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Full Column-Rank Least Squares Problems

Given A ∈ Rm×n with rank(A) = n

min
x
‖Ax − b‖2

Normal equations: ATAx = ATb
Condition number is κ(A)2 where κ(A) ≡ ‖A‖2 ‖A†‖2
Can be numerically unstable

Our remedy:

Randomized preconditioning: Ap ≡ AR−1s

Preconditioned normal equations

AT
p Apy = AT

p b, Rsx = y

Half-preconditioned normal equations: AT
p Ax = AT

p b
Special case of not-normal equations (Wathen 2025)
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Existing Work on
Preconditioned Normal Equations

Preconditioners for accelerating iterative methods

Improving solution accuracy with iterative refinement

Wathen 2022, 2025
Epperly, Greenbaum, Nakatsukasa 2025
Lazzarino, Nakatsukasa, Zerbinati 2025
Scott, Tuma 2025
Carson, Dauz̆ickaitė 2025

This talk:

Probabilistic condition number bounds

Deterministic perturbation bounds
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Probabilistic Condition Number Bounds for
Randomized Preconditioners
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Randomized Sampling

Sample c rows from smoothed matrix As ≡ S F A, uniformly and
with replacement

Random orthogonal matrix F = FD
F is discrete cosine transform (DCT-2)

F ij =

√
2

m
cos
( π

2m
(2j − 1)(i − 1)

)
1 ≤ i , j ≤ m

D is random diagonal where D jj = ±1 with probability 1/2

S samples c rows from identity, uniformly with replacement

Im =

1 . . .

1

 =

eT
1
...

eT
m

 ∈ Rm×m S =
√

m
c


eT
k1
...

eT
kc

 ∈ Rc×m

In expectation: E[STS] = Im
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Randomized Preconditioning

Given A ∈ Rm×n with rank(A) = n

1 Sample c rows from smoothed matrix: As ≡ SFA
2 Compute preconditioner with QR: As = Qs Rs

3 Precondition matrix: Ap ≡ AR−1s

Ingredients for probabilistic bounds

Thin QR decomposition A = QR with QTQ = I n
Failure probability 0 < δ < 1

Tolerance 0 < ε < 1

Minimal sampling amount

c0 ≡ 2m max
1≤i≤m

‖eT
i FQ‖22

(
1 +

ε

3

) ln (n/δ)

ε2
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Probabilistic Condition Number Bounds

For any 0 < ε < 1 and 0 < δ < 1, sampling amount c ≥ c0
then with probability at least 1− δ

Preconditioned normal equations

1− ε
1 + ε

≤ κ(AT
p Ap) ≤ 1 + ε

1− ε√
1− ε
1 + ε

κ(A) ≤ κ(Rs) ≤
√

1 + ε

1− ε
κ(A)

Half-preconditioned normal equations√
1− ε
1 + ε

κ(A) ≤ κ(AT
p A) ≤

√
1 + ε

1− ε
κ(A)
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Summary: Randomized Preconditioner

With sampling amount c = 3n, condition number κ(A) ≤ 108

Preconditioned matrix and Gram matrix very well conditioned

κ(Ap) ≤ 5, κ(AT
p Ap) ≤ 20

Preconditioner and half-preconditioned matrix have same
condition number as A

κ(Rs) ≈ κ(A), κ(AT
p A) ≈ κ(A)

The randomized preconditioner is effective
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Deterministic Perturbation Bounds for
Preconditioned Normal Equations (PNE)
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Symmetric preconditioning of normal equations

R−Ts ATAR−1s Rsx︸︷︷︸
y

= R−Ts ATb

Equivalent to least squares problem1 miny ‖AR−1s y − b‖2
Least squares residual remains the same

min
y
‖AR−1s y − b‖2 = min

x
‖Ax − b‖2

Preconditioned normal equations (PNE)

1 Precondition Ap ≡ AR−1s

2 Solve AT
p Apy = AT

p b
3 Retrieve original solution Rsx = y

1Avron, Maymounkov, Toledo: Blendenpik (2010)
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Numerical Experiments

Matrices A ∈ Rm×n with m = 6000 rows

Different number of columns n = 10, . . . , 400

Two-norm condition number κ(A) = 108

Sampling matrix S has c = 3n rows

Least squares problem2

Exact solution x∗ = randn(n)

Least squares residual e ⊥ range(A)

Righthand side b = Ax∗ + e

Least squares solution method: QR decomposition

Graphs: Relative error in computed solution x̂

2Meier, Nakatsukasa, Townsend, Webb (2024)
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PNE Almost as Accurate as Matlab backslash

Relative least squares residuals: 10−12 and 10−2
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PNE Accuracy Depends on Least Squares Residual

Why does PNE accuracy depend on the least squares residual,
when PNE ’does not know’ about least squares problem???
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Perturbation Bound: Overview

Goal: Explain why PNE depend on the least squares residual

Exact solutions:

AT
p Apy∗ = AT

p b Rsx∗ = y∗

Computed solutions:

AT
p Ap ŷ ≈ AT

p b Rs x̂ = ŷ

Two stages

1 Intermediate perturbation bound:
Bound relative error in ŷ in terms of least squares residual

2 Final perturbation bound:
Bound relative error in x̂ in terms of relative error in ŷ
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Intermediate Perturbation Bound

