

Randomized Householder-Cholesky QR Factorization with Multisketching

Andrew J. Higgins ² Daniel B. Szyld ¹
Erik G. Boman ² Ichitaro Yamazaki ²

¹Department of Mathematics, Temple University, Philadelphia

²Center for Computing Research, Sandia National Laboratories, Albuquerque

Workshop on Randomized Numerical Linear Algebra
ICERM

3 February 2026

Tall-and-skinny QR Factorizations

- ▶ Given $V \in \mathbb{R}^{n \times m}$, with $n \gg m$, we want to compute $V = QR$, with $Q^T Q = I$ and R $n \times n$ upper triangular.

Tall-and-skinny QR Factorizations

- Given $V \in \mathbb{R}^{n \times m}$, with $n \gg m$, we want to compute $V = QR$, with $Q^T Q = I$ and R $n \times n$ upper triangular.

$$V = Q \quad \boxed{R}$$

Tall-and-skinny QR Factorizations

- ▶ Necessary for many scientific & engineering applications, including:
 - ▶ large least squares problems
 - ▶ dimensionality reduction methods for data analysis (e.g., PCA)
 - ▶ **block orthogonalization kernels for solving linear systems and eigenvalue problems within block or s -step Krylov methods**
 - ▶ require relatively robust and high performance TSQR
 - ▶ requires 1 TSQR per iteration
 - ▶ s -step methods produce matrix V formed using matrix powers kernel \rightarrow ill-conditioned

Matrix power kernel for s -step GMRES

Matrix Powers Kernel: $V = \text{MPK}(A, b, s)$

```
1:  $v_1 = Ab$ 
2: for  $k = 2, \dots, s$  do
3:    $v_k = Av_{(k-1)}$ 
4: end for
```

Standard approaches

- ▶ Gram-Schmidt
- ▶ Modified Gram-Schmidt
- ▶ Use Givens rotations
- ▶ Use Householder reflections

Gram-Schmidt

Jorgen P. Gram (1850-1916) a Danish actuary presented the orthogonalization method implicitly in 1883 (unaware that Pierre-Simon Laplace (1749-1827) had earlier presented the method).

Gram-Schmidt

Jorgen P. Gram (1850-1916) a Danish actuary presented the orthogonalization method implicitly in 1883 (unaware that Pierre-Simon Laplace (1749-1827) had earlier presented the method).

Erhard Schmidt (1876-1959), a student of Herman Schwarz and David Hilbert explicitly used the method in 1907.

Gram-Schmidt

Jorgen P. Gram (1850-1916) a Danish actuary presented the orthogonalization method implicitly in 1883 (unaware that Pierre-Simon Laplace (1749-1827) had earlier presented the method).

Erhard Schmidt (1876-1959), a student of Herman Schwarz and David Hilbert explicitly used the method in 1907.

Gram-Schmidt orthogonalization

```
1:  $q_1 = v_1 / \|v_1\|$ 
2: for  $i = 2, \dots, m$  do
3:    $w_i = v_i$ 
4:   for  $j=1, \dots, i-1$  do
5:      $r_{ji} = v_i^T q_j$ 
6:      $w_i = w_i - r_{ji} q_j$ 
7:   end for
8:    $r_{ii} = \|w_i\|$ 
9:    $q_i = w_i / r_{ii}$ 
10: end for
```

Gram-Schmidt is unstable. Use Modified Gram-Schmidt

- ▶ Gram-Schmidt is known to be unstable for numerical computations at least since 1965 [James Wilkinson].

Gram-Schmidt is unstable. Use Modified Gram-Schmidt

- ▶ Gram-Schmidt is known to be unstable for numerical computations at least since 1965 [James Wilkinson].
- ▶ Many people looked for alternatives and Modified Gram-Schmidt is a very good alternative. Essentially the same operations in a different order. Extensively studied by Åke Björk [LAA, 1994]

Gram-Schmidt is unstable. Use Modified Gram-Schmidt

- ▶ Gram-Schmidt is known to be unstable for numerical computations at least since 1965 [James Wilkinson].
- ▶ Many people looked for alternatives and Modified Gram-Schmidt is a very good alternative. Essentially the same operations in a different order. Extensively studied by Åke Björk [LAA, 1994]

Modified Gram-Schmidt orthogonalization

```
1: for  $i = 1, \dots, m$  do
2:   end for
3:    $w_i = v_i$ 
4:   for  $i = 1, \dots, m$  do
5:      $r_{ii} = \|w_i\|$ 
6:      $q_i = w_i / r_{ii}$ 
7:     for  $j=i+1, \dots, m$  do
8:        $r_{ij} = w_j^T q_i$ 
9:        $w_j = w_j - r_{ij} q_i$ 
10:    end for
11:   end for
```

Householder Triangulation

Alton Householder [1958]: Apply orthogonal reflections to triangularize V , and obtain R .

