

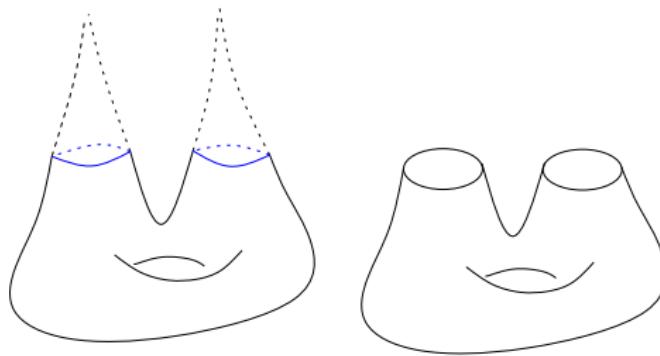
# Webs and their intersections

Zhe Sun, University of Science and Technology of China

Webs in Algebra, Geometry, Topology and Combinatorics  
December 11, 2025

## Conjecture (Fock–Goncharov 03')

*The **tropical integral points** of  $X$  parameterize the **canonical basis** of the regular function ring of the mirror  $X^V$ .*



$$\mathcal{X}_{\mathrm{PGL}_n, \hat{S}}$$

$$\mathcal{A}_{\mathrm{SL}_n, \hat{S}}$$

$$\mathcal{L}_{\mathrm{PGL}_n, \hat{S}} \quad \mathcal{P}_{\mathrm{PGL}_n, \hat{S}}$$

- The *marked surface*  $\hat{S}$  is the connected oriented topological surface  $S$  with punctures  $m_p$  and finitely many marked points  $m_b \subset \partial S$  considered up to isotopy.

- The *marked surface*  $\hat{S}$  is the connected oriented topological surface  $S$  with punctures  $m_p$  and finitely many marked points  $m_b \subset \partial S$  considered up to isotopy.
- Framing(decoration): The flat section of  $\rho \times_G G/B$  ( $\rho \times_G G/U$ ) around  $m$ .

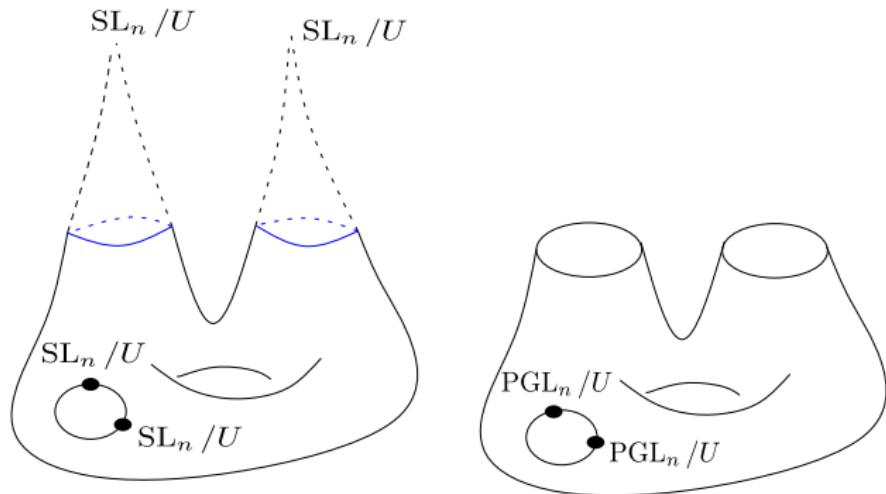
- The *marked surface*  $\hat{S}$  is the connected oriented topological surface  $S$  with punctures  $m_p$  and finitely many marked points  $m_b \subset \partial S$  considered up to isotopy.
- Framing(decoration): The flat section of  $\rho \times_G G/B$  ( $\rho \times_G G/U$ ) around  $m$ .
- $\mathcal{A}_{G,\hat{S}}$  consists of pairs  $(\rho, \xi)$  where unipotent bordered twisted representation  $\rho \in \text{Hom}(\pi_1(T^1S), G)/G$  with  $\rho(\epsilon) = s_G$  and  $\xi$  is the decorations at  $m_p \cup m_b$ .
- $(\rho, \xi) \sim (g\rho g^{-1}, g\xi)$ ,  $\forall g$ .

- $\mathcal{X}_{G^L, \hat{S}}$  consists of pairs  $(\rho, \xi)$  where  $\rho \in \text{Hom}(\pi_1(S), G^L)/G^L$  and  $\xi$  is the framings at  $m_p \cup m_b$ .
- To match up with the dimension of  $\mathcal{A}_{G, \hat{S}}$ , Goncharov–Shen changed  $\mathcal{X}_{G^L, \hat{S}}$  into  $\mathcal{P}_{G^L, \hat{S}}$  where  $\xi$  is the decorations at  $m_b$  and framings at  $m_p$ .

