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Tall-and-skinny QR Factorizations

» Given V € R™™ with n > m, we want to compute V = QR,
with QT Q =/ and R n x n upper triangular.
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Tall-and-skinny QR Factorizations

» Necessary for many scientific & engineering applications,
including:
» large least squares problems
» dimensionality reduction methods for data analysis (e.g., PCA)
» block orthogonalization kernels for solving linear systems
and eigenvalue problems within block or s-step Krylov
methods
> require relatively robust and high performance TSQR
> requires 1 TSQR per iteration
P> s-step methods produce matrix V formed using matrix powers
kernel — ill-conditioned



Matrix power kernel for s-step GMRES

Matrix Powers Kernel: V = MPK(A, b, s)

1: vi = Ab

2: for k=2,...,sdo
3: Vg = AV(k_l)

4: end for




Standard approaches

» Gram-Schmidt
» Modified Gram-Schmidt
» Use Givens rotations

» Use Householder reflections



Gram-Schmidt
Jorgen P. Gram (1850-1916) a Danish actuary presented the
orthogonalization method implicitly in 1883 (unaware that
Pierre-Simon Laplace (1749-1827) had earlier presented the
method).
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Gram-Schmidt
Jorgen P. Gram (1850-1916) a Danish actuary presented the
orthogonalization method implicitly in 1883 (unaware that
Pierre-Simon Laplace (1749-1827) had earlier presented the
method).
Erhard Schmidt (1876-1959), a student of Herman Schwarz and
David Hilbert explicitly used the method in 1907.

Gram-Schmidt orthogonalization

1 g1 =vi/[|va

2. fori=2,...,mdo

3: Wi = v;

4: for j=1, ..., i-1 do
5 i = vi' g

6: Wi = Wj — Ijiqj
7: end for

8 i = [lwill

9: qi = w;/ri

10: end for
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Gram-Schmidt is unstable. Use Modified Gram-Schmidt

» Gram-Schmidt is known to be unstable for numerical

computations at lease since 1965 [James Wilkinson].

» Many people looked for alternatives and Modified

Gram-Schmidt is a very good alternative. Essentially the same
operations in a different order. Extensively studied by Ake
Bjork [LAA, 1994]

Modified Gram-Schmidt orthogonalization

T
= O

© NSO R

fori=1,...,mdo
end for
wi = V;
fori=1,...,mdo
rii = [|wil
qi = wi/rii
for j=i+1, ..., mdo
ry = w/ q;
Wj = Wj — rijqi
end for

- end for



Householder Triangulation

Alton Householder [1958]: Apply orthogonal reflections to
triangularize V, and obtain R.
The product of the reflections is Q7. Thatis, QTV =R



Householder Triangulation

Alton Householder [1958]: Apply orthogonal reflections to
triangularize V, and obtain R.

The product of the reflections is Q7. Thatis, QTV =R
It is as stable as Modified Gram-Schmidt.

(Some more details below).
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restrictions on V. u is the unit of round-off.
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Our Goal for Tall-and-skinny QR Factorizations

» Numerically, we want an efficient algorithm with
[l — QT Q|| = O(u) and ||V — QR||/|| V|| = O(u) with few
restrictions on V. u is the unit of round-off.

» For performance, we also want to limit communication

» First idea: Householder QR

+ Does the job for any V
— Communication intensive — severe performance bottleneck



What to do?
First recall that if V = QR, then VIV =RTQ"QR = RTR.




What to do?
First recall that if V = QR, then VIV =RTQ"QR = RTR.

l vT | L] = RTIR]

In other words R is the Cholesky factor of the m x m symmetric
positive definite matrix V7 V.
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What to do? (cont.)

|dea: Compute the Cholesky factorization of V7V, obtaining R,
then

Find @ = VR™! by solving m systems with triangular R.

Namely RTqJ-T = vJ-T, (vj, qj rows of V, Q).

This is called Cholesky QR (CholQR).

Some history: This idea was around in the 1970's and 80's.
Implicit in the classic book by Gene Golub and Charles Van Loan
[First ed. 1983].

A paper by Walter Gander [ETH report 1980] indicates that
CholQR more accurate (stable) than Classical Gram-Schmidt, but
not as much as Modified GS, in other words:

This first idea is not very accurate!

A personal note: | recall in 1986, Pete Stewart suggesting CholQR
after a talk by Dianne O'Leary at a conference in Loen, Norway.



What to do? (cont.)

CholQR brought back in the context of modern architectures and
high level BLAS by Stathopoulos and Wu [SISC, 2002]



What to do? (cont.)

CholQR brought back in the context of modern architectures and
high level BLAS by Stathopoulos and Wu [SISC, 2002]
But they explicitly said: Do not use it!