The product of the reflections is Q^T . That is, $Q^T V = R$

Householder Triangulation

Alton Householder [1958]: Apply orthogonal reflections to triangularize V , and obtain R .

The product of the reflections is Q^T . That is, $Q^T V = R$
It is as stable as Modified Gram-Schmidt.

(Some more details below).

Our Goal for Tall-and-skinny QR Factorizations

- ▶ Numerically, we want an efficient algorithm with $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$ with few restrictions on V . \mathbf{u} is the unit of round-off.

Our Goal for Tall-and-skinny QR Factorizations

- ▶ Numerically, we want an efficient algorithm with $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$ with few restrictions on V . \mathbf{u} is the unit of round-off.
- ▶ For performance, we also want to limit communication

Our Goal for Tall-and-skinny QR Factorizations

- ▶ Numerically, we want an efficient algorithm with $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$ with few restrictions on V . \mathbf{u} is the unit of round-off.
- ▶ For performance, we also want to limit communication
- ▶ First idea: Householder QR
 - + Does the job for any V
 - Communication intensive → severe performance bottleneck

What to do?

First recall that if $V = QR$, then $V^T V = R^T Q^T QR = R^T R$.

$$V^T \boxed{V} = \boxed{R^T} \boxed{R}$$

What to do?

First recall that if $V = QR$, then $V^T V = R^T Q^T QR = R^T R$.

$$V^T = R^T R$$

In other words R is the Cholesky factor of the $m \times m$ symmetric positive definite matrix $V^T V$.

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

Find $Q = VR^{-1}$ by solving m systems with triangular R .

Namely $R^T q_j^T = v_j^T$, (v_j, q_j rows of V, Q).

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

Find $Q = VR^{-1}$ by solving m systems with triangular R .

Namely $R^T q_j^T = v_j^T$, (v_j, q_j rows of V, Q).

This is called Cholesky QR (CholQR).

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

Find $Q = VR^{-1}$ by solving m systems with triangular R .

Namely $R^T q_j^T = v_j^T$, (v_j, q_j rows of V, Q).

This is called Cholesky QR (CholQR).

Some history: This idea was around in the 1970's and 80's.

Implicit in the classic book by Gene Golub and Charles Van Loan [First ed. 1983].

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

Find $Q = VR^{-1}$ by solving m systems with triangular R .

Namely $R^T q_j^T = v_j^T$, (v_j, q_j rows of V, Q).

This is called Cholesky QR (CholQR).

Some history: This idea was around in the 1970's and 80's.

Implicit in the classic book by Gene Golub and Charles Van Loan [First ed. 1983].

A paper by Walter Gander [ETH report 1980] indicates that CholQR more accurate (stable) than Classical Gram-Schmidt, but not as much as Modified GS, in other words:

This first idea is not very accurate!

What to do? (cont.)

Idea: Compute the Cholesky factorization of $V^T V$, obtaining R , then

Find $Q = VR^{-1}$ by solving m systems with triangular R .

Namely $R^T q_j^T = v_j^T$, (v_j, q_j rows of V, Q).

This is called Cholesky QR (CholQR).

Some history: This idea was around in the 1970's and 80's.

Implicit in the classic book by Gene Golub and Charles Van Loan [First ed. 1983].

A paper by Walter Gander [ETH report 1980] indicates that CholQR more accurate (stable) than Classical Gram-Schmidt, but not as much as Modified GS, in other words:

This first idea is not very accurate!

A personal note: I recall in 1986, Pete Stewart suggesting CholQR after a talk by Dianne O'Leary at a conference in Loen, Norway.

What to do? (cont.)

