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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

e Don't evaluate your method on one/two/three NNs, evaluate it on:

» dozens (2017)
> hundreds (2019)
» thousands (2021)

e Don't use bad/toy models, use SOTA models.

» If you do, don't be surprised if low-quality/toy models are different
than high-quality/SOTA models.

@ Don't train models, instead validate pre-trained models.
» Validating models is harder than training models.
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Watching weights with WeightWatcher

https://github.com/CalculatedContent/WeightWatcher

Analyzing DNN Weight matrices with WeightWatcher

1. Take a model
U x v’ 2. Take a weight matrix .
, 3. Do Spectral analysis
> 4. Histogram of eigenvalues
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=P Analyze one layer of pre-trained model
=P Compare multiple layers of pre-trained model
= Monitor NN properties as you train your own model

“pip install weightwatcher”
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https://github.com/CalculatedContent/WeightWatcher 

Using the theory

Different ways one could use a theory.
@ Perform diagnostics for model validation, to develop hypotheses, etc.*
@ Make predictions about model quality, generalization, transferability, etc.”

@ Did post-training modifications damage my model?*

Will buying more data help?*
@ Will training longer help?*
@ Will quantizing or distilling help?*

@ Construct a regularizer to do model training.**

*Ideally, by peeking at very little or no data.
**If you have lots of data, lots of GPUs, etc.
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Overview

« Randomized Numerical Linear Algebra for Modern ML
(with Michal Derezinski)



Part 1
Foundations of RandNLA

e Initial thoughts
@ Overview

e Foundations of “classical” RandNLA
@ Matrix Multiplication
@ Least-squares Approximation
@ Low-rank Approximation

e Foundations of “modern” RandNLA
@ Algorithmic Gaussianization via

Random Matrix Theory
@ RMT for Sampling via DPPs

Derezinski and Mahoney

RandNLA for ML

Part 11
Recent and Upcoming Advances

e Advances in RandNLA for Optimization
@ Gradient Sketch
@ Hessian Sketch
@ Sketch-and-Project
e Advances in RandNLA for ML
@ Statistical Learning Approaches
@ Statistical Inference Approaches
@ Random Matrix Theory Approaches
G Putting Randomness into LAPACK
@ RandBLAS/RandLAPACK
e Concluding thoughts




Using RandNLA methods more generally ...

Precision

Derezinski and Mahoney

moderate low

high

O Sketch-and-Solve
=g = Sketch-and-Precondition
lterative Sketching

RandNLA for ML

Runtime

Foundations of “classical” RandNLA




Landscape of Algorithmic Gaussianization

Sub-gaussian concentration of x € R? w.r.t. a set of functions F

VfeF: X =f(zx)—E f(x) is O(HfHLip)—Sub—gaussiari

\

E exp(eX2 /|| fllLip) < 2

Examples Concentration
r € RY F C{R?I =R}
1.1.d. Gaussian entries ) Lipschitz functions
1.7.d. bounded entries ) Convex functions
1.1.d. sub-gaussian entries '\ Fuclidean functions
3 i) = Ve B

LESS embeddings

JL-type embeddings R )=

Derezinski and Mahoney RandNLA for ML Foundations of “modern” RandNLA



“The RandLAPACK book”

Search... All fields A\ Search

‘Q\ . .
d I'/v\lv > math > arXiv:2302.11474 R —

Mathematics > Numerical Analysis

[Submitted on 22 Feb 2023]
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Randomized numerical linear algebra - RandNLA, for short - concerns the use of randomization as a resource to develop improved algorithms for large-scale linear
algebra computations.

The origins of contemporary RandNLA lay in theoretical computer science, where it blossomed from a simple idea: randomization provides an avenue for computing
approximate solutions to linear algebra problems more efficiently than deterministic algorithms. This idea proved fruitful in the development of scalable algorithms
for machine learning and statistical data analysis applications. However, RandNLA's true potential only came into focus upon integration with the fields of numerical
analysis and "classical" numerical linear algebra. Through the efforts of many individuals, randomized algorithms have been developed that provide full control over
the accuracy of their solutions and that can be every bit as reliable as algorithms that might be found in libraries such as LAPACK. Recent years have even seen the
incorporation of certain RandNLA methods into MATLAB, the NAG Library, NVIDIA's cuSOLVER, and SciPy.

For all its success, we believe that RandNLA has yet to realize its full potential. In particular, we believe the scientific community stands to benefit significantly from
suitably defined "RandBLAS" and "RandLAPACK" libraries, to serve as standards conceptually analogous to BLAS and LAPACK. This 200-page monograph represents a
step toward defining such standards. In it, we cover topics spanning basic sketching, least squares and optimization, low-rank approximation, full matrix
decompositions, leverage score sampling, and sketching data with tensor product structures (among others). Much of the provided pseudo-code has been tested via

publicly available Matlab and Python implementations.
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Overview

Some Theory:
« RMT for NNs: Linear to Nonlinear; Shallow to Deep; etc.
(with Zhenyu Liao)



A deep neural network model

hidden-layer of d neurons

<

P(Wx;) € R W € Ré*P

¢
¢
¢
¢

X; € RP

> linear transformation with first-layer weight matrix W RY*P

» nonlinear transformation: activation function ¢: R — R acting entry-wise on Wx;

> data representation at the output of first-layer | x; — ¢(Wx;)

» do the same thing in a layer-by-layer fashion:

\1ﬁ Tor (\/dl— LPL-1 (---%4’2 <\/1d—1wz4>1(W1Xi)))> , @)

for a large number # of input data points x1, ..., Xy

M. W. Mahoney RMT4DNN June 15, 2025 5/38



Technical challenges and key ideas

Analyze and Optimize Large-scale ML model M, (X; @)
Objective: Evaluation of M (X; ®) via Performance Metric f(-)
( 0
Technical Challenge 1 Key Idea 1
High-dimensionality in X, ® Concentration of f (My(X; ©)) ~ E[f (My(X;©))]
k J
( N
Technical Challenge 2 Key ldea 2
Analysis of Eigen-functional Deterministic Equivalent for Resolvent
. J
( N
Technical Challenge 3 Key ldea 3
Non-linearity in ML model High-dimensional linearization of Mg (X; ©)
. J
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High-dimensional Equivalent

Definition (High-dimensional Equivalent)

Let My (X) € RP*" be a (nonlinear) random matrix model that depends on a random matrix X € IRP*" and
function ¢: R — R (typically applied entrywise). Let f (Mg (X)) be a scalar observation of My (X) for some

f: RPX™ — R. We say that M (X) (random or deterministic) is a High-dimensional Equivalent of Mg (X)
with respect to f(+) if

fMp(X)) = f(Mp(X)) =0, 2
in probability or almost surely as 1, p — oo with p/n — ¢ € (0, c0). We denote this relation as
Mp(X) L M (X) or simply Mg(X) > My(X), 3)

when f is clear from context.

> without (entrywise) nonlinearities, f (X) concentrates around expectation f(X) ~ E[f(X)], and can be
assessed through Deterministic Equivalent f(X);

» for scalar eigenspectral functionals, Deterministic Equivalent for Resolvent framework provides a unified
approach to eigenspectral functionals of random matrices;

> for nonlinear models in two different scaling regimes (LLN versus CLT), ¢(X) can be linearized to yield a
Linear Equivalent.

M. W. Mahoney RMT4DNN June 15, 2025 7/38



Concentration versus non-concentration behavior

“Concentration” versus “non-concentration” around the mean
Consider two independent random vectors x = [x1,...,%,] " andy = [y1,...,y4] | € R", with i.i.d. entries of
zero mean and unit variance. We have the following observations.
@ In the one-dimensional case with n = 1, we have Pr(|x — 0| > t) <t 2 and Pr(ly — 0| > t) <t 2by
Markov’s inequality, so that one-dimensional random variables “concentrate” around their means.
@ In the multi-dimensional case with n > 1, we have E[|x — 0[|3] = E[x'x] = tr(E[xx']) = n and

E[||x — y||3] = E[x"x+y"y] = 2n. Thus, for n >> 1, the expected Euclidean distance between x and its
mean 0 is large: high-dimensional random vectors do not “concentrate” around their means.

Iyl ~ v/n

0.4 |-

0.2}

Histogram

0 | |
-3 0 3

(a) “Concentration” around the mean (b) “Non-concentration” around the mean
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High-dimensional concentration of scalar observation

» while large random vectors do not “concentrate” round their means, their scalar functionals (often) do
» for a scalar observation map f: R” — R and random vector x € R", we typically have
fx) = E[f(x)] =0, )
with high probability for n large.
> abasic example is the linear function f(x) = 1, x/n = % Y 1 x;: By the Large of Large Numbers (LLN)

and the Central Limit Theorem (CLT), we have f(x) = E[f(x)] + O(n~'/?) with high probability
» For a random matrix X € RP*" in the proportional regime with 1, p both large, similar holds:

@ just as for vectors, X does not concentrate, e.g., in a spectral norm sense; e.g., || X —E[X]|| /& 0asn,p — oo.

@ at the same time, scalar (e.g., eigenspectral) functionals f: RP*" — R of the random matrix X do
concentrate; i.e., f(X) — E[f(X)] — 0 as n,p — oco. This is the key idea of Deterministic Equivalent.

Definition (Deterministic Equivalent)
A Deterministic Equivalent is a special case of the High-Dimensional Equivalent, applied to a linear model
My(X) = X. We denote

fX)—f(X) > 0asn,p—o0 & Xéf(orsimplyXHf(. 5)

M. W. Mahoney RMT4DNN June 15, 2025 9/38




Nonlinear objects in two different scaling regimes

Definition (Two scaling regimes)
Consider a scalar functional f(x) of x € R”, via an observation map f: R" — R:

@ LLN regime: this holds when f(x) exhibits a LLN-type concentration, strongly concentrating around its
mean E[f(x)], and its distribution function becomes degenerate; that is, it holds when f(x) — E[f(x)] — 0
in probability or almost surely, as n — co.

@ CLT regime: this holds when f(x) exhibits a CLT-type concentration, remaining random and maintaining
a non-degenerate distribution function; that is, it holds when /n (f (x) — E[f(x)]) — N(0,1) in
distribution, as n — oo.

