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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

Don’t evaluate your method on one/two/three NNs, evaluate it on:
I dozens (2017)
I hundreds (2019)
I thousands (2021)

Don’t use bad/toy models, use SOTA models.
I If you do, don’t be surprised if low-quality/toy models are different

than high-quality/SOTA models.

Don’t train models, instead validate pre-trained models.
I Validating models is harder than training models.
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Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

“pip install weightwatcher”
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Using the theory

Different ways one could use a theory.
Perform diagnostics for model validation, to develop hypotheses, etc.∗

Make predictions about model quality, generalization, transferability, etc.∗

Did post-training modifications damage my model?∗

Will buying more data help?∗

Will training longer help?∗

Will quantizing or distilling help?∗

Construct a regularizer to do model training.∗∗

∗Ideally, by peeking at very little or no data.
∗∗If you have lots of data, lots of GPUs, etc.
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Using RandNLA methods more generally ...

Runtime

TCS

ML

NLA

P
re

ci
si

o
n

Sketch-and-Solve
Sketch-and-Precondition
Iterative Sketching
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Landscape of Algorithmic Gaussianization

Sub-gaussian concentration of x 2 Rd w.r.t. a set of functions F
8f 2 F : X = f(x)� E f(x) is O(kfkLip)-sub-gaussian| {z }

E exp(cX2/kfkLip) 2

Examples
x 2 Rd

i.i.d. Gaussian entries

i.i.d. bounded entries

i.i.d. sub-gaussian entries

LESS embeddings

JL-type embeddings

Concentration
F ✓ {Rd

!R}

Lipschitz functions

Convex functions

Euclidean functions
f(x) =

p
x>Bx

Linear functions
f(x) = |v>

x|
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“The RandLAPACK book”
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A deep neural network model

xi ∈ Rp

φ
φ
φ
φ
φ

hidden-layer of d neurons

W ∈ Rd×pφ(Wxi) ∈ Rd

I linear transformation with first-layer weight matrix W ∈ Rd×p

I nonlinear transformation: activation function φ : R→ R acting entry-wise on Wxi

I data representation at the output of first-layer xi 7→ φ(Wxi)

I do the same thing in a layer-by-layer fashion:

1√
dL

wTφL

(
1√

dL−1
WLφL−1

(
. . .

1√
d2

φ2

(
1√
d1

W2φ1(W1xi)

)))
, (1)

for a large number n of input data points x1, . . . , xn
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Technical challenges and key ideas

Analyze and Optimize Large-scale ML model Mφ(X; Θ)

Objective: Evaluation ofMφ(X; Θ) via Performance Metric f (·)

Technical Challenge 1
High-dimensionality in X, Θ

Technical Challenge 2
Analysis of Eigen-functional

Technical Challenge 3
Non-linearity in ML model

Key Idea 1
Concentration of f

(
Mφ(X; Θ)

)
' E[f

(
Mφ(X; Θ)

)
]

Key Idea 2
Deterministic Equivalent for Resolvent

Key Idea 3
High-dimensional linearization ofMφ(X; Θ)
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High-dimensional Equivalent

Definition (High-dimensional Equivalent)

LetMφ(X) ∈ Rp×n be a (nonlinear) random matrix model that depends on a random matrix X ∈ Rp×n and
function φ : R→ R (typically applied entrywise). Let f

(
Mφ(X)

)
be a scalar observation ofMφ(X) for some

f : Rp×n → R. We say that M̃φ(X) (random or deterministic) is a High-dimensional Equivalent ofMφ(X)
with respect to f (·) if

f (Mφ(X))− f (M̃φ(X))→ 0, (2)

in probability or almost surely as n, p→ ∞ with p/n→ c ∈ (0, ∞). We denote this relation as

Mφ(X)
f↔ M̃φ(X) or simplyMφ(X)↔ M̃φ(X), (3)

when f is clear from context.

I without (entrywise) nonlinearities, f (X) concentrates around expectation f (X) ' E[f (X)], and can be
assessed through Deterministic Equivalent f (X̄);

I for scalar eigenspectral functionals, Deterministic Equivalent for Resolvent framework provides a unified
approach to eigenspectral functionals of random matrices;

I for nonlinear models in two different scaling regimes (LLN versus CLT), φ(X) can be linearized to yield a
Linear Equivalent.
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Concentration versus non-concentration behavior

“Concentration” versus “non-concentration” around the mean

Consider two independent random vectors x = [x1, . . . , xn]> and y = [y1, . . . , yn]> ∈ Rn, with i.i.d. entries of
zero mean and unit variance. We have the following observations.