What to do? (cont.)

Next idea:

Do it again: call what you did V = QyRy, do “Cholesky QR" on
Qo = Q1R1, obtaining V = Q1(R1Ro).

This is Cholesky QR2

[Fukaya, Nakatsukasa, Yanagisawa, Yamamoto, 2014].



What to do? (cont.)

Next idea:

Do it again: call what you did V = QyRy, do “Cholesky QR" on
Qo = Q1R1, obtaining V = Q1(R1Ro).

This is Cholesky QR2

[Fukaya, Nakatsukasa, Yanagisawa, Yamamoto, 2014].

You can think of this as “iterative improvement” for QR.
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QR Factorizations

In other words,
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Current Practical Communication-Avoiding Tall-and-skinny
QR Factorizations

In other words,

» Alternative 1 : CholeskyQR

CholeskyQR:
[@, R] = cholQR(V)
LG=VV
2: R = chol(G)
3 Q= VR1

+ Only 1 processor communication

— Inaccurate: high orthog. error || — QT Q|| = O(xk?(V) u)
[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]



Another popular idea: CholeskyQR2
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2: [Q, Rl] = ChOlQR(Qo)
3: R= RlRo




Another popular idea: CholeskyQR2

CholeskyQR2:
[Q, R] = cholQr2(V)

1: [Qo, RO] = ChOlQR( V)
2: [Q, Rl] = ChOlQR(Qo)
3: R= RlRo

+ Uses highly parallelizable matrix operations only, 2
communications

— Unstable: requires x?(V) S u~! to achieve
Il = QT Q|| = O(u) and ||V — QR||/[|V]| = O(u)
[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]
cf. E. Carson, K. Lund, M. RozloZnik, and S. Thomas [LAA, 2022] for
the block case



Newer idea: shifted CholeskyQR3

Shifted CholeskyQR3:
[Q, R] = sCholQR3(V,w)

L G=VTV+4uwl

R = chol(G)

Qo= VR;'

[Q, R1] = cholQR2( Qo)
R=RiRo




Newer idea: shifted CholeskyQR3

Shifted CholeskyQR3:
[Q, R] = sCholQR3(V,w)

. G=VTVt+uwl

R = chol(G)

Qo = VRy*

[Q, R1] = cholQR2( Qo)
R=RiRo

+ More stable: for appropriately chosen shift w, requires
k(V) Su~! to achieve || — QT Q|| = O(u) and
|1V = QR[|/[[ V[ = O(u)
[Fukaya, Kannan, Nakatsukasa, Yamamoto, Yanagisawa, 2020]

— 50% higher communication and computational cost of CholeskyQR2
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Ideally, we would like a QR algorithm that:
» Has CholeskyQR2's low computational cost with similar
operations

» This would give same number of communications as
CholeskyQR2
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An Ideal Tall-and-Skinny QR Algorithm

Ideally, we would like a QR algorithm that:
» Has CholeskyQR2's low computational cost with similar
operations
» This would give same number of communications as
CholeskyQR2
» Has better stability properties than CholeskyQR2, maybe
similar to shifted CholeskyQR3

> e.g., for any numerically full rank V (i.e., k(V) 5 ul),
11~ QTQll = O(u) and |V — QRII/| V]| = O(w)

Tool to accomplish this: random sketching
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We can use a random sketch matrix S € R**" for s < n to
compress V € R™ ™ while approximately preserving its condition
number. W = SV, k(W) ~ (V) with high probability.
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Random Sketching (cont.)

Definition ((e, d, m) oblivious ¢;-subspace embedding)

The sketch matrix S € R®*" is an (g, d, m) oblivious ¢2-subspace
embedding if for any fixed m-dimensional subspace V C R”,

Vi—e|xll2 < |[Sx[l < V1+e fx[l2, VxeV

with probability at least 1 — d.



Random Sketching (cont.)

Definition ((e, d, m) oblivious ¢;-subspace embedding)

The sketch matrix S € R®*" is an (g, d, m) oblivious ¢2-subspace
embedding if for any fixed m-dimensional subspace V C R”,

VI—e|xll2 < [|Sx[la < VI+e [Ix]2, VxeV
with probability at least 1 — d.

Corollary

If S € RS*" js an (e, d, m) oblivious {»-subspace embedding, and

V € R"™"™ has rank m, then with probability at least 1 — d,
1—¢

V) <
w(V) <12

k(SV).