- $\mathcal{X}_{G^L, \hat{S}}$  consists of pairs  $(\rho, \xi)$  where  $\rho \in \text{Hom}(\pi_1(S), G^L)/G^L$  and  $\xi$  is the framings at  $m_p \cup m_b$ .
- To match up with the dimension of  $\mathcal{A}_{G, \hat{S}}$ , Goncharov–Shen changed  $\mathcal{X}_{G^L, \hat{S}}$  into  $\mathcal{P}_{G^L, \hat{S}}$  where  $\xi$  is the decorations at  $m_b$  and framings at  $m_p$ .
- The character variety  $\mathcal{L}_{G^L, \hat{S}}$  consists of pairs  $(\rho, \xi)$  where  $\rho \in \text{Hom}(\pi_1(S), G^L)/G^L$  and  $\xi$  is the decorations at  $m_b$ .

- $\mathcal{X}_{G^L, \hat{S}}$  consists of pairs  $(\rho, \xi)$  where  $\rho \in \text{Hom}(\pi_1(S), G^L)/G^L$  and  $\xi$  is the framings at  $m_p \cup m_b$ .
- To match up with the dimension of  $\mathcal{A}_{G, \hat{S}}$ , Goncharov–Shen changed  $\mathcal{X}_{G^L, \hat{S}}$  into  $\mathcal{P}_{G^L, \hat{S}}$  where  $\xi$  is the decorations at  $m_b$  and framings at  $m_p$ .
- The character variety  $\mathcal{L}_{G^L, \hat{S}}$  consists of pairs  $(\rho, \xi)$  where  $\rho \in \text{Hom}(\pi_1(S), G^L)/G^L$  and  $\xi$  is the decorations at  $m_b$ .
- $X = \mathcal{A}_{G, \hat{S}}$  then  $X^\vee = \mathcal{P}_{G^L, \hat{S}}$  or  $\mathcal{L}_{G^L, \hat{S}}$ , and vice versa.

# Goncharov–Shen Conjecture



$$\mathcal{A}_{SL_n, \hat{S}} \quad \textcolor{blue}{P}$$

$$\mathcal{L}_{PGL_n, \hat{S}}$$

Goncharov–Shen adjusted the original Fock–Goncharov duality conjecture by adding the potential  $P$ .

## Conjecture (Goncharov–Shen 13')

Let  $\mathcal{L}_{G^L, \hat{S}}$  be the character variety. There is a holomological mirror symmetry between  $(\mathcal{A}_{G, \hat{S}}, P)$  and  $\mathcal{L}_{G^L, \hat{S}}$ .

The tropical integral points  $\mathcal{A}_{G, \hat{S}}^+(\mathbb{Z}^t)$  parameterize the canonical basis of  $\mathcal{O}(\mathcal{L}_{G^L, \hat{S}})$ .

It has a beautiful **explicit** solution for  $\mathrm{PGL}_2$  after Fock and Goncharov using Thurston's transversely measured laminations.

# Lamination

A **positive integer lamination**  $l$  on  $\hat{S}$  is a formal sum

$$l = \sum n_i[\alpha_i] + \sum m_j[\beta_j], \quad n_i, m_j \in \mathbb{Z}_{>0}.$$

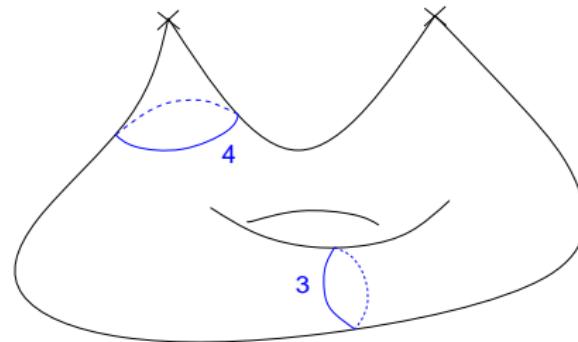


Figure:  $3[\alpha_1] + 4[\beta_1]$

Theorem (Hoste–Przytycki 93')

All  $M_l = \prod_i \text{Tr} \rho(\alpha_i)^{n_i} \prod_j \text{Tr} \rho(\beta_j)^{m_j}$  form a linear basis of  $\mathcal{O}(\mathcal{L}_{\text{SL}_2, \hat{S}})$ .