1 In the one-dimensional case with n = 1, we have Pr(|x− 0| > t) ≤ t−2 and Pr(|y− 0| > t) ≤ t−2 by
Markov’s inequality, so that one-dimensional random variables “concentrate” around their means.

2 In the multi-dimensional case with n ≥ 1, we have E[‖x− 0‖2
2] = E[x>x] = tr(E[xx>]) = n and

E[‖x− y‖2
2] = E[x>x + y>y] = 2n. Thus, for n� 1, the expected Euclidean distance between x and its

mean 0 is large: high-dimensional random vectors do not “concentrate” around their means.

−3 0 3

0

0.2

0.4

H
is

to
gr

am

(a) “Concentration” around the mean

x
y

E[x] = E[y] = 0n

≈ ‖x‖ ≈
√

n

‖y‖ ≈
√

n

(b) “Non-concentration” around the mean
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High-dimensional concentration of scalar observation

I while large random vectors do not “concentrate” round their means, their scalar functionals (often) do
I for a scalar observation map f : Rn → R and random vector x ∈ Rn, we typically have

f (x)−E[f (x)]→ 0, (4)

with high probability for n large.
I a basic example is the linear function f (x) = 1>n x/n = 1

n ∑n
i=1 xi: By the Large of Large Numbers (LLN)

and the Central Limit Theorem (CLT), we have f (x) = E[f (x)] + O(n−1/2) with high probability
I For a random matrix X ∈ Rp×n in the proportional regime with n, p both large, similar holds:
1 just as for vectors, X does not concentrate, e.g., in a spectral norm sense; e.g., ‖X−E[X]‖ 6→ 0 as n, p→ ∞.
2 at the same time, scalar (e.g., eigenspectral) functionals f : Rp×n → R of the random matrix X do

concentrate; i.e., f (X)−E[f (X)]→ 0 as n, p→ ∞. This is the key idea of Deterministic Equivalent.

Definition (Deterministic Equivalent)

A Deterministic Equivalent is a special case of the High-Dimensional Equivalent, applied to a linear model
Mφ(X) = X. We denote

f (X)− f (X̃)→ 0 as n, p→ ∞ ⇔ X
f↔ X̃ or simply X↔ X̃. (5)
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Nonlinear objects in two different scaling regimes

Definition (Two scaling regimes)

Consider a scalar functional f (x) of x ∈ Rn, via an observation map f : Rn → R:
1 LLN regime: this holds when f (x) exhibits a LLN-type concentration, strongly concentrating around its

mean E[f (x)], and its distribution function becomes degenerate; that is, it holds when f (x)−E[f (x)]→ 0
in probability or almost surely, as n→ ∞.

2 CLT regime: this holds when f (x) exhibits a CLT-type concentration, remaining random and maintaining
a non-degenerate distribution function; that is, it holds when

√
n (f (x)−E[f (x)])→ N (0, 1) in

distribution, as n→ ∞.

Nonlinear objects in two scaling regimes

Let x ∈ Rn be a random vector such that
√

nx has i.i.d. Gaussian entries N (0, 1) (the
√

n scaling ensures
E[‖x‖2] = 1). Let y ∈ Rn be a deterministic vector of unit norm ‖y‖ = 1. Consider two nonlinear objects:

1 LLN regime: random variables fLLN(x) = ‖x‖2
2 or fLLN(x) = x>y that both exhibit LLN-type

concentration (i.e., nearly deterministic for n large), and we are interested in φ(fLLN(x)); and
2 CLT regime: random variables fCLT(x) =

√
n(‖x‖2

2 − 1) or fCLT(x) =
√

n · x>y that both exhibit CLT-type
concentration (they remain inherently random and have non-degenerate distributions for n large), and
we are interested in φ(fCLT(x)).
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Linearization in the two scaling regimes

Theorem (Taylor’s theorem)

Let φ : R→ R be a function that is at least k times continuously differentiable in a neighborhood of some point τ ∈ R.
Then, there exists hk : R→ R such that

φ(x) = φ(τ) + φ′(τ)(x− τ) +
φ′′(τ)

2 (x− τ)2 + . . . + φ(k)(τ)
k! (x− τ)k + hk(x)(x− τ)k, with limx→τ hk(x) = 0.

Consequently, hk(x)(x− τ)k = o(|x− τ|k) as x→ τ.