[Sarlos,2006]



|dea of a Randomized QR Algorithm

Given a sketch S € R5*" and V € R™™ with s < n, m < n,
consider:

Randomized QR Framework

Apply random sketch to compress V: W = SV € R**"™

Apply Householder QR to W: [Q¢mp, Ro] = HouseholderQR(W)
Approximately orthogonalize V: Qy = VR(;1

Reorthogonalize: [Q, Ri] = cholQR(Qo)

Return R: R = Ri1Ry

SAREIE .
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> Since k(Qo) = O(1), step 4 gives fully orthogonal @ (up to u).




|dea of a Randomized QR Algorithm

Given a sketch S € R5*" and V € R™™ with s < n, m < n,
consider:

Randomized QR Framework

Apply random sketch to compress V: W = SV € R**"™

Apply Householder QR to W: [Q¢mp, Ro] = HouseholderQR(W)
Approximately orthogonalize V: Qy = VR(;1

Reorthogonalize: [Q, Ri] = cholQR(Qo)

Return R: R = Ri1Ry

SAREIE .

» Does it work?
> k(Qo) = K(VRy ") < (/135 w(SVRy ) = /152 = O(1)
» Since k(Qo) = O(1), step 4 gives fully orthogonal Q (up to u).
» Is it a good idea?
» If S reduces the size of V sufficiently in step 1, step 2 is cheap
» If sketching is cheap, similar arithmetic cost to CholeskyQR2,
and also only requires 2 communications = similar
performance to CholeskyQR2
» Good idea if sketching is cheap and W = SV is sufficiently
small




Simple Efficient Examples of (g, d, m) oblivious
(>-subspace embeddings

» Gaussian Sketch: S = \%G € R¥*™ where g are i.i.d.
Gaussian random variables

+ Requires sketch size s = O(m)

» random QR framework does HouseholderQR on small
O(m) x m matrix — fast

— Applying to V € R™™ has O(nm?) complexity
» Sketching cost dominates



Simple Efficient Examples of (g, d, m) oblivious
(>-subspace embeddings

» Gaussian Sketch: S = \%G € R¥*™ where g are i.i.d.
Gaussian random variables

+ Requires sketch size s = O(m)

» random QR framework does HouseholderQR on small
O(m) x m matrix — fast

— Applying to V € R™™ has O(nm?) complexity
» Sketching cost dominates

» CountSketch: S = %C € R**" where C is sparse with one
+1 per column placed in a random row
+ Applying to V € R"*™ has O(nm) complexity
» Sketching is cheap
— Requires sketch size s = O(m?)

» random QR framework must do HouseholderQR on
O(m?) x m matrix — potential bottleneck



Randomized Householder-Cholesky QR

» What if we use two sketches 51, S> where we apply a
S; € RO(™)*n CountSketch matrix to V' and then reduce the
size again with a smaller S, € RO(Mx*0(m*) Gayssian
+ Sketching is cheap (same asymptotic cost as 1 CountSketch)
+ Must do Householder QR on O(m) x m matrix 5,5, V... fast!



Randomized Householder-Cholesky QR

» What if we use two sketches S1, S, where we apply a
S; € RO(M)xn CountSketch matrix to V and then reduce the

size again with a smaller S, € RO(m)*0(

2 .
m°) Gaussian

+ Sketching is cheap (same asymptotic cost as 1 CountSketch)

+ Must do Householder QR on O(m) x m matrix

51
S,

S

S1 V... fast!



Randomized Householder-Cholesky QR

> We call this algorithm rand _cholQR

» s this actually more numerically stable than CholeskyQR2?
» |s its performance similar to CholeskyQR2 in practice?



Randomized Householder-Cholesky QR

> We call this algorithm rand _cholQR

» s this actually more numerically stable than CholeskyQR2?
» |s its performance similar to CholeskyQR2 in practice?

Randomized Householder-Cholesky QR: [Q,R] = rand_cholQR(V)

Apply random sketches to compress V: W = $5,5,V € R2*™
Apply Householder QR to W: [Q¢mp, Ro] = HouseholderQR(W)
Approximately orthogonalize V: Qo = VRO_1

Reorthogonalize: [Q, Ri] = cholQR(Qo)

Return R: R = Ri1Ry

SAREIE .




Key Numerical Properties of rand cholQR

First, we define a set of assumptions stating V is numerically full
rank (i.e., (V) < O(u™!)), V is tall-and-skinny, and that the
sketch matrices S1, Sy simultaneously satisfy the subspace
embedding properties with probability at least 1 — d.



Key Numerical Properties of rand cholQR

First, we define a set of assumptions stating V is numerically full
rank (i.e., (V) < O(u™!)), V is tall-and-skinny, and that the
sketch matrices S1, Sy simultaneously satisfy the subspace
embedding properties with probability at least 1 — d.