Nonlinear objects in two scaling regimes

Let x € R" be a random vector such that \/nx has i.i.d. Gaussian entries N (0,1) (the /7 scaling ensures
E[||x||?] = 1). Lety € R" be a deterministic vector of unit norm ||y|| = 1. Consider two nonlinear objects:
© LLN regime: random variables fi  n(x) = [|x[|3 or fuin(x) = x|y that both exhibit LLN-type
concentration (i.e., nearly deterministic for # large), and we are interested in ¢(f N (X)); and
© CLT regime: random variables fcrr(x) = v/n(||x||3 — 1) or forr(x) = v/ - x 'y that both exhibit CLT-type
concentration (they remain inherently random and have non-degenerate distributions for n large), and
we are interested in ¢(forr(X)).
RMT4DNN June 15,2025  10/38




Linearization in the two scaling regimes

Theorem (Taylor’s theorem)

Let ¢: R — R be a function that is at least k times continuously differentiable in a neighborhood of some point T € R.
Then, there exists hy: R — IR such that

() = p(0) + ¢/ (1) (x = 1)+ LD (r — 02 4+ L5 (x — 1) 4 g (x) (x — ), with limy By (x) = 0.
Consequently, hy (x)(x — T)F = o(|x — T|) as x — 7.

Theorem (Hermite polynomial expansion)

iR 2
The i normalized Hermite polynomial, He;(t), is given by Hey(t) = 1, He;(t) = <\f) ez % (e*%) ,i > 1. The

normalized Hermite polynomials

2
L7 dt; and

@ are orthogonal with respect to Gaussian measure, i.e., [ Hey (£)Hey (£)p(dt) = Sy for p(dt) = =

@ can be used to formally expand any square integmble function ¢ € L2(p) as

(@) ~ T2 agHei(0), i = [ ¢(1)Hei()pu(df) = E[g(&)He;(§)], for & ~ N(0,1). The coeffcients ag;s
are the Hermite coefficients of ¢:

a0 = E[P(8)], aga = E[5p(8)], V2ag0 = E[E*P(E)] — ago, vp = E[¢?(8)] = ;)aé;i~ ©6)
RMT4DNN " Junels 2025 11/38




Classical
Regime

Asymptotic Characterizations

4

N

Law of Large
Numbers
in Theorem 9

Maréenko-Pastur law
in Theorem 11

Asymptotic Deterministic
Equivalent in Theorem 12

. Proportional

Sample Covariance
Concentration
in Theorem 10

Non-asymptotic
Deterministic
Equivalent
in Theorem 13

Non-asymptotic Characterizations

Regime

Figure: Taxonomy of four different ways to characterize the sample covariance matrix C = %XXT.

M. W. Mahoney
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June 15, 2025
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Asymptotic behavior of SCM in the classical regime via law of large numbers

Theorem (Asymptotic Law of Large Numbers for SCM)
Let p be fixed, and let X € RP*" be a random matrix with independent sub-gaussian columns x; € R such that
E[x;] = 0and E[x;x|] = 1,.. Then one has,
IC—Tpll2 =0, (10)
almost surely, as n — oo.

» LLN is “parameterized” to hold only in the classical limit, not the proportional limit

» many variants and extensions of the LLN exist, but become vacuous when applied to the proportional
regime n,p — coand p/n — ¢ € (0, c0), see below for an example

M. W. Mahoney RMT4DNN June 15, 2025 17 /38



Non-asymptotic behavior of SCM in the classical regime via matrix concentration

Theorem (Non-asymptotic matrix concentration for SCM, [Ver18, Theorem 4.6.1])

Let X € RP*" be a random matrix with independent sub-gaussian columns x; € RP such that E[x;] = 0 and
E[x;x] = I,. Then, one has, with probability at least 1 — 2 exp(—t?), for any t > 0, that

|€ — 1|2 < C1max(s,6%), &= Ca(\/p/n+t/n), (11)

for some constants C1,Cy > 0, independent of n, p.

Proof: combines Bernstein’s concentration inequality with e-net argument, see [Ver18] for details.
@ can reproduce the LLN asymptotic result by taking n — oo with Borel-Cantelli lemma
@ Classical regime. Here, n > p, say that n ~ p2. Then with high probability, that ||C — L,||, = O(n~1/4)
and conveys a similar intuition to the asymptotic LLN result
@ Proportional regime. Here, 1, p are both large and n ~ p. Then, with high probability, that

|C — 1L, = O(y/p/n) = O(1), and qualitatively different LLN with a vacuous ~ 100% relative error,
e.g., asn,p — cowithp/n — ¢ € (0,00).

M. W. Mahoney RMT4DNN June 15, 2025 18 /38




M. W. Mahoney RMT4DNN

Proportional regime: eigenvalues via traditional RMT and the Marcenko-Pastur law

Theorem (Limiting spectral distribution for SCM: Marcenko-Pastur law, [MP67])

Let X € RP*" be a random matrix with i.i.d. sub-gaussian columns x; € RP such that E[x;] = 0 and E[x;x] = I,,.
Then, as n,p — oo withp/n — ¢ € (0, ), with probability one, the empirical spectral measure (ESD) pi1yyr of %XXT
converges weakly to a probability measure y given explicitly by

p(dx) = (1—cHtap(x) + o \/(x SER o (EEN T o (12)

where Ex = (1++/c)? and (x)* = max(0, x), which is known as the Marcenko-Pastur distribution.