Theorem (Hermite polynomial expansion)

The ith normalized Hermite polynomial, Hei(t), is given by He0(t) = 1, Hei(t) =
(−1)i
√

i!
e

t2
2 di

dti

(
e−

t2
2

)
, i ≥ 1. The

normalized Hermite polynomials

1 are orthogonal with respect to Gaussian measure, i.e.,
∫

Hem(t)Hen(t)µ(dt) = δmn for µ(dt) = 1√
2π

e−
t2
2 dt; and

2 can be used to formally expand any square-integrable function φ ∈ L2(µ) as
φ(ξ) ∼ ∑∞

i=0 aφ;iHei(ξ), aφ;i =
∫

φ(t)Hei(t)µ(dt) = E[φ(ξ)Hei(ξ)], for ξ ∼ N (0, 1). The coefficients aφ;is
are the Hermite coefficients of φ:

aφ;0 = E[φ(ξ)], aφ;1 = E[ξφ(ξ)],
√

2aφ;2 = E[ξ2φ(ξ)]− aφ;0, νφ = E[φ2(ξ)] = ∑
i=0

a2
φ;i. (6)
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Classical
Regime

Proportional
Regime

Non-asymptotic Characterizations

Asymptotic Characterizations

Law of Large
Numbers

in Theorem 9

Sample Covariance
Concentration
in Theorem 10

Asymptotic Deterministic
Equivalent in Theorem 12

Marc̆enko-Pastur law
in Theorem 11

Non-asymptotic
Deterministic

Equivalent
in Theorem 13

Figure: Taxonomy of four different ways to characterize the sample covariance matrix Ĉ = 1
n XXT.
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Asymptotic behavior of SCM in the classical regime via law of large numbers

Theorem (Asymptotic Law of Large Numbers for SCM)

Let p be fixed, and let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that
E[xi] = 0 and E[xixT

i ] = Ip. Then one has,
‖Ĉ− Ip‖2 → 0, (10)

almost surely, as n→ ∞.

I LLN is “parameterized” to hold only in the classical limit, not the proportional limit
I many variants and extensions of the LLN exist, but become vacuous when applied to the proportional

regime n, p→ ∞ and p/n→ c ∈ (0, ∞), see below for an example
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Non-asymptotic behavior of SCM in the classical regime via matrix concentration

Theorem (Non-asymptotic matrix concentration for SCM, [Ver18, Theorem 4.6.1])

Let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and
E[xixT

i ] = Ip. Then, one has, with probability at least 1− 2 exp(−t2), for any t ≥ 0, that

‖Ĉ− Ip‖2 ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n), (11)

for some constants C1, C2 > 0, independent of n, p.

Proof: combines Bernstein’s concentration inequality with ε-net argument, see [Ver18] for details.
1 can reproduce the LLN asymptotic result by taking n→ ∞ with Borel–Cantelli lemma
2 Classical regime. Here, n� p, say that n ∼ p2. Then with high probability, that ‖Ĉ− Ip‖2 = O(n−1/4)

and conveys a similar intuition to the asymptotic LLN result
3 Proportional regime. Here, n, p are both large and n ∼ p. Then, with high probability, that
‖Ĉ− Ip‖2 = O(

√
p/n) = O(1), and qualitatively different LLN with a vacuous ∼ 100% relative error,

e.g., as n, p→ ∞ with p/n→ c ∈ (0, ∞).
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Proportional regime: eigenvalues via traditional RMT and the Marc̆enko-Pastur law

Theorem (Limiting spectral distribution for SCM: Marc̆enko-Pastur law, [MP67])

Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and E[xixT
i ] = Ip.

Then, as n, p→ ∞ with p/n→ c ∈ (0, ∞), with probability one, the empirical spectral measure (ESD) µ 1
n XXT of 1

n XXT

converges weakly to a probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (12)

where E± = (1±
√

c)2 and (x)+ = max(0, x), which is known as the Marc̆enko-Pastur distribution.

I provides a more refined characterization of the eigenspectrum of Ĉ (than, e.g., matrix concentration):
(i) Classical regime. Here, n� p so that c = p/n→ 0, the Marc̆enko-Pastur law in Equation (12) shrinks to

a Dirac mass, in agreement with ‖Ĉ− Ip‖2 ∼ 0
(ii) Proportional regime. Here, n ∼ p� 1, and by the (true but vacuous) matrix concentration result
‖Ĉ− Ip‖2 = O(p/n) = O(1), and, depending on the ratio c = p/n, the eigenvalues of Ĉ can be very
different from one, and takes the form of the Marc̆enko-Pastur law

I we have in fact ‖Ĉ− Ip‖2 ' c + 2
√

c as n, p→ ∞ with p/n→ c ∈ (0, ∞)
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0
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x

µ

c = 0.01

c = 0.1

c = 1

c = 4

I averaged amount of eigenvalues of Ĉ lying within the interval [1− δ, 1 + δ], for δ� 1, as

µ([1− δ, 1 + δ]) =
∫ 1+δ

1−δ

1
2πcx

√(
x− (1−

√
c)2
)+ (

(1 +
√

c)2 − x
)+ dx

=
1

2πc

∫ δ

−δ

(√
4c− c2 + O(ε)

)
dε =

√
4c−1 − 1

π
δ + O(δ2).