Given an **ideal triangulation**,

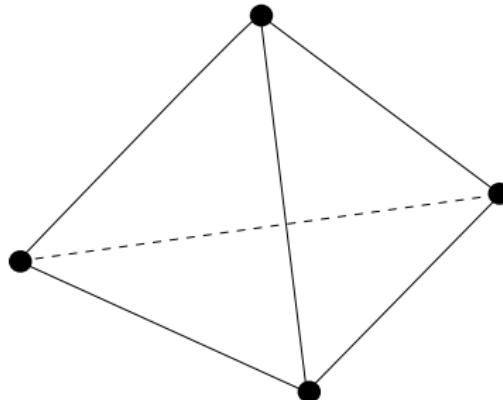


Figure: 4th punctured sphere case.

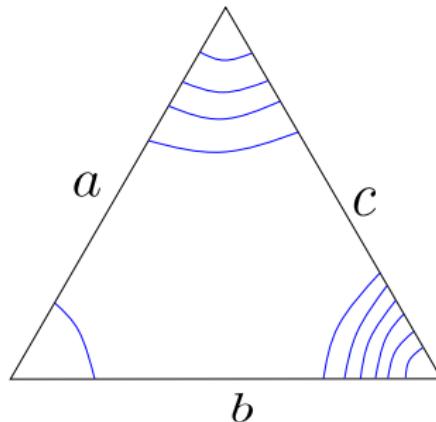


Figure:  $a = \frac{1}{2} * 5 = \frac{5}{2}$ ,  $b = \frac{1}{2} * 7 = \frac{7}{2}$ ,  $c = \frac{1}{2} * 10 = 5$ .

Lamination  $\lambda$  intersects the ideal triangulation of  $\hat{S}$  **minimally**.  
We assign  $1/2$  of the intersection number to each edge to obtain  
an element in  $\mathcal{A}_{\mathrm{SL}_2, \hat{S}}^+(\mathbb{R}^t)\mathcal{T}$ .

# Mutation for $\mathcal{A}$ coordinates

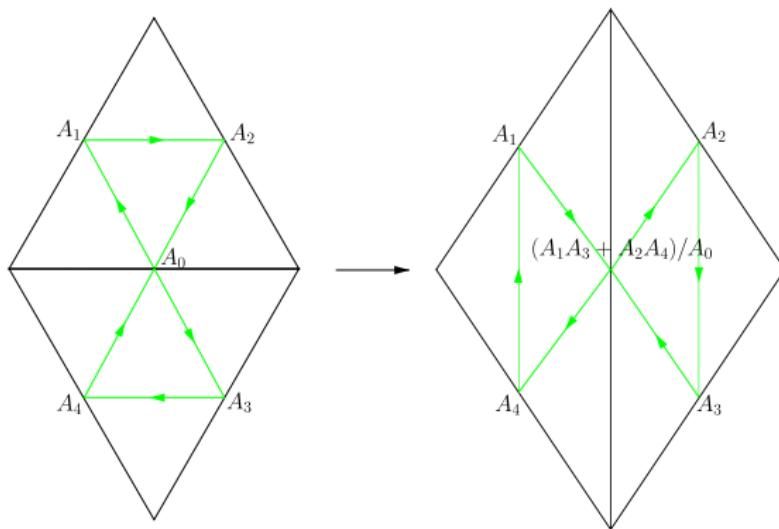


Figure: Mutation.

# Mutation for tropical $\mathcal{A}$ coordinates

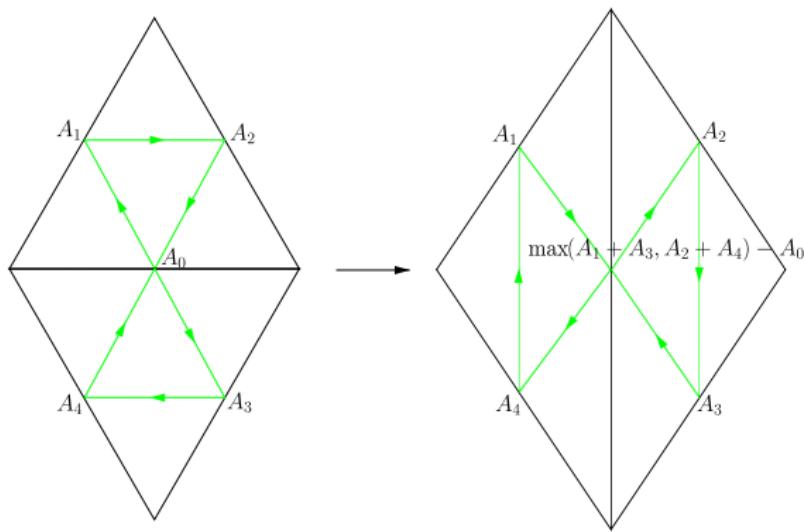


Figure: Tropical mutation.