> provides a more refined characterization of the eigenspectrum of C (than, e.g., matrix concentration):

(i) Classical regime. Here, n >> p so that c = p/n — 0, the Mar¢enko-Pastur law in Equation (12) shrinks to
a Dirac mass, in agreement with ||C — L[| ~ 0

(ii) Proportional regime. Here, n ~ p > 1, and by the (true but vacuous) matrix concentration result

|C — 1,2 = O(p/n) = O(1), and, depending on the ratio ¢ = p/n, the eigenvalues of C can be very
different from one, and takes the form of the Marcenko-Pastur law

> wehavein fact [|C — L[|, ~ c+2\/casn,p — co withp/n — ¢ € (0,0)

June 15, 2025 19/38
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> averaged amount of eigenvalues of ¢ lying within the interval [1 —§,1+ 4], for § < 1, as

u(=0,1+)) :/1 (x— (1= vR) " (1 + Vo2 —x)*
1

/ (Vac—e+o0() ds:$5+o(52)~

> for p ~ 4n there is asymptotically no eigenvalue of C close to one!
» in accordance with the shape of the limiting Maréenko-Pastur law with ¢ = 4 above

M. W. Mahoney RMT4DNN June 15, 2025 20/38
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Figure: Varying 1 and ¢ = p/n for fixed p. Histogram of the eigenvalues of C versus the limiting Mar&enko-Pastur law in
Theorem 11, for X having standard Gaussian entries with p = 20 and different n = 1 000p, 100p, 10p from left to right.
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Figure: Varying n and p for fixed ¢ = p/n. Histogram of the eigenvalues of C versus the Maréenko-Pastur law, for X having

standard Gaussian entries with n = 100p and different p = 20,100, 500 from left to right.
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An asymptotic Deterministic Equivalent for resolvent

Theorem (An asymptotic Deterministic Equivalent for resolvent, [CL22, Theorem 2.4])

Let X € RP*" be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = (IXXT —zI,) = the resolvent of LXXT for z € C not an eigenvalue of LXXT. Then, as n,p — co with
p/n — ¢ € (0,00), the deterministic matrix Q(z) is a Deterministic Equivalent of the random resolvent matrix Q(z)
with
Q(z) «+ Q(z), Q(z) =m(z)Iy, (13)

with m(z) the unique valid Stieltjes transform as solution to

czm?(z) — (1 —c—z)m(z) +1 = 0. (14)

» The equation of m(z) is quadratic and has two solutions defined via the complex square root

> only one satisfies z] - S[m(z)] > 0 as a “valid” Stieltjes transform, and leads to the Maréenko-Pastur
law

u(dx) = (1—cH*o(x) + 27:7\/(36 —E )" (B4 —x)Tdx, (15)

for Ex+ = (1£+/c)? and (x)* = max(0, x).

M. W. Mahoney RMT4DNN June 15, 2025 22/38



A non-asymptotic Deterministic Equivalent for resolvent

Theorem (A non-asymptotic Deterministic Equivalent for resolvent)
Let X € RP*™ be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit variance, and denote

Q(z) = (%XXT — zIp)_1 the resolvent of %XXT forz < 0. Then, there exists universal constants C1,Cy > 0 depending
only on the sub-gaussian norm of the entries of X and |z|, such that for any € € (0,1), if n > (Cq + ¢€)p, one has

IEQE)] - Q@) < 217t Q) = m(@),, (16)

for m(z) the unique positive solution to the Marcenko-Pastur equation czm?(z) — (1 —c —z)m(z) + 1 =0,c = p/n.

> this is a deterministic characterization of the expected resolvent

> to get DE, it remains to show concentration results for trace and bilinear forms: more or less standard

M. W. Mahoney RMT4DNN June 15, 2025 23 /38



:Proposed RMT framework

High-dimensional
Equivalent
(Definition 1)

Deterministic Equiv.

(Definition 2)

Linear Equivalent
(Definition 8)

Scaling law of Double decent Learning
training error test error dynamics
T T T Piginininintataiiatey 1
Remark 6 1 Remark 7 1 ! 1
———————————————————— I 1
| Remark 11 |
1
i) T 1 i
| Remark 9 Remark 10 | /:
i e e
O L
Remark 12 ! ,  Remark 13
_________________________ / L7

Figure: Overview of [LM25], summarizing major concepts and results and where to find them.
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Numerical results
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Figure: Empirical and theoretical training and test MSEs of single-hidden-layer NN model, as a function of /1, for

7 =10"! and v = 1075, with Gaussian W and ReLU activation ¢(t) = max(t,0), n = 1024 training samples and n’ = 1024

test samples from the MNIST dataset (number 1 and 2).Figure 7a: log-log plot of training MSEs averaged over 30 runs.
Figure 7b: test MSEs averaged over 30 runs on independent test sets of size 71 = 2 048.
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Overview

Applications:
* Models of Heavy-Tailed Mechanistic Universality
(with Zhichao Wang and Liam Hodgkinson)



Motivation: Heavy-Tailed Phenomena in Modern Models

@ Gradient norms (Simsekli et al., 2019) and loss curves (Hestness et al.,
2017; Kaplan et al., 2020; Hoffmann et al., 2022).

@ Eigenvalues of Gram matrices in neural nets: data covariance (Sorscher
et al., 2022; Zhang et al., 2023), activation (conjugate kernel)
(Pillaud-Vivien et al., 2018; Agrawal et al., 2022; Wang et al., 2023),
Hessian (Xie et al., 2023), Jacobian (Wang et al., 2023).

@ Strong correlation between heavy-tailed trained weight matrices & model
performance: Heavy-Tailed Self-Regularization (HT-SR) Theory (Martin and
Mahoney, 2021b) and Layer-wise Diagnostics (Zhou et al., 2023; Lu et al.,
2024).

@ Power law appears in neural scaling laws (Kaplan et al., 2020; Wei et al.,
2022; Defilippis et al., 2024; Paquette et al., 2024; Lin et al., 2024).

Need new RMT for Heavy-Tailed Mechanistic Universality (HT-MU). J

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 4/36
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

Kaplan et al. (2020). Scaling laws for neural language models.