I for p ≈ 4n there is asymptotically no eigenvalue of Ĉ close to one!
I in accordance with the shape of the limiting Marc̆enko-Pastur law with c = 4 above
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Figure: Varying n and c = p/n for fixed p. Histogram of the eigenvalues of Ĉ versus the limiting Marc̆enko-Pastur law in
Theorem 11, for X having standard Gaussian entries with p = 20 and different n = 1 000p, 100p, 10p from left to right.
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Figure: Varying n and p for fixed c = p/n. Histogram of the eigenvalues of Ĉ versus the Marc̆enko-Pastur law, for X having
standard Gaussian entries with n = 100p and different p = 20, 100, 500 from left to right.
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An asymptotic Deterministic Equivalent for resolvent

Theorem (An asymptotic Deterministic Equivalent for resolvent, [CL22, Theorem 2.4])

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = ( 1

n XXT − zIp)−1 the resolvent of 1
n XXT for z ∈ C not an eigenvalue of 1

n XXT. Then, as n, p→ ∞ with
p/n→ c ∈ (0, ∞), the deterministic matrix Q̄(z) is a Deterministic Equivalent of the random resolvent matrix Q(z)
with

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip, (13)

with m(z) the unique valid Stieltjes transform as solution to

czm2(z)− (1− c− z)m(z) + 1 = 0. (14)

I The equation of m(z) is quadratic and has two solutions defined via the complex square root
I only one satisfies =[z] · =[m(z)] > 0 as a “valid” Stieltjes transform, and leads to the Marc̆enko-Pastur

law

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (15)

for E± = (1±
√

c)2 and (x)+ = max(0, x).
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A non-asymptotic Deterministic Equivalent for resolvent

Theorem (A non-asymptotic Deterministic Equivalent for resolvent)

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit variance, and denote
Q(z) = ( 1

n XXT− zIp)−1 the resolvent of 1
n XXT for z < 0. Then, there exists universal constants C1, C2 > 0 depending

only on the sub-gaussian norm of the entries of X and |z|, such that for any ε ∈ (0, 1), if n ≥ (C1 + ε)p, one has

‖E[Q(z)]− Q̄(z)‖2 ≤
C2
ε
· n−

1
2 , Q̄(z) = m(z)Ip, (16)

for m(z) the unique positive solution to the Marc̆enko-Pastur equation czm2(z)− (1− c− z)m(z) + 1 = 0, c = p/n.

I this is a deterministic characterization of the expected resolvent
I to get DE, it remains to show concentration results for trace and bilinear forms: more or less standard
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Figure: Overview of [LM25], summarizing major concepts and results and where to find them.

M. W. Mahoney RMT4DNN June 15, 2025 26 / 38



Numerical results
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(a) Training MSE
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Ētest, γ = 10−1

(b) Test MSE

Figure: Empirical and theoretical training and test MSEs of single-hidden-layer NN model, as a function of d/n, for
γ = 10−1 and γ = 10−5, with Gaussian W and ReLU activation φ(t) = max(t, 0), n = 1 024 training samples and n′ = 1 024
test samples from the MNIST dataset (number 1 and 2).Figure 7a: log-log plot of training MSEs averaged over 30 runs.
Figure 7b: test MSEs averaged over 30 runs on independent test sets of size n̂ = 2 048.
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Motivation: Heavy-Tailed Phenomena in Modern Models

Gradient norms (Simsekli et al., 2019) and loss curves (Hestness et al.,
2017; Kaplan et al., 2020; Hoffmann et al., 2022).

Eigenvalues of Gram matrices in neural nets: data covariance (Sorscher
et al., 2022; Zhang et al., 2023), activation (conjugate kernel)
(Pillaud-Vivien et al., 2018; Agrawal et al., 2022; Wang et al., 2023),
Hessian (Xie et al., 2023), Jacobian (Wang et al., 2023).

Strong correlation between heavy-tailed trained weight matrices & model
performance: Heavy-Tailed Self-Regularization (HT-SR) Theory (Martin and
Mahoney, 2021b) and Layer-wise Diagnostics (Zhou et al., 2023; Lu et al.,
2024).

Power law appears in neural scaling laws (Kaplan et al., 2020; Wei et al.,
2022; Defilippis et al., 2024; Paquette et al., 2024; Lin et al., 2024).

Need new RMT for Heavy-Tailed Mechanistic Universality (HT-MU).
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Kaplan et al. (2020). Scaling laws for neural language models.