CholQR brought back in the context of modern architectures and high level BLAS by Stathopoulos and Wu [SISC, 2002]

What to do? (cont.)

CholQR brought back in the context of modern architectures and high level BLAS by Stathopoulos and Wu [SISC, 2002]
But they explicitly said: **Do not use it!**

What to do? (cont.)

Next idea:

Do it again: call what you did $V = Q_0 R_0$, do “Cholesky QR” on $Q_0 = Q_1 R_1$, obtaining $V = Q_1(R_1 R_0)$.

This is Cholesky QR2

[Fukaya, Nakatsukasa, Yanagisawa, Yamamoto, 2014].

What to do? (cont.)

Next idea:

Do it again: call what you did $V = Q_0 R_0$, do “Cholesky QR” on $Q_0 = Q_1 R_1$, obtaining $V = Q_1(R_1 R_0)$.

This is Cholesky QR2

[Fukaya, Nakatsukasa, Yanagisawa, Yamamoto, 2014].

You can think of this as “iterative improvement” for QR.

Current Practical Communication-Avoiding Tall-and-skinny QR Factorizations

In other words,

- ▶ Alternative 1 : CholeskyQR

CholeskyQR:

$$[Q, R] = \text{cholQR}(V)$$

- 1: $G = V^T V$
- 2: $R = \text{chol}(G)$
- 3: $Q = VR^{-1}$

Current Practical Communication-Avoiding Tall-and-skinny QR Factorizations

In other words,

- ▶ Alternative 1 : CholeskyQR

CholeskyQR:

$$[Q, R] = \text{cholQR}(V)$$

- 1: $G = V^T V$
- 2: $R = \text{chol}(G)$
- 3: $Q = VR^{-1}$

- + Only 1 processor communication
- Inaccurate: high orthog. error $||I - Q^T Q|| = O(\kappa^2(V) \mathbf{u})$
[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]

Another popular idea: CholeskyQR2

CholeskyQR2:

$[Q, R] = \text{cholQR2}(V)$

- 1: $[Q_0, R_0] = \text{cholQR}(V)$
- 2: $[Q, R_1] = \text{cholQR}(Q_0)$
- 3: $R = R_1 R_0$

Another popular idea: CholeskyQR2

CholeskyQR2:

$$[Q, R] = \text{cholQR2}(V)$$

- 1: $[Q_0, R_0] = \text{cholQR}(V)$
- 2: $[Q, R_1] = \text{cholQR}(Q_0)$
- 3: $R = R_1 R_0$

- + Uses highly parallelizable matrix operations only, 2 communications
- Unstable: requires $\kappa^2(V) \lesssim \mathbf{u}^{-1}$ to achieve $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$
[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]
cf. E. Carson, K. Lund, M. Rozložník, and S. Thomas [LAA, 2022] for the block case

Newer idea: shifted CholeskyQR3

Shifted CholeskyQR3:

$$[Q, R] = \text{sCholQR3}(V, \omega)$$

- 1: $G = V^T V + \omega I$
- 2: $R = \text{chol}(G)$
- 3: $Q_0 = VR_0^{-1}$
- 4: $[Q, R_1] = \text{cholQR2}(Q_0)$
- 5: $R = R_1 R_0$

Newer idea: shifted CholeskyQR3

Shifted CholeskyQR3:

$$[Q, R] = \text{sCholQR3}(V, \omega)$$

- 1: $G = V^T V + \omega I$
- 2: $R = \text{chol}(G)$
- 3: $Q_0 = VR_0^{-1}$
- 4: $[Q, R_1] = \text{cholQR2}(Q_0)$
- 5: $R = R_1 R_0$

- + More stable: for appropriately chosen shift ω , requires $\kappa(V) \lesssim \mathbf{u}^{-1}$ to achieve $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$
[Fukaya, Kannan, Nakatsukasa, Yamamoto, Yanagisawa, 2020]
- 50% higher communication and computational cost of CholeskyQR2

An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

- ▶ Has CholeskyQR2's low computational cost with similar operations
 - ▶ This would give same number of communications as CholeskyQR2