Assumptions (Matrix Conditioning and Embedding)

Suppose S1 € RPY*™ and S, € RP2*P1 are (1, dy, m) and
(€2, da, m) oblivious ¢y-subspace embeddings respectively,
generated independently. Define d = di + d» — d1db,

€] = €1+ e — €180, €y = €1 + €2 + €162, where

€L € [0, % — 6%55,.,) . Further, suppose V € R"™™ has full rank

and 1 < m< pp < p; < n where nmu < % p1y/pou < 1—12 and

383 (VIFen pm®/2 + yml|Sella(pry/Pav/T 21 + | St ) )

6
\/1—EL

ur(V)<1.




Key Numerical Properties of rand cholQR

Theorem (Higgins, S., Boman, Yamazaki, 2023)

Suppose the matrix conditioning and embedding assumptions are
satisfied. With probability at least 1 — d, the computed Q R factors
obtained with rand_cholQR has O(u) orthogonality error and relative
factorization error. That is,

H@T@ - IHQ S Cl(na mygLagH) u,
IV = QR|l2/|IV|2 < ca(n, m,er,e4) u



Empirical Verification of Numerical Properties

Tested stability of Multi-Sketch rand_cholQR, cholQR2, sCholQR3, and
Householder QR

12 Orthog. Error: N = 1,000,000 rows 12 Factor. Error: N = 1,000,000 rows
10° 10"
~——— rand_cholQR: Gauss Sketch ~——rand_cholQR: Gauss Sketch
- = rand_cholQR: Sparse Sketch - = rand_cholQR: Sparse Sketch
"""" rand_cholQR: Multi Sketch «w+=-rand_cholQR: Multi Sketch
~—cholQR2 ~———cholQR2
13 || ——sCholaRs w 4o 13 || ——sCholR3
10 4107 T Rhon
w >
o =
gt EPrR]
o =
= «
= o
107 Z 018
-16

10° 10° 101 107° 102 " 10° 10° 10 10 102
w(V) &(V)
(a) Orthogonality Error (b) Relative Factorization Error

Figure: Orthogonality (left) and relative factorization error (right),
m = 70. Indicated by a large dot, lines for cho1QR2 end at x(V) = 108,
as the method fails beyond this point.



Parameters for our Numerical Experiments for
Multisketching

> S; € RP1X" 3 CountSketch with €1 = 0.9 requiring sketch size
p1 = [8.24(m? 4 m)] to produce a (0.9,0.15, m) oblivious
£>-subspace embedding

> S, € RP2XPL 3 Gaussian sketch with p, = [74.3log(p1)] giving
gp = 0.49 to give a (0.49,1/m, m) oblivious f»-subspace
embedding.

» S5,5; produced an embedding with ¢; =~ 0.9490, ¢y = 1.8310,
and d =~ 0.15

» Thus, our assumptions are satisfied



Performance Results

» We tested performance of multi-sketch rand_cholQR vs
rand_cholQR with a single Gaussian sketch and single CountSketch,
cholQR2, sCholQR3, and Householder QR on an NVIDIA A100
GPU using the Kokkos C++ library, and a few direct calls to
cuSOLVER.

» Multi-sketched rand_cholQR is:
> significantly more stable than cholQR2 at no cost (sometimes

faster!)
» significantly faster than Householder QR and sCholQR3
Runtimes: N = 1,000,000 rows Runtimes: N = 10,000,000 rows
107 10°

o o

g )

a a

o2l S T @ 41 .

g2y S = 2w =

€ €

5 g

'3 '3
~—rand_cholQR: Gauss Sketch ~— rand_cholQR: Gauss Sketch
= = rand_cholQR: Sparse Sketch = = rand_cholQR: Sparse Sketch
“+++=-rand_cholQR: Multi Sketch -+ rand_cholQR: Multi Sketch
~———cholQR2 ~——— cholQR2
~——sCholQR3 ~—— sCholQR3
——HHQR —— HHQR

107 102
o 20 40 60 80 100 o 20 40 60 80 100
Number of Columns of V Number of Columns of V

(a) n= 1,000,000 rows (b) n= 10,000,000 rows



Conclussions

Using multi-sketching, rand_cholQR has:

» CholeskyQR2's low computational cost with similar operations

» Gives same number of communications, gives similar
performance in practice on a high performance GPU

> significantly better stability properties than CholeskyQR2 in
theory and practice
> i.e., for any numerically full rank V/, |

IV = QRII/[[V] = O(u)

I — QTQ|| = O(u) and

> better stability properties than sCholQR3 in practice with 50%
less communication and ~ 50% faster runtime on a GPU

Best of all: very easy to get high performance with standard
libraries
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