Hoffmann et al. (2022). Training compute-optimal large language models.
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Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature
Communications, 12(1), 4122.
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Heavy-Tailed Mechanistic Universality

What might constitute “universality” in neural network weights?

In RMT:

it denotes the emergence of system-independent properties derivable
from a few global parameters defining an ensemble.

In statistical physics:

it arises in systems with very strong correlations, at or near a critical
point or phase transition;
it is characterized by measuring experimentally “observables” that
display heavy-tailed behavior, with (universal) power law exponents.

Although trained weight matrices are not random, but rather strongly
correlated through training, RMT provides a useful descriptive framework.
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NTK Spectra at Initialization vs. Post-Training

(a) VGG11 Init (b) ResNet9 Init (c) ResNet18 Init

(d) VGG11 Trained (e) ResNet9 Trained (f) ResNet18 Trained

Figure: NTK eigenvalue histograms and inverse-Gamma fits near zero.
Initialization: mild inverse-Gamma behavior. Post-Training: pronounced heavy-tail

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 10 / 36



Heavy-Tailed Mechanistic Universality

Definition

Heavy-tailed distributions (informally): densities decaying slower than
exponential, often exhibiting power-law tails

f (x) ∼ c x−α, x → ∞,

or inverse-Gamma behavior near zero f (x) ∼ c xαe−β/x , x → 0+.

Possible Approaches for Describing HT-MU:

iid Heavy-Tailed Elements: (Arous and Guionnet, 2008) Elements of

feature matrices are not independent and heavy-tailed.

Kesten Phenomenon: (Hodgkinson and Mahoney, 2021; Vladimirova
et al., 2018; Hanin and Nica, 2020) a mechanism discovered by Kesten
(1973) for recursive systems.

Population Covariance: power-law in, power-law out (PIPO) principle.
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Comparison of Possible Mechanisms

Power Law Inverse
Mechanism Elements Spectrum Gamma

iid Heavy-Tailed Elements ✓ ✓ ×
Kesten Phenomenon ✓ ✓ ✓/×
Population Covariance ✓/× ✓ ✓/×
Structured Matrices (Ours) × ✓ ✓

Empirical Observations (Features) × ✓ ✓
Empirical Observations (Weights) × ✓ ×

Table: Comparison of various mechanisms: capacity to yield power laws, in
feature matrix elements and feature matrix spectral densities; capacity to yield
an inverse Gamma law for the spectral density in a neighborhood of zero.
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Modeling Framework
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Entropic Regularization Setup

Stochastic Minimization Operator

πΘ,τ

smin
Θ

f (Θ) := min
q∈P

[
Eq(Θ)[f (Θ)] + τ KL(q ∥πΘ)

]
,

where P is the set of probability densities on the support of πΘ, and

πΘ is the initial prior (Θ = model coefficients).
τ > 0 is the “temperature” (controls early stopping).

Stochastic optimization models (Mandt et al., 2016; Chaudhari and Soatto,
2018) have strong links to Bayesian inference (Germain et al., 2016) and
statistical physics of generalization (Mezard and Montanari, 2009).

Applying to the training loss optimizes a PAC-Bayes bound on the test error
(Xie et al., 2023). As τ decreases during training, optimizer smoothly
interpolates between πΘ and the final optimal density.
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Entropic Regularization Setup

Feature Learning Setup: Stochastic minimization in two stages

πΘ,τ

smin
Θ

L(Θ,Φ) and q(Φ) =
πΦ,η

argsmin
Φ

[ πΘ,τ

smin
Θ

L(Θ,Φ)
]
.

πΘ, πΦ: initial densities of model coefficients Θ and features Φ.

τ, η > 0: “temperatures” control coefficient vs. feature learning rates.

Proposition (Optimal Feature Density)

q(Φ) ∝
[
Zτ (Φ)

]τ/η
πΦ(Φ), Zτ (Φ) = EΘ∼πΘ

exp
(
−L(Θ,Φ)/τ

)
.

Of particular interest: late stage of training, τ, η → 0+ with τ/η → ρ > 0.
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Master Model Ansatz

Ansatz: for trained feature matrices, with parameters α, β > 0 and
initial density π:

q(M) ∝ (detM)−α exp
(
−β tr(ΣM−1)

)
π(M)

α, β > 0 depend on model/optimizer hyperparameters.
Σ is label/covariance-related (e.g., Y Y⊤).
π(M) is the prior “initialization” density of the feature matrix.

Key Observation: The trained feature matrix M generally follows an
inverse-Wishart-type density (Mardia et al., 2024).

1 First consider Σ = I to remove the effect of Σ, the density π of feature
matrices M at initialization completely determines the density q(M).
Change of variables M 7→ QΛQ⊤ for orthogonal Q and diagonal Λ; so
we only need to study the spectral distribution Λ.