An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

- ▶ Has CholeskyQR2's low computational cost with similar operations
 - ▶ This would give same number of communications as CholeskyQR2
- ▶ Has better stability properties than CholeskyQR2, maybe similar to shifted CholeskyQR3
 - ▶ e.g., for any numerically full rank V (i.e., $\kappa(V) \lesssim \mathbf{u}^{-1}$), $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$

An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:

- ▶ Has CholeskyQR2's low computational cost with similar operations
 - ▶ This would give same number of communications as CholeskyQR2
- ▶ Has better stability properties than CholeskyQR2, maybe similar to shifted CholeskyQR3
 - ▶ e.g., for any numerically full rank V (i.e., $\kappa(V) \lesssim \mathbf{u}^{-1}$), $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$

Tool to accomplish this: *random sketching*

Random Sketching

We can use a random *sketch matrix* $S \in \mathbb{R}^{s \times n}$ for $s \ll n$ to compress $V \in \mathbb{R}^{n \times m}$ while approximately preserving its condition number. $W = SV$, $\kappa(W) \approx \kappa(V)$ with high probability.

Random Sketching

We can use a random *sketch matrix* $S \in \mathbb{R}^{s \times n}$ for $s \ll n$ to compress $V \in \mathbb{R}^{n \times m}$ while approximately preserving its condition number. $W = SV$, $\kappa(W) \approx \kappa(V)$ with high probability.

$$S \quad = \quad V \quad = \quad W$$

Random Sketching (cont.)

Definition $((\varepsilon, d, m)$ oblivious ℓ_2 -subspace embedding)

The sketch matrix $S \in \mathbb{R}^{s \times n}$ is an (ε, d, m) oblivious ℓ_2 -subspace embedding if for any fixed m -dimensional subspace $\mathcal{V} \subset \mathbb{R}^n$,

$$\sqrt{1 - \varepsilon} \|x\|_2 \leq \|Sx\|_2 \leq \sqrt{1 + \varepsilon} \|x\|_2, \quad \forall x \in \mathcal{V}$$

with probability at least $1 - d$.

Random Sketching (cont.)

Definition $((\varepsilon, d, m)$ oblivious ℓ_2 -subspace embedding)

The sketch matrix $S \in \mathbb{R}^{s \times n}$ is an (ε, d, m) oblivious ℓ_2 -subspace embedding if for any fixed m -dimensional subspace $\mathcal{V} \subset \mathbb{R}^n$,

$$\sqrt{1 - \varepsilon} \|x\|_2 \leq \|Sx\|_2 \leq \sqrt{1 + \varepsilon} \|x\|_2, \quad \forall x \in \mathcal{V}$$

with probability at least $1 - d$.

Corollary

If $S \in \mathbb{R}^{s \times n}$ is an (ε, d, m) oblivious ℓ_2 -subspace embedding, and $V \in \mathbb{R}^{n \times m}$ has rank m , then with probability at least $1 - d$,

$$\kappa(V) \leq \sqrt{\frac{1 - \varepsilon}{1 + \varepsilon}} \kappa(SV).$$

[Sarlos,2006]

Idea of a Randomized QR Algorithm

Given a sketch $S \in \mathbb{R}^{s \times n}$ and $V \in \mathbb{R}^{n \times m}$, with $s \ll n$, $m \ll n$, consider:

Randomized QR Framework

- 1: Apply random sketch to compress V : $W = SV \in \mathbb{R}^{s \times m}$
- 2: Apply Householder QR to W : $[Q_{tmp}, R_0] = \text{HouseholderQR}(W)$
- 3: Approximately orthogonalize V : $Q_0 = VR_0^{-1}$
- 4: Reorthogonalize: $[Q, R_1] = \text{cholQR}(Q_0)$
- 5: Return R : $R = R_1 R_0$

Idea of a Randomized QR Algorithm

Given a sketch $S \in \mathbb{R}^{s \times n}$ and $V \in \mathbb{R}^{n \times m}$, with $s \ll n$, $m \ll n$, consider:

Randomized QR Framework

- 1: Apply random sketch to compress V : $W = SV \in \mathbb{R}^{s \times m}$
- 2: Apply Householder QR to W : $[Q_{tmp}, R_0] = \text{HouseholderQR}(W)$
- 3: Approximately orthogonalize V : $Q_0 = VR_0^{-1}$
- 4: Reorthogonalize: $[Q, R_1] = \text{cholQR}(Q_0)$
- 5: Return R : $R = R_1 R_0$

► Does it work?