Hoffmann et al. (2022). Training compute-optimal large language models.
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Test Accuracy vs Avg. log a-Norm
RMSE: 2.0 R2: 0.86 T: -0.88
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Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature
Communications, 12(1), 4122.
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Correlations with model quality
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Heavy-Tailed Mechanistic Universality

What might constitute “universality” in neural network weights?
o In RMT:

e it denotes the emergence of system-independent properties derivable
from a few global parameters defining an ensemble.
@ In statistical physics:

e it arises in systems with very strong correlations, at or near a critical
point or phase transition;
e it is characterized by measuring experimentally “observables” that
display heavy-tailed behavior, with (universal) power law exponents.
Although trained weight matrices are not random, but rather strongly
correlated through training, RMT provides a useful descriptive framework.

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 9/36



NTK Spectra at Initialization vs. Post-Training

VGG11l
dks = 0.0165

(d) VGG11 Trained

ResNet9
dks=0.0242

ResNet18
dys =0.0258

a=175
B=15x10"2

102 107 10° 10*

(b) ResNet9 Init

(c) ResNet18 Init

ResNet18

Resnetd des =0.0378

dks = 0.0464

(e) ResNet9 Trained  (f) ResNet18 Trained

Figure: NTK eigenvalue histograms and inverse-Gamma fits near zero.
Initialization: mild inverse-Gamma behavior. Post-Training: pronounced heavy-tail
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Heavy-Tailed Mechanistic Universality

Heavy-tailed distributions (informally): densities decaying slower than
exponential, often exhibiting power-law tails

f(x) ~cx % x— o0,

or inverse-Gamma behavior near zero f(x) ~ cx®e #/*,  x — 0.

Possible Approaches for Describing HT-MU:

@ iid Heavy-Tailed Elements: (Arous and Guionnet, 2008) Elements of
feature matrices are not independent and heavy-tailed.

@ Kesten Phenomenon: (Hodgkinson and Mahoney, 2021; Vladimirova

et al., 2018; Hanin and Nica, 2020) a mechanism discovered by Kesten
(1973) for recursive systems.

@ Population Covariance: power-law in, power-law out (PIPO) principle.
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Comparison of Possible Mechanisms

Power Law Inverse
Mechanism Elements Spectrum Gamma
iid Heavy-Tailed Elements v v X
Kesten Phenomenon v v v /X
Population Covariance v/ X v V' /X
Structured Matrices (Ours) X v v
Empirical Observations (Features) X v v
Empirical Observations (Weights) X v X

Table: Comparison of various mechanisms: capacity to yield power laws, in
feature matrix elements and feature matrix spectral densities; capacity to yield
an inverse Gamma law for the spectral density in a neighborhood of zero.
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Modeling Framework
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Entropic Regularization Setup

@ Stochastic Minimization Operator
7!'97.7‘ i
smin f(©) = min [Eqe)[f(©)] + TKL(q| me)] .
where P is the set of probability densities on the support of 7g, and

e Tg is the initial prior (© = model coefficients).
e 7 > 0 is the “temperature” (controls early stopping).

@ Stochastic optimization models (Mandt et al., 2016; Chaudhari and Soatto,
2018) have strong links to Bayesian inference (Germain et al., 2016) and
statistical physics of generalization (Mezard and Montanari, 2009).

@ Applying to the training loss optimizes a PAC-Bayes bound on the test error
(Xie et al., 2023). As 7 decreases during training, optimizer smoothly
interpolates between mg and the final optimal density.

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 14 /36



Entropic Regularization Setup

Feature Learning Setup: Stochastic minimization in two stages

Te,T T, Te,T
s%in L(©,0) and q(¢) = arggmin[sreéin L(©,®)].
[0

@ mo,Te: initial densities of model coefficients © and features .

o 7,1 > 0: "temperatures” control coefficient vs. feature learning rates.

Proposition (Optimal Feature Density)
4(®) x [2:(®)] " 16(®), Zr(P) = Eorrs exp(~L(®,0)/7).

Of particular interest: late stage of training, 7,7 — 0% with 7/n — p > 0.
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Master Model Ansatz

@ Ansatz: for trained feature matrices, with parameters «, 3 > 0 and
initial density 7:

q(M) o (det M)~ exp(—Btr(X M~1)) m(M)

e «a, 3 > 0 depend on model/optimizer hyperparameters.
o Y is label/covariance-related (e.g., Y YT).
o 7(M) is the prior “initialization” density of the feature matrix.

o Key Observation: The trained feature matrix M generally follows an
inverse-Wishart-type density (Mardia et al., 2024).

@ First consider ¥ = /| to remove the effect of ¥, the density 7 of feature
matrices M at initialization completely determines the density g(M).
Change of variables M — QAQT for orthogonal @ and diagonal A; so
we only need to study the spectral distribution A.

@ Second, we will consider a general ¥ to get spectral densities of trained
feature/weight matrices.
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RMT for Heavy-Tailed Spectral Behavior

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 19 /36



Eigenvector Structure and Beta-Ensembles

@ To derive a spectral density from the Master Model Ansatz,
diagonalize M = Q diag(\) QT andset ¥ = /.

o Key Assumption: Distribution of eigenvectors Q is not uniform!
(non-Haar) due to implicit model biases.

@ Use Beta-Ensemble (Dumitriu and Edelman, 2002; Forrester, 2010)
with parameter x € [0, 00] to capture the Master Model Ansatz:

Ge(A1 - An) o TI, VIN) TLigs 1N = NI/

B Take V()\) = A\ “exp(—B A1) to match Master Model Ansatz.