2 Second, we will consider a general Σ to get spectral densities of trained
feature/weight matrices.
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RMT for Heavy-Tailed Spectral Behavior
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Eigenvector Structure and Beta-Ensembles

To derive a spectral density from the Master Model Ansatz,
diagonalize M = Q diag(λ)Q⊤ and set Σ = I .

Key Assumption: Distribution of eigenvectors Q is not uniform!
(non-Haar) due to implicit model biases.

Use Beta-Ensemble (Dumitriu and Edelman, 2002; Forrester, 2010)
with parameter κ ∈ [0,∞] to capture the Master Model Ansatz:

qκ(λ1, . . . , λN) ∝
∏N

i=1 V (λi )
∏

i<j |λi − λj |κ/N

■ Take V (λ) = λ−α exp(−β λ−1) to match Master Model Ansatz.

■ The 1/N “high temperature” scaling has also been examined
(Forrester and Mazzuca, 2021), but with a different application.

■ Although π(M) could be complicated, we argue that much of the
behavior of π is captured by the extent of the eigenvalue repulsions.
κ controls eigenvalue repulsion.
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Main Theorem: HTMP Distribution

Theorem (Generalized Marchenko–Pastur)

Let MN follow qκ(λ1, . . . , λN) ∝
∏N

i=1 λ
−α
i e−β λ−1

i
∏

i<j |λi − λj |
κ(N)
N

with parameter κ(N). Define

γ(N) =
κ(N)/2

α− κ(N)/2− 1
→ γ ∈ (0, 1) as N → ∞.

Then the empirical spectral distribution of 2 γ(N)β
κ(N) M−1

N converges to:

1 MPγ (Marchenko-Pastur distribution) if κ(N) → ∞;

2 HTMPγ,κ (High-Temperature MP) if κ(N) → κ ∈ (0,∞).

This beta-ensemble result is derived from a sequence of random matrix
theory from Dumitriu and Edelman (2006); Dung and Duy (2021).
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Main Theorem: Tail Behavior for Trained Features

Theorem (Spectral Density of Trained Feature Matrix)

Let ρN be the ESD of a trained feature matrix MN , and µΣ the spectral
measure of label covariance Σ. Then

ρN(λ) −−−−⇀
N→∞

(
µΣ ⊠ ρ

)
(λ),

where ⊠ is multiplicative free convolution, ρ is either λ−2 ρMP(λ
−1) (if

κ = ∞) or λ−2 ρHTMP(λ
−1) (if κ < ∞). Additionally,

Bounded vs. Heavy-Tailed: κ = ∞ =⇒ bounded support;
κ < ∞ =⇒ power-law tail.

Inverse-Gamma near zero: If κ < ∞, density

ρ(x) ∼ x−
κ
2γ

−1−κ
2 exp

(
−β−

x

)
as x → 0+.

Power-law Tail: ρ(x) ∼ x−
κ
2γ

−1+κ
2 for x → ∞.
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Remarks

The power law for the limiting density ρ contains a tail exponent that
gets heavier as κ decreases: i.e., as the structure of the underlying
matrix becomes more rigid.

Decreasing κ increases implicit model bias, consistent with Martin
and Mahoney (2021b) and Simsekli et al. (2019), who claim heavier
tails imply stronger model biases and better model quality and
generalization ability.1

HTMP model represents the first RMT ensemble that captures key
empirical properties of (strongly-correlated) modern state-of-the-art
neural networks (Martin and Mahoney, 2020, 2021a,b; Yang et al.,
2023).

1Very important: these models’ elements need not have heavy-tailed behavior.
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Application 1: Neural Scaling Laws

Setup: Ridge regression on activation matrix Φ ∈ Rn×d , m = 1:

ŵ = argmin
w

L(w) =
1

n
∥Φw − Y ∥2 + µ

n
∥w∥2.

Assume yi = w⊤
∗ φ(xi ), and Ex [φ(x)φ(x)

⊤] = I .

Spectral Assumption: ΦΦ⊤ follows HTMPγ,κ (Master Model).

Data-Free Scaling Law: Predicts test loss decay solely from spectral tail; no
access to held-out data required. Previous scaling law works focus on power
laws in the dataset (e.g., Wei et al., 2022; Defilippis et al., 2024; Paquette
et al., 2024; Lin et al., 2024)

Proposition

Let µ = n−ℓ with ℓ ∈ (0, 1). Then, the Generalization Error satisfies

L := Ex,w∗ [(φ(x)
⊤ŵ − y)2] ≍ n

−ℓ
(
2+

κ
2γ−κ

2

)
, n → ∞

with high probability.