- $\kappa(Q_0) = \kappa(VR_0^{-1}) \leq \sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \kappa(SVR_0^{-1}) = \sqrt{\frac{1-\varepsilon}{1+\varepsilon}} = O(1)$
- Since $\kappa(Q_0) = O(1)$, step 4 gives fully orthogonal Q (up to \mathbf{u}).

Idea of a Randomized QR Algorithm

Given a sketch $S \in \mathbb{R}^{s \times n}$ and $V \in \mathbb{R}^{n \times m}$, with $s \ll n, m \ll n$, consider:

Randomized QR Framework

- 1: Apply random sketch to compress V : $W = SV \in \mathbb{R}^{s \times m}$
- 2: Apply Householder QR to W : $[Q_{tmp}, R_0] = \text{HouseholderQR}(W)$
- 3: Approximately orthogonalize V : $Q_0 = VR_0^{-1}$
- 4: Reorthogonalize: $[Q, R_1] = \text{cholQR}(Q_0)$
- 5: Return R : $R = R_1 R_0$

- ▶ Does it work?
 - ▶ $\kappa(Q_0) = \kappa(VR_0^{-1}) \leq \sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \kappa(SVR_0^{-1}) = \sqrt{\frac{1-\varepsilon}{1+\varepsilon}} = O(1)$
 - ▶ Since $\kappa(Q_0) = O(1)$, step 4 gives fully orthogonal Q (up to \mathbf{u}).
- ▶ Is it a good idea?
 - ▶ If S reduces the size of V sufficiently in step 1, step 2 is cheap
 - ▶ If sketching is cheap, similar arithmetic cost to CholeskyQR2, and also only requires 2 communications \Rightarrow similar performance to CholeskyQR2
 - ▶ Good idea if sketching is cheap and $W = SV$ is sufficiently small

Simple Efficient Examples of (ε, d, m) oblivious ℓ_2 -subspace embeddings

- ▶ Gaussian Sketch: $S = \frac{1}{\sqrt{s}} G \in \mathbb{R}^{s \times n}$ where $g_{i,j}$ are i.i.d. Gaussian random variables
 - + Requires sketch size $s = O(m)$
 - ▶ random QR framework does HouseholderQR on small $O(m) \times m$ matrix \rightarrow fast
 - Applying to $V \in \mathbb{R}^{n \times m}$ has $O(nm^2)$ complexity
 - ▶ Sketching cost dominates