# Laminations and tropical $\mathcal{A}$ coordinates

- $\mathcal{A}_{\mathrm{PGL}_2, \hat{S}}^+(\mathbb{Z}^t)$  is the subset of  $\mathcal{A}_{\mathrm{SL}_2, \hat{S}}^+(\mathbb{R}^t)$  such that for a given chart and any angle  $a - b - c \in \mathbb{Z}_{\leq 0}$ .

Theorem (Fock–Goncharov 03', Goncharov–Shen 13')

*There is a  $\mathrm{Mod}(\hat{S})$ -equivariant bijection  $\Phi$  from the space of positive integer laminations  $\mathcal{W}_{\hat{S}}$  to  $\mathcal{A}_{\mathrm{PGL}_2, \hat{S}}^+(\mathbb{Z}^t)$ .*

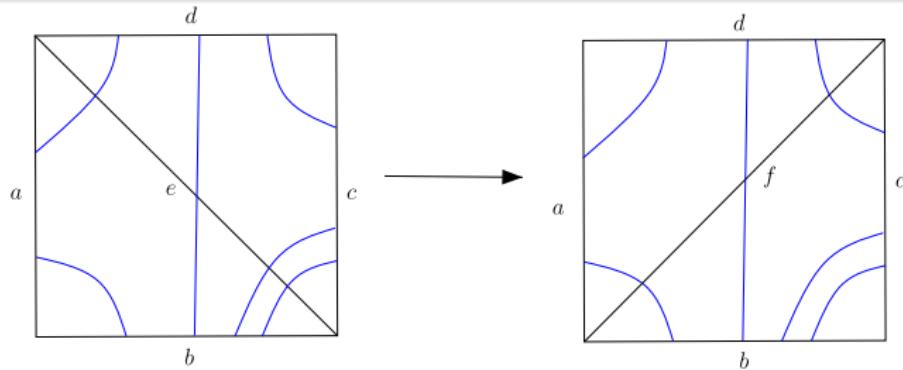


Figure: Proof:  $a = 1, b = 2, c = 3/2, d = 3/2, e = 2, f = 3/2 = \max\{a + c, b + d\} - e$ .

# Counting multicurves

$\mathcal{ML}_{g,n}$  space of geodesic measure laminations on  $\hat{S} = S_{g,n}$ , which is the  $\mathbb{R}_{\geq 0}$  completion of the space of multicurves.

$\mathcal{T}_{g,n}$  and  $\mathcal{ML}_{g,n}$  embedded into space of currents

$\mathcal{C}(S) = \{\pi_1(S) - \text{invariant measure on } \mathbb{S}^1 \times \mathbb{S}^1 \setminus \Delta\}$ .

$\mu$  the unique  $\text{Mod}(S_{g,n})$ -invariant Thurston measure on  $\mathcal{ML}_{g,n}$ .

$$m(a) = \mu(\{x \in \mathcal{ML}_{g,n} \mid i(a, x) \leq 1\}).$$

$$B_{g,n} = \int_{\mathcal{ML}_{g,n}} m(X) dX.$$

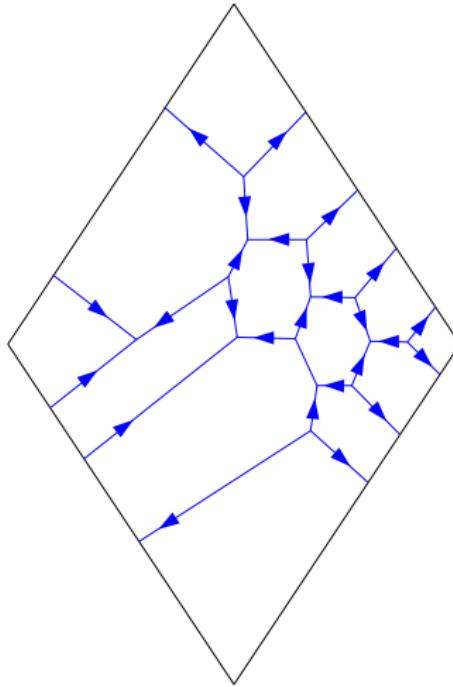
## Theorem (Mirzakhani 08')

$\gamma_0$  multicurve on  $S_{g,n}$ .  $\rho$  hyperbolic metric on  $S_{g,n}$ .