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 27 / 36



Application 2: Optimizer Trajectories

Empirical observation (Mandt et al., 2016; Simsekli et al., 2019; Hodgkinson
et al., 2022): Lower and Upper power-law tails in the distribution of

stochastic gradient norms ∥∇̂LN∥ during training:

Pr(∥∇̂LN∥ ≤ x) ∼ C− xα, x → 0+,

Pr(∥∇̂LN∥ > x) ∼ C+ x−β , x → ∞.

Model: Assume residuals Ȳ are Gaussian, NTK matrix J ∼ inverse-Wishart
(or HTMP) independent of Ȳ .

Application: Under these assumptions, ∥∇̂LN∥ exhibits both lower and
upper power-law tails.

There has been significant theoretical justification for the upper power law in
terms of the Kesten mechanism (Hodgkinson and Mahoney, 2021;
Gurbuzbalaban et al., 2021, 2022), but there has been little justification for
the lower power law before.
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Application 3: 5+1 Phases of Trained Weight Matrices

Empirical Observation (Martin and Mahoney, 2019, 2020, 2021b; Yang
et al., 2023; Zhou et al., 2023): Trained weight matrices can exhibit 5+1
Phases of Training:

1 Random-Like (MP bulk, no outliers).
2 Bleeding-Out (MP bulk with emerging spikes).
3 Bulk+Spikes (distinct spikes outside bulk).
4 Bulk-Decay (bulk extends, no finite support).
5 Heavy-Tailed (power-law tail).
6 Rank-Collapse (mass at zero eigenvalue).

Application: Consider A = W⊤W with trained weight W , then β
α−κ/2−1 A

converges to HTMPγ,κ.

Decreasing κ across training ⇒ transition from bounded support to heavy
tail. Power law exponents in the spectrum of weight matrices are strongly
predictive of model performance.
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5+1 Phases for Trained Weight: HTMP Fits

Figure: Weight spectral densities for MiniAlexNet trained on CIFAR-10 with batch
sizes 1000, 800, 250, 100, 50, 5 (top to bottom). Fitted MP/HTMP curves
shown in red dashed with different κ.

As batch size decreases, κ decreases ⇒ heavier tail.
(a)–(c): κ = ∞ for MP or MP+spike behavior.
(d)–(f): Finite κ for heavy tail plus eventual rank collapse.
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Conclusions

Master Model: A unified RMT framework (Master Model Ansatz) that
captures heavy-tailed spectral behavior of trained feature matrices from a
Bayesian perspective.

HTMP Ensemble: High-temperature MP (HTMPγ,κ) arises when
eigenvector entropy ∝ κ is finite; interpolates between MP (κ → ∞) and
heavy-tailed regimes (κ → 0+).

Key Insights

1 Data Contribution: Heavy-tailed population covariance Σ =⇒
heavy-tailed trained spectra (PIPO).

2 Eigenvector Structure: More architectural bias (smaller κ) =⇒
heavier tails.

3 Training Dynamics: As τ, η → 0, HTMP hyperparameters α, β, κ
evolve, explaining transitions (5+1 phases).

Applications

Neural scaling laws (ridge regression) predicted by HTMP exponents.
Lower/upper power-law tails in SGD trajectories explained.
5+1 training phases fit by tuning κ for HTMP.
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Tiers of Matrix Difficulty

Explicit: the whole matrix fits in memory

Implicit: can make use of matrix-vector products (e.g. CG, SLQ)

Out-of-core: parts of the matrix can be loaded into memory a piece at a time

Impalpable: most matrix 
entries are inaccessible, 
matrix-vector products are 
unavailable (e.g. distributed or 
enormous datasets)



Extrapolating Matrices

Suppose our matrix of interest is embedded in an infinite sequence of nested matrices

so that

Objective: Find eigenspectrum of        using 
eigenspectrum of          for



Free Probability
How do we ensure the eigenvalues of submatrices represent the whole matrix?

An important topic in random matrix theory involving random matrices with 
uniformly random eigenvectors, so that probability distributions of matrix 
dependents (including submatrices) depend only on the eigenspectra. 

Theorem (Nica, 1993): Any sequence of matrices can be turned into an 
(asymptotically) free sequence of random matrices by applying random permutations 
σ to the rows and columns:



Free Decompression
Let              be the Stieltjes transform of the enlargement of A by a factor of     
Under the large matrix limit,             satisfies the partial differential equation:

Proof: Random matrix theory arguments involving the R-transform and the 
celebrated theorem of (Nica & Speicher, 1996).

To our knowledge, this operation has always been considered in reverse (free 
compression), finding eigenspectra of submatrices, given the eigenspectrum of the 
full matrix. We are the first to attempt free decompression.





This is a very difficult equation to solve!