Simple Efficient Examples of (ε, d, m) oblivious ℓ_2 -subspace embeddings

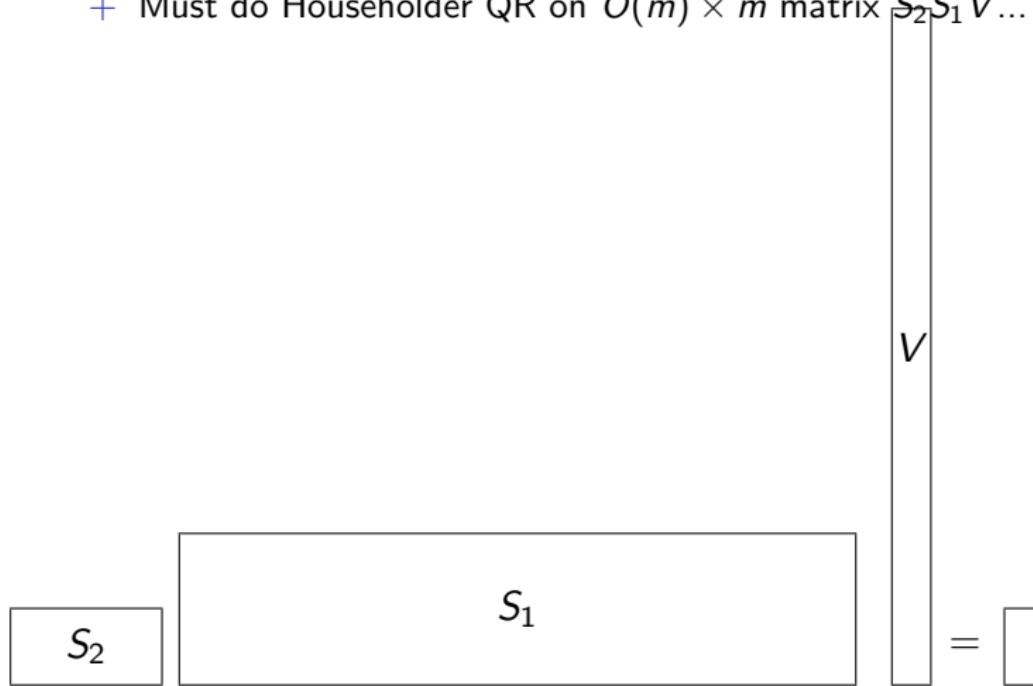
- ▶ Gaussian Sketch: $S = \frac{1}{\sqrt{s}} G \in \mathbb{R}^{s \times n}$ where $g_{i,j}$ are i.i.d. Gaussian random variables
 - + Requires sketch size $s = O(m)$
 - ▶ random QR framework does HouseholderQR on small $O(m) \times m$ matrix \rightarrow fast
 - Applying to $V \in \mathbb{R}^{n \times m}$ has $O(nm^2)$ complexity
 - ▶ Sketching cost dominates
- ▶ CountSketch: $S = \frac{1}{\sqrt{s}} C \in \mathbb{R}^{s \times n}$ where C is sparse with one ± 1 per column placed in a random row
 - + Applying to $V \in \mathbb{R}^{n \times m}$ has $O(nm)$ complexity
 - ▶ Sketching is cheap
 - Requires sketch size $s = O(m^2)$
 - ▶ random QR framework must do HouseholderQR on $O(m^2) \times m$ matrix \rightarrow potential bottleneck

Randomized Householder-Cholesky QR

- ▶ What if we use two sketches S_1, S_2 where we apply a $S_1 \in \mathbb{R}^{O(m^2) \times n}$ CountSketch matrix to V and then reduce the size again with a smaller $S_2 \in \mathbb{R}^{O(m) \times O(m^2)}$ Gaussian
 - + Sketching is cheap (same asymptotic cost as 1 CountSketch)
 - + Must do Householder QR on $O(m) \times m$ matrix $S_2 S_1 V \dots$ fast!

Randomized Householder-Cholesky QR

- ▶ What if we use two sketches S_1, S_2 where we apply a $S_1 \in \mathbb{R}^{O(m^2) \times n}$ CountSketch matrix to V and then reduce the size again with a smaller $S_2 \in \mathbb{R}^{O(m) \times O(m^2)}$ Gaussian
 - + Sketching is cheap (same asymptotic cost as 1 CountSketch)
 - + Must do Householder QR on $O(m) \times m$ matrix $S_2 S_1 V \dots$ fast!



Randomized Householder-Cholesky QR

- ▶ We call this algorithm `rand_cholQR`
 - ▶ Is this actually more numerically stable than CholeskyQR2?
 - ▶ Is its performance similar to CholeskyQR2 in practice?

Randomized Householder-Cholesky QR

- ▶ We call this algorithm `rand cholQR`
 - ▶ Is this actually more numerically stable than CholeskyQR2?
 - ▶ Is its performance similar to CholeskyQR2 in practice?

Randomized Householder-Cholesky QR: $[Q, R] = \text{rand_cholQR}(V)$

- 1: Apply random sketches to compress V : $W = S_2 S_1 V \in \mathbb{R}^{s_2 \times m}$
- 2: Apply Householder QR to W : $[Q_{tmp}, R_0] = \text{HouseholderQR}(W)$
- 3: Approximately orthogonalize V : $Q_0 = V R_0^{-1}$
- 4: Reorthogonalize: $[Q, R_1] = \text{cholQR}(Q_0)$
- 5: Return R : $R = R_1 R_0$

Key Numerical Properties of `rand_cholQR`

First, we define a set of assumptions stating V is numerically full rank (i.e., $\kappa(V) \leq O(\mathbf{u}^{-1})$), V is tall-and-skinny, and that the sketch matrices S_1, S_2 simultaneously satisfy the subspace embedding properties with probability at least $1 - d$.

