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Full Column-Rank Least Squares Problems

Given A € R™ " with rank(A) = n
min ||Ax — b||2
X

Normal equations: ATAx=A"b

Condition number is x(A)? where x(A) = || A2 [|A ]2
Can be numerically unstable

Our remedy:
o Randomized preconditioning: A, = AR;!
@ Preconditioned normal equations

AlA,y =Alb, Rx=y

@ Half-preconditioned normal equations: A;Ax = AZb
Special case of not-normal equations (Wathen 2025)



Existing Work on
Preconditioned Normal Equations

@ Preconditioners for accelerating iterative methods

@ Improving solution accuracy with iterative refinement
Wathen 2022, 2025
Epperly, Greenbaum, Nakatsukasa 2025
Lazzarino, Nakatsukasa, Zerbinati 2025

Scott, Tuma 2025
Carson, Dauzickaité 2025

This talk:
@ Probabilistic condition number bounds

@ Deterministic perturbation bounds



Probabilistic Condition Number Bounds for
Randomized Preconditioners



Randomized Sampling

Sample ¢ rows from smoothed matrix As = S F A, uniformly and
with replacement

@ Random orthogonal matrix F = FD
F is discrete cosine transform (DCT-2)
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F,-J-:wlgcos(%(z]fl)(lfl)) 1<i,j<m

D is random diagonal where D;; = +1 with probability 1/2

@ S samples ¢ rows from identity, uniformly with replacement
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In expectation: E[STS] =1,



Randomized Preconditioning

Given A € R™" with rank(A) = n

@ Sample ¢ rows from smoothed matrix: A; = SFA
@ Compute preconditioner with QR:  As = Qs R
© Precondition matrix: A, =A R;l

Ingredients for probabilistic bounds
@ Thin QR decomposition A= QR with Q" Q =1,
@ Failure probability 0 < § < 1
@ Tolerance 0 < e <1

@ Minimal sampling amount
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Probabilistic Condition Number Bounds

Forany 0 < e <1and 0 < <1, sampling amount ¢ > ¢
then with probability at least 1 — §

@ Preconditioned normal equations
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@ Half-preconditioned normal equations
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Summary: Randomized Preconditioner

With sampling amount ¢ = 3n, condition number x(A) < 108
@ Preconditioned matrix and Gram matrix very well conditioned
K(Ay) <5,  K(A]Ap) <20

@ Preconditioner and half-preconditioned matrix have same
condition number as A

K(Rs) ~ Kk(A),  k(A]A)~ K(A)

The randomized preconditioner is effective



Deterministic Perturbation Bounds for
Preconditioned Normal Equations (PNE)



Symmetric preconditioning of normal equations

R.TATAR_'R.x=R_"ATh
~—~

y

Equivalent to least squares problem® min, [|AR 'y — b||

Least squares residual remains the same

min |AR_ 'y — b||> = min ||Ax — b|>
y x

Preconditioned normal equations (PNE)
© Precondition A, = A Rgl
T T
© Solve A, A,y = A, b
© Retrieve original solution R.x =y

! Avron, Maymounkov, Toledo: Blendenpik (2010)



Numerical Experiments

Matrices A € R™*" with m = 6000 rows
o Different number of columns n = 10,...,400
@ Two-norm condition number x(A) = 108

@ Sampling matrix S has ¢ = 3n rows

Least squares problem?
e Exact solution x, = randn(n)
@ Least squares residual e L range(A)
@ Righthand side b= Ax, + e

Least squares solution method: QR decomposition

Graphs: Relative error in computed solution X

2Meier, Nakatsukasa, Townsend, Webb (2024)



PNE Almost as Accurate as Matlab backslash
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PNE Accuracy Depends on Least Squares Residual
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Why does PNE accuracy depend on the least squares residual,
when PNE 'does not know' about least squares problem??7?



