KIASTELEYN'S THEOREM FOK
CLASSICAL GROUPS

Richard Kenyon (Yale)

based on joint work with

Daniel Douglas, Nicholas Ovenhouse, Haolin Shi, David Wilson, Haihan Wu



<

Dimer covers
\ vV
N




Dimers and Kasteleyn theory

Let G be a planar graph.

Choose a “clockwise odd” orientation: each face has an odd number of arrows
oriented in the clw direction.

Let K be the Kasteleyn matrix: K:RY - RY

y

1 U — v
K,=<-1 v—=u

\ 0 else.

Thm [Kasteleyn, 1965]: |Pf(K)| = #{dimer covers}



Recall that for an antisymmetric matrix K,

where the sum is over pairings
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Bipartite case

Let G be a planar, bipartite graph.

Let K be the Kasteleyn matrix: K : CZ — C" “Adjacency matrix with
Kasteleyn connection”
)
+1 w~b
K, b = <«
“ 0 else.

\

where a face of length [ has monodromy (—1)/2+1.
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Kasteleyn, Temperley/Fisher (1963) proved

Thm: |det K| = #{dimer covers}



Connection probabilities in double-dimers (2-multiwebs)
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Take two dimer covers of a rectangle, one of which misses the four corners. What
is the probability that, in the union, the corner connection goes top-to-bottom?
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pr — 20) = ela)(p(d) — ¢(c))

(p(c) — w(a))(p(d) — ©(b))
Thm|[K-Wilson ’06] In the scaling limit for a domain with 2n marked bound-

ary points p1,...,p2, (and appropriate boundary conditions) each connection
probability is an explicit rational function of the ¢(p;)’s.




(Q. What happens when we superpose multiple dimer covers?
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internal structure?
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In scaling limit,

2(22 — Zl)(Zg — 22)(24 — 23)(25 — 24)(2’6 — 25)(26 — Zl)

e (23 — 21)(24 — 22)(25 — 23) (26 — 24)(25 — 21)(26 — 22)




Graph connections

Let G = (V, E) be a planar graph.

Assign to a vertex v a vector space Y, = R"™.

A connection is a collection of linear maps @ = {dyy, tuver With ¢, = ¢, L.
yU ¢UV yV
® > ®

Two connections ®, &’ are gauge equivalent if

¢f/u/u — gv¢uvgq:1

for some maps g, : Y, — Y.

For a matrix group H, ® is an H-connection if ® is gauge equivalent to a
connection with values in H.

Ex. H=SL,, H =S0(n), H =Sp(2n)



These three families of groups have invariant bilinear pairings

SL, YY" —>R: u®v" — v (u)
SO, Y QY —>R: uvu®v—u-v

Spy, Y RY =2R: uw®v— w(u,v)



An

n-multiweb

Multiwebs

in G is a function m : £ — Z>( summing to n at each vertex v:

(), is the set of n-multiwebs.

Ex: For n =1, Q; = {dimer covers}

Ex: Superposing n dimer covers gives an n-multiweb.

Prop: If G is bipartite, every n-multiweb is a superposition of n dimer covers.



Generalized Kasteleyn Theorem

We define a trace function Tr = Tre : Q, — R and a matrix K (®) (later) so
that

Thm [Douglas-K-Shi, K-Ovenhouse-Wu|: For an H-connection ® on a
postively ciliated planar graph,

PEK(®) =+ »  Tr(m).

meSl,




SL, case

Let G be a bipartite planar graph with SL,, connection ®. Define a Kasteleyn
matrix K = K(P):

f:lzfﬁbw b~ w “tensor ® with the
K(w7 b) — O K t 1 t 99
else. asteleyn connection.
bx ————9 A —D
K(®) = ( B O )
A C
(an as;  —di —d21\
= D —® K((ID) _ ai2 G2 —dia —dog
bi1 D21 C11 C21




Trace of an n-multiweb

First assume m,. = 0 or 1 for all edges

AN 1 V, =2Y with basis eq,...,e,

Define v, € V1 ® --- ® V,, by Vp = Z (—1)06(1;(1) & & eZ(n)
o€eS,

the “codeterminant”

invariant under

.. . S L,-base change
Similarly define v,, using Y*.

Then define  Tr(m) = < ® vw| ® qﬁwb‘ ®vb>

weW e=wb beB



Ciliations

We need a|linear order| of the edges out of each vertex: use the circular order,
plus a starting edge, at black vertices, and the anticircular order, plus starting
edge, at white vertices.

2 cilium

(In non-bipartite cases, use circular order at all vertices.)