B Thel/N “hlgh temperature” scaling has also been examined
(Forrester and Mazzuca, 2021), but with a different application.

B Although 7(M) could be complicated, we argue that much of the
behavior of 7 is captured by the extent of the eigenvalue repulsions.
K controls eigenvalue repulsion.
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Main Theorem: HTMP Distribution

Theorem (Generalized Marchenko—Pastur)

r(N)

Let My follow qu(A1, ..., ) o IV 1A e BN [T X = Al
with parameter k(N). Def/ne

_ K(N)/2
(V) = a—r(N)/2-1

— v€(0,1) as N — oc.

Then the empirical spectral distribution of 2 (( ))B MN converges to:

@ MP,, (Marchenko-Pastur distribution) if k(N) —
@ HTMP, . (High-Temperature MP) if k(N) — k € ( 00).

This beta-ensemble result is derived from a sequence of random matrix
theory from Dumitriu and Edelman (2006); Dung and Duy (2021).
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Main Theorem: Tail Behavior for Trained Features

Theorem (Spectral Density of Trained Feature Matrix)

Let pn be the ESD of a trained feature matrix My, and uy the spectral
measure of label covariance ¥~. Then

pn(A) ——— (u=Bp)(N),

where X is multiplicative free convolution, p is either A\=2 pyp(A™1) (if
K = 00) or A2 pyrmp(A 1) (if K < 00). Additionally,

@ Bounded vs. Heavy-Tailed: kK = co = bounded support;
Kk < 00 = power-law tail.

o Inverse-Gamma near zero: If Kk < oo, density

p(x) ~x 2 12 exp (—'37‘) asx — 0.

o Power-law Tail: p(x) ~ X722 for x — oo,

Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 24 /36



Remarks

@ The power law for the limiting density p contains a tail exponent that
gets heavier as k decreases: i.e., as the structure of the underlying
matrix becomes more rigid.

@ Decreasing « increases implicit model bias, consistent with Martin
and Mahoney (2021b) and Simsekli et al. (2019), who claim heavier
tails imply stronger model biases and better model quality and
generalization ability.!

@ HTMP model represents the first RMT ensemble that captures key
empirical properties of (strongly-correlated) modern state-of-the-art
neural networks (Martin and Mahoney, 2020, 2021a,b; Yang et al.,
2023).

'Very important: these models’ elements need not have heavy-tailed behavior.
Michael W. Mahoney (UC Berkeley) HT-MU June 15, 2025 25 /36



Application 1: Neural Scaling Laws

@ Setup: Ridge regression on activation matrix ® € R"*9 m = 1:
. . 1 2, My
W = argmin L(w) = =|®w — Y||“ + =|lw|".
w n n

Assume y; = w,| p(x;), and E,[o(x)p(x)T] = 1.

@ Spectral Assumption: ¢ follows HTMP., ,, (Master Model).

@ Data-Free Scaling Law: Predicts test loss decay solely from spectral tail; no
access to held-out data required. Previous scaling law works focus on power

laws in the dataset (e.g., Wei et al., 2022; Defilippis et al., 2024; Paquette
et al., 2024; Lin et al., 2024)

Proposition

Let = n=* with £ € (0,1). Then, the Generalization Error satisfies
Lom B [(00)TW —y)?] = n—@58) o

with high probability.
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Application 2: Optimizer Trajectories

@ Empirical observation (Mandt et al., 2016; Simsekli et al., 2019; Hodgkinson
et al., 2022): Lower and Upper power-law tails in the distribution of

stochastic gradient norms ||V Ly|| during training:
Pr(|VLy|| < x) ~ C_x¥, x— 0%,
Pr(|VLy|| > x) ~ Co x7?,  x = .

@ Model: Assume residuals Y are Gaussian, NTK matrix J ~ inverse-Wishart
(or HTMP) independent of Y.

@ Application: Under these assumptions, ||§LN” exhibits both lower and
upper power-law tails.

@ There has been significant theoretical justification for the upper power law in
terms of the Kesten mechanism (Hodgkinson and Mahoney, 2021;
Gurbuzbalaban et al., 2021, 2022), but there has been little justification for
the lower power law before.
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Application 3: 5+1 Phases of Trained Weight Matrices

@ Empirical Observation (Martin and Mahoney, 2019, 2020, 2021b; Yang
et al., 2023; Zhou et al., 2023): Trained weight matrices can exhibit 541
Phases of Training:

@ Random-Like (MP bulk, no outliers).

@ Bleeding-Out (MP bulk with emerging spikes).
© Bulk+Spikes (distinct spikes outside bulk).

@ Bulk-Decay (bulk extends, no finite support).
© Heavy-Tailed (power-law tail).

O Rank-Collapse (mass at zero eigenvalue).

@ Application: Consider A= W T W with trained weight W, then A

converges to HTMP,, ..

B
a—k/2—1

@ Decreasing x across training = transition from bounded support to heavy
tail. Power law exponents in the spectrum of weight matrices are strongly
predictive of model performance.
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5+1 Phases for Trained Weight: HTMP Fits

Figure: Weight spectral densities for MiniAlexNet trained on CIFAR-10 with batch
sizes 1000, 800, 250, 100, 50, 5 (top to bottom). Fitted MP/HTMP curves
shown in red dashed with different .