Perturbation Bound: Overview

Goal: Explain why PNE depend on the least squares residual

Exact solutions:

AlAyy,=Alb R.x. =y,

Computed solutions:

AlAy~Alb Rx =y

Two stages
© Intermediate perturbation bound:
Bound relative error in y in terms of least squares residual

@ Final perturbation bound:
Bound relative error in X in terms of relative error in y



Intermediate Perturbation Bound

R; is fixed nonsingular matrix

@ Different perturbations for A

m
o

A =AR;+E;)™', A=A, +E, e=max { "
@ Perturbed system: Al Ay =Alb

@ Error bound

il 2 (b= Apy]
——— < k(Ap)e+ k(A n| 1 te€
171 g g 1A

<(Rs)e
where 17 = %




Intermediate PNE Perturbation Bound

To first order

ly. = ¥l { 2 1b— Apy|
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@ If least squares residual is small then
= < k(Ap)e
171 .
@ If least squares residual is large then
16— Apy|

e < R(Ap) K(Rs) € -
8 Al

171

Condition number of preconditioner amplifies LS residual



Intermediate Perturbation Bound is Informative
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Final Perturbation Bound

R; is fixed nonsingular matrix

o Different perturbations for A

Al =AR;+E)Y, A= A, +E, €= max{HgSII (L7
e Perturbed PNE: Al Ay =Alb, Rx=3y

@ Error bound
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Final Perturbation Bound is Informative
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In double precision: x(A)e ~ 1078



Summary: Preconditioned Normal Equations

@ Precondition A, = AR_*
T T
© Solve A, A,y =A,b
© Retrieve original solution R.x =y

Our randomization: k(Ap) <5, k(Rs) ~ k(A)
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Condition number of preconditioner amplifies LS residual
[b=Ay¥||
Ao ll1]¥1]

LS residual dominates error if k(R5) >1



Deterministic Perturbation Bounds for
Half-Preconditioned Normal Equations (HPNE)



Non-symmetric preconditioning of normal equations®

Dispense with triangular system solution

R.TATAx=R_TATb

Not equivalent to a least squares problem

Half-preconditioned normal equations (HPNE)
@ Precondition A, = AR_!

- Tay _ AT
@ Solve nonsymmetric system A, Ax = A, b

3Left—preconditioned CGNE



HPNE as Accurate as PNE
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Why does HPNE depend on the least squares residual, when there
is no mathematically equivalent least squares problem?



HPNE Perturbation Bound

R; is fixed nonsingular matrix

o Different perturbations for A

_ |Es| |Eall
A = AR+ E;)!, A=A+ Ey,, eEmax{ ,
e [Rs[I” [|A]
o Perturbed HPNE: Al Ax = Al b
@ Error bound
[« — X T ( |b — AX||
i S A A) p (1 S (L4 n)e
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HPNE Perturbation Bound is Informative

10°¢ (o]
° g
102+ o g
° @
g 10-4,
5
3 10°} . o
£ boooooo0 aﬁ
S 10
E°488688688
2107
K]
& 1012}
© Bound
10-16 L L L L L L L .
16 -4 -2 -0 -8 -6 -4 -2 0

log(Relative Least Squares Residual)

Play/Pause

In double precision: x(A)e ~ 1078



Summary: Half-Preconditioned Normal Equations

© Precondition A, = A R;!

@ Solve nonsymmetric system A;—Ax = A;—b

Our randomization: m(ApTA) ~ r(A)

[[x+ — ]|

[AlfIx]

LS residual dominates error if k(Rs) W >1

although HPNE have no corresponding LS problem



Overall Summary

Solve miny ||Ax — b||2 by
Randomized preconditioning A, = AR!

Two types of preconditioned normal equations
PNE: AJA,y=Alb, Rxx=y
HPNE: AJAx=Alb

PNE and HPNE can be as accurate as Matlab backslash
Accuracy of solution depends on least squares residual

Analysis
Probabilistic condition number bounds
Deterministic perturbation bounds: exact and informative
Conditioning of preconditioner amplifies LS residual

Not discussed:
Accuracy of preconditioner in lower precision

Speed up on GPUs
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