Key Numerical Properties of `rand cholQR`

First, we define a set of assumptions stating V is numerically full rank (i.e., $\kappa(V) \leq O(\mathbf{u}^{-1})$), V is tall-and-skinny, and that the sketch matrices S_1, S_2 simultaneously satisfy the subspace embedding properties with probability at least $1 - d$.

Assumptions (Matrix Conditioning and Embedding)

Suppose $S_1 \in \mathbb{R}^{p_1 \times m}$ and $S_2 \in \mathbb{R}^{p_2 \times p_1}$ are (ε_1, d_1, m) and (ε_2, d_2, m) oblivious ℓ_2 -subspace embeddings respectively, generated independently. Define $d = d_1 + d_2 - d_1 d_2$, $\varepsilon_L = \varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2$, $\varepsilon_H = \varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2$, where $\varepsilon_L \in \left[0, \frac{616}{625} - \frac{9}{625} \varepsilon_H\right]$. Further, suppose $V \in \mathbb{R}^{n \times m}$ has full rank and $1 < m \leq p_2 \leq p_1 \leq n$ where $nm\mathbf{u} \leq \frac{1}{12}$, $p_1\sqrt{p_2}\mathbf{u} \leq \frac{1}{12}$, and

$$\delta := \frac{383 \left(\sqrt{1 + \varepsilon_H} p_2 m^{3/2} + \sqrt{m} \|S_2\|_2 (p_1 \sqrt{p_2} \sqrt{1 + \varepsilon_1} + n \|S_1\|_F) \right)}{\sqrt{1 - \varepsilon_L}} \mathbf{u} \kappa(V) \leq 1.$$

Key Numerical Properties of `rand cholQR`

Theorem (Higgins, S., Boman, Yamazaki, 2023)

Suppose the matrix conditioning and embedding assumptions are satisfied. With probability at least $1 - d$, the computed \hat{Q}, \hat{R} factors obtained with `rand cholQR` has $O(\mathbf{u})$ orthogonality error and relative factorization error. That is,

$$\|\hat{Q}^T \hat{Q} - I\|_2 \leq c_1(n, m, \varepsilon_L, \varepsilon_H) \mathbf{u},$$

$$\|V - \hat{Q} \hat{R}\|_2 / \|V\|_2 \leq c_2(n, m, \varepsilon_L, \varepsilon_H) \mathbf{u}$$

Empirical Verification of Numerical Properties

Tested stability of Multi-Sketch `rand_cholQR`, `cholQR2`, `sCholQR3`, and Householder QR

