

I S2S1 produced an embedding with εL ≈ 0.9490, εH ≈ 1.8310,
and d ≈ 0.15

I Thus, our assumptions are satisfied



Performance Results
I We tested performance of multi-sketch rand cholQR vs

rand cholQR with a single Gaussian sketch and single CountSketch,
cholQR2, sCholQR3, and Householder QR on an NVIDIA A100
GPU using the Kokkos C++ library, and a few direct calls to
cuSOLVER.

I Multi-sketched rand cholQR is:
I significantly more stable than cholQR2 at no cost (sometimes

faster!)
I significantly faster than Householder QR and sCholQR3
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Conclussions

Using multi-sketching, rand cholQR has:

I CholeskyQR2’s low computational cost with similar operations

I Gives same number of communications, gives similar
performance in practice on a high performance GPU

I significantly better stability properties than CholeskyQR2 in
theory and practice
I i.e., for any numerically full rank V , ||I − QTQ|| = O(u) and
‖V − QR‖/‖V ‖ = O(u)

I better stability properties than sCholQR3 in practice with 50%
less communication and ∼ 50% faster runtime on a GPU

Best of all: very easy to get high performance with standard
libraries
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