If n is even, the sign of the trace depends on this linear order.

If n is odd, trace is independent of cilia.



A ciliation is positive if each face contains an even number of cilia.




If edges have multiplicity > 1:

Tr<>~ e :é) _ Tr<>@(~
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Thm|Douglas-K-Shi]: For an SL,-connection ® on a(positively ciliated) bi-
partite planar graph,

det K(®) =+ »  Tr(m).

meSd,

Thm|K-Ovenhouse-Wu]: For an SO,,-connection ® on a(positively ciliated)
planar graph,
PIK(®) =+ )  Tr(m).

meSl,

Thm|[K-Wu]: For an Sp,, -connection & on a planar graph with standard
orientation and cilia,

PIK(®) ==+ » Tr(m).

meS,




SO(n) case

The planar graph G is not necessarily bipartite.

The trace of an n-multiweb is defined as for SL,, but the tensor contraction uses
the inner product rather than the duality.

Choose a (clockwise odd) Kasteleyn orientation of edges of G. Define

Duw U —> v
K(u,v) =9 ~uw v—u.

0 else

Note if © — v,

Koy = ¢uv — ;@} — ¢fju — _(_¢vu)t — _(K’Uu)t'

So K is antisymmetric.

Theorem:

Pfk — = Z Tr(m).
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Example

A, B,C € S0O(2)
F— OBA— CQSH —sin 6
sinf cos6
0 A ("
K=|-A" 0 B
—-C =Bt 0
PfK = 2sin6

Note there is only one 2-multiweb. /\

1




Sp(2n)
Sp(2n) is the set of matrices in SL,, preserving the (standard) symplectic form.

Sp(2n) = {M € SL(2n,R) | M*'JM = J},

Op, I,
7= (% a)

The trace of a 2n-multiweb is defined as for O(2n) but the contraction uses the
symplectic form rather than the inner product.

where J i1s the matrix

Define )
SOy U~V

K(u,v) = 0 else

\

Note
Kuv — nguv — J¢;'(} — ¢f}uJ — _(ngfuu)t — _(Kvu)t

so K 1s antisymmetric.

Theorem:

Pfk — I Z Tr(m).

mes)



SL,

SO(n)

Sp(2n)

Different types of connections

General Identity /Flat
DKS] ' DKS]
KOW] KOW]

Positive

KO



Edge colorings

An edge-n-coloring of an n-multiweb m is a map ¢ : E — 2" with m, = lc| and
so that the union of the color sets at each vertex is |[n|.

{343
1,23
ﬁz}/\ o\
colors = {1, 2, 3,4}
o 3
{':‘8,/\
{3
: 4%

Prop. (SO(n) or SL,)

For the identity connection and positive cilia, Try(m) is (—1)V?(?=1/4 times
the number of edge-n-colorings.



SO35 and the 4-color theorem

Thm: For a triangulation T' of 5%, let m be the dual 3-web. Then
ATr(m) = (—1)V/2N,,

where N, is the number of proper 4-colorings of T'.

Cor: For a planar 3-web m, Tr;(m) # 0.

Proof: The 4 color theorem.

Thm: For each edge e of a triangulation, pick a random unit vector u,. € R?.
Then

N, = 4(—3)V/2E[H det(uy, uz, u3)]



Symplectic edge colorings

Complementation is the map [2n]| — [2n| taking ¢ to i £ n.
e.g. when2n=4, 1+ 3, 2+ 4

A symplectic edge-n-coloring of a 2n-multiweb m is a map ¢ : Ey — 22" with
me = |c| so that the two half-edges ey, e_ of an edge have complementary color
sets and so that the union of the color sets at each vertex is [2n].
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Sp(2n)-Kasteleyn connection

The symplectic Kastelyn connection gives each face of length | monodromy J!~2.

Prop.

For the Kasteleyn connection ®; and standard orientation and cilia, Trg(m) is
(=1)Vn(n=1)/4 times the number of symplectic edge colorings.



Construction of positive connections (SLy)

Ny . ol

— [ c \\
M, € Gr:,éln M € Grf:jn
M1 — (Al AQ Ag A4) M2 — (Bl BZ BS B4 BS)
¢ — Al Bi scale columns so that each ¢ € SL,,.

Postnikov ’96 showed how to associate to an element of Gr;, ,, a planar bi-
partite network with positive edge weights...



SLo example

“scalarization”

2-multiweb l-multiweb (dimer cover)
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Q. Is there an analogous procedure for SO(n) and Sp(2n) connections?
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