As batch size decreases, x decreases = heavier tail.
(a)—(c): kK = oo for MP or MP+spike behavior.
(d)—(f): Finite x for heavy tail plus eventual rank collapse.
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Conclusions

@ Master Model: A unified RMT framework (Master Model Ansatz) that
captures heavy-tailed spectral behavior of trained feature matrices from a
Bayesian perspective.

@ HTMP Ensemble: High-temperature MP (HTMP,, ,.) arises when
eigenvector entropy  k is finite; interpolates between MP (x — o0) and
heavy-tailed regimes (x — 0T).

o Key Insights

© Data Contribution: Heavy-tailed population covariance ¥ —
heavy-tailed trained spectra (PIPO).

@ Eigenvector Structure: More architectural bias (smaller k) —
heavier tails.

© Training Dynamics: As 7,11 — 0, HTMP hyperparameters «, 3, k
evolve, explaining transitions (5+1 phases).

@ Applications

o Neural scaling laws (ridge regression) predicted by HTMP exponents.
o Lower/upper power-law tails in SGD trajectories explained.
e 5+1 training phases fit by tuning x for HTMP.
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Overview

* Spectral Estimation with Free Decompression
(with Siavash Ameli, Chris van der Heide, and Liam Hodgkinson)



Tiers of Matrix Difficulty

Explicit: the whole matrix fits in memory
Implicit: can make use of matrix-vector products (e.g. CG, SLQ)

Out-of-core: parts of the matrix can be loaded into memory a piece at a time

Impalpable: most matrix Access in Memory
entries are inaccessible, Matrix—Vector Any
matrix-vector products are Type Matrix Product Subblock
unavailable (e.g. distributed or Explicit / J/ V
enormous datasets) Implicit X v X
Out-of-core X ~ v
Impalpable X X X




Extrapolating Matrices

Suppose our matrix of interest is embedded in an infinite sequence of nested matrices

Al,AQ,Ag,... An c R**"

- ) \ \ so that (An)ZJ — (A’n—l—l)ij

iy Objective: Find eigenspectrum of A, using

Anj eigenspectrum of A, for ng K n




Free Probability

How do we ensure the eigenvalues of submatrices represent the whole matrix?

An important topic in random matrix theory involving random matrices with
uniformly random eigenvectors, so that probability distributions of matrix
dependents (including submatrices) depend only on the eigenspectra.

Theorem (Nica, 1993): Any sequence of matrices can be turned into an
(asymptotically) free sequence of random matrices by applying random permutations
o to the rows and columns:

~

Aij = As()o(j)




Free Decompression

Let m(t,-) be the Stieltjes transform of the enlargement of 4 by a factor of et

Under the large matrix limit, m(¢, -) satisfies the partial differential equation:

om _ _ ., 19m
ot " m Oz

Proof: Random matrix theory arguments involving the R-transform and the
celebrated theorem of (Nica & Speicher, 1996).

To our knowledge, this operation has always been considered in reverse (free
compression), finding eigenspectra of submatrices, given the eigenspectrum of the
full matrix. We are the first to attempt free decompression.




Free decompression of a random submatrix
A to a larger matrix A requires:

1. estimation of its Stieltjes transtorm mp ;

2. evolution of mp in n using PDE;

3. evaluation of the spectral distribution of A.




An Engineering Challenge

This is a very difficult equation to solve!
Solve the PDE using method of charaeteristics in the complex plane. But...

Proposition: All characteristic curves pass through the (discontinuous) branch cut
for the principal branch of the Stieltjes transform.

> To solve the characteristic equations, a new secondary branch is required.

> Tantamount to (ill-posed) numerical analytic continuation.

> Naively solving the PDE fails: we need to directly tackle the analytic
continuation problem.



Analytie Continuation of Stieltjes Transform

(a) Principal Branch on C* and C~ (b) Principal Branch on C*, Secondary Branch on C~

1.0 1.0

0.5

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
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Wishart Matrices (Marchenko-Pastur Law)

2.5

(a) Initial Empirical Density (n = 1K)

(b) Free Decompression

(c) Final Empirical Density (n = 32K)
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—— Density Estimate
Empirical Spectrum

n.=1K
n = 2K
n = 4K
n = 8K
n = 16K
n = 32K

= Benchmark Density (Exact)

Free Decompression Solution

Histogram of eigenvalues of small

matrix & density estimate

Densities under free
decompression
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free decompression




Experiments with Real Data

(a) Laplacian — Facebook Page-Page (b) Neural Tangent Kernel — CIFAR-10
=212 n = 211
—_— =213 1125 5 —_— = 212
3 — n=2u — n=213
1.00 o _ou
—~ —~ U 215
= 24 =< 0.75 4 — n=50K
< <
0.50 —
1 -
0.25
0 0.00 ]
0.0 —4 4 6
Symmetrically normalized Laplacian matrix of log-NTK matrix computed from the CIFAR-10 dataset
the SNAP Facebook dataset using a ResNet-50 model

Empirical spectral density (solid) vs. free decompression estimate from 77, — 211 (dashed)