Solve the PDE using method of characteristics in the complex plane. But…

Proposition: All characteristic curves pass through the (discontinuous) branch cut 
for the principal branch of the Stieltjes transform. 

➢ To solve the characteristic equations, a new secondary branch is required.
➢ Tantamount to (ill-posed) numerical analytic continuation.
➢ Naively solving the PDE fails: we need to directly tackle the analytic 

continuation problem.

An Engineering Challenge



Analytic Continuation of Stieltjes Transform



Wishart Matrices (Marchenko-Pastur Law)

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



Experiments with Real Data

Symmetrically normalized Laplacian matrix of
the SNAP Facebook dataset

log-NTK matrix computed from the CIFAR-10 dataset 
using a ResNet-50 model

Empirical spectral density (solid) vs. free decompression estimate from                   (dashed)



freealg is our Python 
package that implements 
free decompression for 
estimating eigenspectra.

pip install freealg

Siavash Ameli, Chris van der Heide, Liam Hodgkinson, Michael W. Mahoney. (2025) 
Spectral Estimation with Free Decompression. arxiv: 2506.11994

(work in progress!)

https://arxiv.org/pdf/2506.11994
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Overview

Log-determinant is widely encountered in linear algebra and statistics:
Gaussian process (kernel methods)
Determinantal point process
Volume form (Bayesian computation)

Challenges
It is often the most difficult term to compute in these applications.
Memory-wall (time complexity isn’t the only bottleneck)

Outline

I. Large Matrices
Neural Tangent Kernels
Arithmetic Precision

II. MEMDET
Compute exact log-det
Out-of-core

III. FLODANCE
Approximate log-det
Utilize scale law

IIII. Results
NTK matrices
Matérn kernel
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Neural Tangent Kernel Sizes

Matrix Size
Dataset Training Set Classes float16 float32 float64
CIFAR-10 50,000 10 0.5 TB 1.0 TB 2.0 TB

MNIST 60,000 10 0.72 TB 1.5 TB 2.9 TB

SVHN 73,257 10 1.1 TB 2.2 TB 4.2 TB

ImageNet-1k 1,281,167 1000 3,282,778 TB 6,565,556 TB 13,131,111 TB*

* 13.1 exabytes is an order of magnitude larger than CERN’s current data storage capacity.
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Scale Law

det (Kn)

det
(
Kn−1

) ∼ nν

n: num dataset
d: num classes
m = nd: matrix size

Lemma

Let f : X → Rd be a zero-mean vector-valued
m-dimensional Gaussian process with
covariance kernel κ. For each n ≥ 2, let

E(n) := E[d−
1
2 ‖f (xn)‖

2 | f (xi) = 0
denote the mean-squared error of fitting the f to
the zero function using x1, . . . , xn−1. Then

pdet(Kn)

pdet(Kn−1)
≤ E(n)d

, ∀n > 1,

with equality if d = 1.

100 101 102 103 104 5× 104

n

1020

1031

1042

d
et

(K
n
)/

d
et

(K
n
−

1
)

ResNet50 — CIFAR-10

∼ cn−95.3

NTK of ResNet50 on CIFAR-10
Number of classes: d = 10
Dataset images: n = 50K
Matrix size: m = 500K.
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Comparison of Methods

Method Rel.
Error

Est.
Cost

Wall
TimeName Settings TFLOPs

SLQ l = 100, s = 104 5203 55% $83 1.8 days

MEMDET LDL, nb = 32 41,667 0% $601 13.8 days

FLODANCE ns = 500, q = 0 0.04 4% $0.04 1 min
FLODANCE ns = 5000, q = 4 41.7 0.02% $4 1.5 hr

Largest NTK formation and exact logdet computation to our knowledge
ResNet50, full CIFAR-10 with all n = 50K images
Matrix size m = 500,000 dense matrix, double precision, 2TB size.
MEMDET computes the exact log-determinant, serves as benchmark.
Costs and wall time are based on an NVIDIA H100 GPU ($2/hour).
Wall time include NTK formation.
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Resources

Reference

Ameli, S., van der Heide, C., Hodgkinson, L., Roosta, F., Mahoney, M.W., (2025).
Determinant Estimation under Memory Constraints and Neural Scaling Laws,
The 42nd International Conference on Machine Learning.

Related Work

Ameli, S., van der Heide, C., Hodgkinson, L., Mahoney, M.W., (2025). Spectral
Estimation with Free Decompression. arXiv: 2506.11994

Software

Package Documentation Install Implements
detkit ameli.github.io/detkit pip install detkit MEMDET

FLODANCE

imate ameli.github.io/imate pip install imate SLQ

freealg ameli.github.io/freealg pip install freealg (Related work)
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