Rs is fixed nonsingular matrix

Different perturbations for A

A1 ≡ A(Rs + E s)−1, A2 ≡ Ap + Ep, ε ≡ max
{
‖E s‖
‖Rs‖ ,

‖Ep‖
‖Ap‖

}
Perturbed system: AT

1 A2ŷ = AT
1 b

Error bound

‖y∗ − ŷ‖
‖ŷ‖

≤ κ(Ap) ε+ κ(Ap)2 η

(
‖b − Ap ŷ‖
‖Ap‖‖ŷ‖

+ ε

)
where η ≡ κ(Rs)ε

1−κ(Rs) ε
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Intermediate PNE Perturbation Bound

To first order

‖y∗ − ŷ‖
‖ŷ‖

. max

{
κ(Ap) ε, κ(Ap)2 κ(Rs) ε

‖b − Ap ŷ‖
‖Ap‖‖ŷ‖

}
If least squares residual is small then

‖y∗ − ŷ‖
‖ŷ‖

. κ(Ap) ε

If least squares residual is large then

‖y∗ − ŷ‖
‖ŷ‖

. κ(Ap)2 κ(Rs) ε
‖b − Ap ŷ‖
‖Ap‖‖ŷ‖

Condition number of preconditioner amplifies LS residual
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Intermediate Perturbation Bound is Informative
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Final Perturbation Bound

Rs is fixed nonsingular matrix

Different perturbations for A

A1 ≡ A(Rs + E s)−1, A2 ≡ Ap + Ep, ε ≡ max
{
‖E s‖
‖Rs‖ ,

‖Ep‖
‖Ap‖

}
Perturbed PNE: AT

1 A2ŷ = AT
1 b, Rs x̂ = ŷ

Error bound

‖x∗ − x̂‖
‖x̂‖

≤ κ(Rs)

(
κ(Ap)ε+ κ(Ap)2 η

(
‖b − Ap ŷ‖
‖Ap‖‖ŷ‖

+ ε

))
where

η ≡ κ(Rs)ε

1− κ(Rs) ε
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Final Perturbation Bound is Informative

In double precision: κ(A)ε ≈ 10−8
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Summary: Preconditioned Normal Equations

1 Precondition Ap ≡ AR−1s

2 Solve AT
p Apy = AT

p b
3 Retrieve original solution Rsx = y

Our randomization: κ(Ap) ≤ 5, κ(Rs) ≈ κ(A)

‖x∗ − x̂‖
‖x̂‖

. κ(Rs)κ(Ap) ε

(
1 + κ(Ap)κ(Rs)

‖b − Ap ŷ‖
‖Ap‖‖ŷ‖

)

Condition number of preconditioner amplifies LS residual

LS residual dominates error if κ(Rs)
‖b−Ap ŷ‖
‖Ap‖‖ŷ‖ > 1
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Deterministic Perturbation Bounds for
Half-Preconditioned Normal Equations (HPNE)
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Non-symmetric preconditioning of normal equations3

Dispense with triangular system solution

R−Ts ATAx = R−Ts ATb

Not equivalent to a least squares problem

Half-preconditioned normal equations (HPNE)

1 Precondition Ap ≡ AR−1s

2 Solve nonsymmetric system AT
p Ax = AT

p b

3Left-preconditioned CGNE
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HPNE as Accurate as PNE

Why does HPNE depend on the least squares residual, when there
is no mathematically equivalent least squares problem?
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HPNE Perturbation Bound

Rs is fixed nonsingular matrix

Different perturbations for A

A1 ≡ A(Rs + E s)−1, A2 ≡ A + EA, ε ≡ max

{
‖E s‖
‖Rs‖

,
‖EA‖
‖A‖

}
Perturbed HPNE: AT

1 A2x̂ = AT
1 b

Error bound

‖x∗ − x̂‖
‖x̂‖

≤ κ(AT
p A)µ

(
η
‖b − Ax̂‖
‖A‖‖x̂‖

+ (1 + η)ε

)
where

µ ≡ ‖Ap‖‖A‖
‖AT

p A‖
≥ 1, η ≡ κ(Rs)ε

1− κ(Rs)ε
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HPNE Perturbation Bound is Informative

In double precision: κ(A)ε ≈ 10−8
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Summary: Half-Preconditioned Normal Equations

1 Precondition Ap ≡ AR−1s

2 Solve nonsymmetric system AT
p Ax = AT

p b

Our randomization: κ(AT
p A) ≈ κ(A)

‖x∗ − x̂‖
‖x̂‖

. κ(AT
p A)µ ε

(
1 + κ(Rs)

‖b − Ax̂‖
‖A‖‖x̂‖

)

LS residual dominates error if κ(Rs) ‖b−Ax̂‖
‖A‖‖x̂‖ > 1

although HPNE have no corresponding LS problem
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Overall Summary

Solve minx ‖Ax − b‖2 by
Randomized preconditioning Ap = AR−1s

Two types of preconditioned normal equations

PNE: AT
p Apy = AT

p b, Rsx = y
HPNE: AT

p Ax = AT
p b

PNE and HPNE can be as accurate as Matlab backslash
Accuracy of solution depends on least squares residual

Analysis
Probabilistic condition number bounds
Deterministic perturbation bounds: exact and informative
Conditioning of preconditioner amplifies LS residual

Not discussed:
Accuracy of preconditioner in lower precision
Speed up on GPUs
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