I - | e e a l ( 5 Listing 1: A minimal usage example of the freealg package.
# Install freealg with "pip install freealg"

import freealg as fa

f’}"eealg 1S our Python # Create an object for the Marchenko--Pastur distribution with the parameter \ = .)i()
. mp = fa.distributions.MarchenkoPastur(1/50)
package that implements
0 # Generate a matriz of size n, = 1000 corresponding to this distribution
free decompression for A = mp.matrix(size=1000)

eStlmatlng elgenspeCtra° # Create a free—form object for the matriz within the support I = [A_, ]
ff = fa.FreeForm(A, support=(mp.lam_m, mp.lam_p))

plp 1nSta11 freealg # Fit the distribution using Jacobi polynomials of degree K =20, with o= = i
# Also fit the glue function via Pade of degree [(p+q)/q] with p=0, ¢=1. )
. psi = ff.fit(method=’jacobi’, K=20, alpha=0.5, beta=0.5, reg=0.0, damp=’jackson’,
(WOI’k 1n pPOgI’eSS!) pade_p=0, pade_g=1, optimizer=’1s’, plot=True)

# Decompress the spectral density corresponding to a larger matriz of size n = 2° x TVl
rho_large = ff.decompress(size=32_000, plot=True)

arXiv

Siavash Ameli, Chris van der Heide, Liam Hodgkinson, Michael W. Mahoney. (2025)
Spectral Estimation with Free Decompression. arxiv: 2506.11994
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Overview

* Determinant Estimation under Memory Constraints and Neural Scaling Laws
(with S. Ameli, C. van der Heide, L. Hodgkinson, and F. Roosta)



OVERVIEW

Log-determinant is widely encountered in linear algebra and statistics:
@ Gaussian process (kernel methods)
@ Determinantal point process

@ Volume form (Bayesian computation)

Challenges
@ It is often the most difficult term to compute in these applications.

@ Memory-wall (time complexity isn’t the only bottleneck)

Outline
I. Large Matrices II. MEMDET II1. FLODANCE IITI. Results
@ Neural Tangent Kernels @ Compute exact log-det @ Approximate log-det @ NTK matrices
@ Arithmetic Precision @ Out-of-core @ Utilize scale law @ Matérn kernel
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NeuraL TangeNT KERNEL Si1zEs

Matrix Size

Dataset Training Set  Classes float16 float32 float64
CIFAR-10 50,000 10 0.5TB 1.0TB 2.0 TB
MNIST 60,000 10 0.72 TB 1.5TB 2.9TB
SVHN 73,257 10 1.1TB 2.2 TB 4.2 TB

ImageNet-1k 1,281,167 1000 3,282,778 TB 6,565,556 TB 13,131,111 TB"

“13.1 exabytes is an order of magnitude larger than CERN’s current data storage capacity.

5/19



ScarLe Law

m = nd
sNeth ! -
det (Kn) o Lo ResNetb0 — CIFAR-10
det (anl) —
T
K, @ n: num dataset Q
K, @ d: num classes :j 1031 4
Ko @ m = nd: matrix size /\T:
&
B
© —_— 953
Letf : X — R? be a zero-mean vector-valued 10 e H 10 W Bl
m-dimensional Gaussian process with n
covariance kernel k. For each n > 2, let
E(n) = ]E[d_% IF@)I? | fx) =0 @ NTK of ResNet50 on CIFAR-10
denote the mean-squared error of fitting the f to @ Number of classes: d = 10
the zero function using xy, . . . ,x,_,. Then
pet(K,) _ B, o1 @ Dataset images: n = 50K
pdet(K,_;) — ’ ’ @ Matrix size: m = 500K.
with equality if d = 1. y
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ComPARISON OF METHODS

Method Rel.  Est. Wall
Name Settings TFLOPs Error Cost Time
SLQ [ =100,s =104 5203 55% $83 1.8 days
MEMDET LDL, n, = 32 41,667 0% $601 13.8 days
FLODANCE n,=500, ¢ =0 0.04 4% $0.04 1 min
FLODANCE n, =5000,q9g =4 41.7 0.02% $4 1.5 hr

Largest NTK formation and exact logdet computation to our knowledge
ResNet50, full CIFAR-10 with all » = 50K images

Matrix size m = 500,000 dense matrix, double precision, 2TB size.
MEMDET computes the exact log-determinant, serves as benchmark.
Costs and wall time are based on an NVIDIA H100 GPU ($2/hour).

Wall time include NTK formation.
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RESOURCES

Reference

Ameli, S., van der Heide, C., Hodgkinson, L., Roosta, F., Mahoney, M.W., (2025).
Determinant Estimation under Memory Constraints and Neural Scaling Laws,

The 42nd International Conference on Machine Learning.

Related Work

Ameli, S., van der Heide, C., Hodgkinson, L., Mahoney, M.W., (2025). Spectral

Estimation with Free Decompression. arXiv: 2506.11994

Software
Package Documentation Install Implements
detkit ameli.github.io/detkit pip install detkit MEMDET
FLODANCE
imate ameli.github.io/imate pip install imate SLQ
freealg  ameli.github.io/freealg pip install freealg (Related work)
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ameli.github.io/detkit
ameli.github.io/imate
ameli.github.io/freealg

Overview

Motivations:

«  WeightWatcher, Weight Diagnostics for Analyzing ML Models
(with Charles H. Martin)

« Randomized Numerical Linear Algebra for Modern ML
(with Michal Derezinski)

Some Theory:
« RMT for NNs: Linear to Nonlinear; Shallow to Deep; etc.
(with Zhenyu Liao)

Applications:

* Models of Heavy-Tailed Mechanistic Universality
(with Zhichao Wang and Liam Hodgkinson)

* Spectral Estimation with Free Decompression
(with Siavash Ameli, Chris van der Heide, and Liam Hodgkinson)

* Determinant Estimation under Memory Constraints and Neural Scaling Laws
(with S. Ameli, C. van der Heide, L. Hodgkinson, and F. Roosta)
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