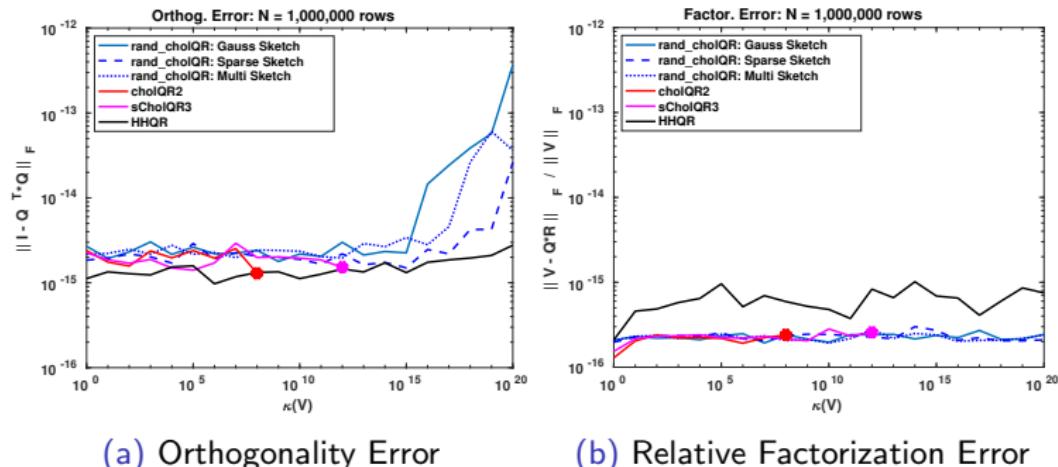


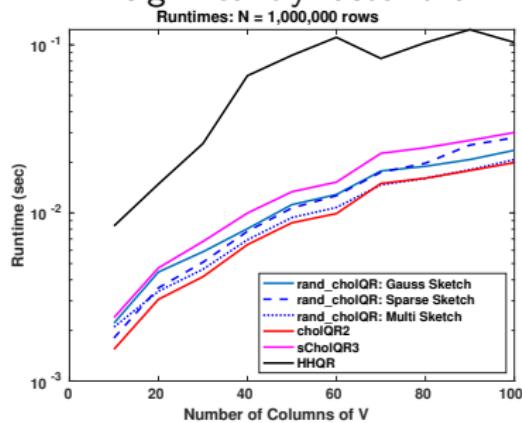
Figure: Orthogonality (left) and relative factorization error (right), $m = 70$. Indicated by a large dot, lines for `cholQR2` end at $\kappa(V) = 10^8$, as the method fails beyond this point.

Parameters for our Numerical Experiments for Multisketching

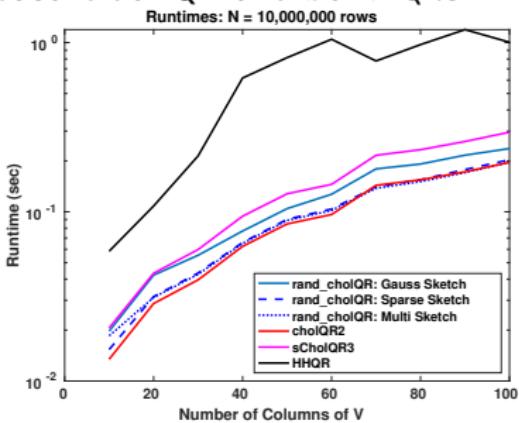
- ▶ $S_1 \in \mathbb{R}^{p_1 \times n}$ a CountSketch with $\varepsilon_1 = 0.9$ requiring sketch size $p_1 = \lceil 8.24(m^2 + m) \rceil$ to produce a $(0.9, 0.15, m)$ oblivious ℓ_2 -subspace embedding
- ▶ $S_2 \in \mathbb{R}^{p_2 \times p_1}$ a Gaussian sketch with $p_2 = \lceil 74.3 \log(p_1) \rceil$ giving $\varepsilon_2 = 0.49$ to give a $(0.49, 1/m, m)$ oblivious ℓ_2 -subspace embedding.
- ▶ $S_2 S_1$ produced an embedding with $\varepsilon_L \approx 0.9490$, $\varepsilon_H \approx 1.8310$, and $d \approx 0.15$
- ▶ Thus, our assumptions are satisfied

Performance Results

- We tested performance of multi-sketch `rand_cholQR` vs `rand_cholQR` with a single Gaussian sketch and single CountSketch, `cholQR2`, `sCholQR3`, and Householder QR on an NVIDIA A100 GPU using the Kokkos C++ library, and a few direct calls to `cuSOLVER`.
- Multi-sketched `rand_cholQR` is:
 - significantly more stable than `cholQR2` at no cost (sometimes faster!)
 - significantly faster than Householder QR and `sCholQR3`



(a) $n = 1,000,000$ rows



(b) $n = 10,000,000$ rows

Conclusions

Using multi-sketching, `rand_cholQR` has:

- ▶ CholeskyQR2's low computational cost with similar operations
 - ▶ Gives same number of communications, gives similar performance in practice on a high performance GPU
- ▶ significantly better stability properties than CholeskyQR2 in theory and practice
 - ▶ i.e., for any numerically full rank V , $\|I - Q^T Q\| = O(\mathbf{u})$ and $\|V - QR\|/\|V\| = O(\mathbf{u})$
- ▶ better stability properties than sCholQR3 in practice with 50% less communication and $\sim 50\%$ faster runtime on a GPU

Best of all: very easy to get high performance with standard libraries

Reference

With Andrew Higgins, Erik Boman, and Ichitaro Yamazaki,
Analysis of Randomized Householder-Cholesky QR Factorization
with Multisketching [*Numerische Mathematik* **157** (2025)
1695–1737]

On ArXiv, or on <https://faculty.cst.temple.edu/~szyld>

Ad 1: Poster TODAY by Andrew Higgins: “A High Performance GPU CountSketch Implementation and Application to Least Squares Problems”

Ad 2: Temple Math is looking for a chair:
<https://www.mathjobs.org/jobs/list/28041>