Let  $N_L^\rho = \#\{\gamma \in \text{Mod}(S_{g,n}) \cdot \gamma_0 \mid \ell_\rho(\gamma) \leq L\}$ . Then

$$\lim_{L \rightarrow +\infty} \frac{N_L^\rho}{L^{6g-6+2n}} = \frac{m(\rho)m(\gamma_0)}{B_{g,n}}.$$

# Webs as integer higher laminations



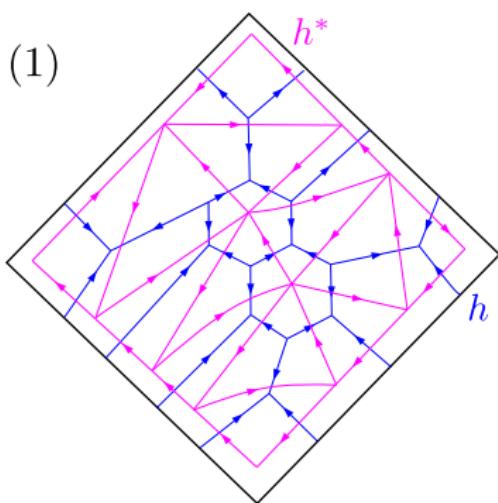
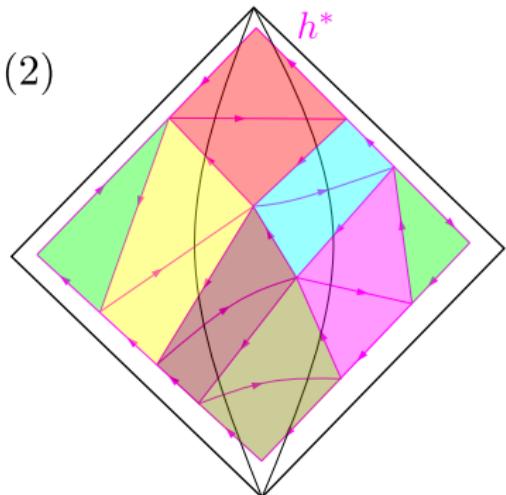
**Figure:** (Kuperberg, CMP 96') A **SL<sub>3</sub>-web** is an oriented graph on the surface with 3-valent interior vertices such that the three oriented edges at any interior vertex point inward or outward.

- A  $SL_3$ -web is **non-elliptic** if it does not contain 0-, 2-, 4-faces (cannot be decomposed by the skein relation any more).
- On  $\hat{S}$ , a non-elliptic  $SL_3$ -web is **reduced** if the edge on the boundary is 1-valence. And we do not have any path of  $\leq 3$  edges parallel to a boundary interval:



- Dual graph of a non-elliptic  $SL_3$ -web is triangulation of the surface.
- Non-elliptic = the dual graph is combinatorial  $CAT(0)$ —each interior vertex has valence  $\geq 6$ .

# Dual graph of a web



# SL<sub>3</sub>-skein algebra

$$\begin{array}{c} \text{Diagram 1: } \text{X-shaped web with two arrows} = q^{-\frac{2}{3}} \uparrow + q^{\frac{1}{3}} \text{ (Y-shaped web with one arrow)} \\ \text{Diagram 2: } \text{X-shaped web with two arrows} = q^{\frac{2}{3}} \uparrow + q^{-\frac{1}{3}} \text{ (Y-shaped web with one arrow)} \\ \text{Diagram 3: } \text{Circle with one arrow} = \text{Circle with one arrow} = q^2 + 1 + q^{-2} \\ \text{Diagram 4: } \text{Diamond-shaped web with one arrow} = -q - q^{-1} \\ \text{Diagram 5: } \text{Vertical line with one arrow} = \text{Diagram 6: } \text{Square web with four arrows} = \text{Diagram 7: } \text{Vertical line with one arrow} + \text{Diagram 8: } \text{Vertical line with one arrow} \end{array}$$

Figure: SL<sub>3</sub> skein relation

Theorem (Kuperberg 96' for polygon, Sikora–Westbury 07')

Reduced SL<sub>3</sub>-webs form a linear basis of the reduced SL<sub>3</sub> skein algebra.

The classical limit of the web is the trace function of the web.

Theorem (Turaev 91')

The SL<sub>n</sub>-skein algebra is (almost) the quantization of  $\mathcal{O}(\mathcal{L}_{SL_n, \hat{S}})$  with respect to the Goldman Poisson structure.

# Good position after Kuperberg

Given a split ideal triangulation  $\mathcal{T}$  of the surface  $S$ ,

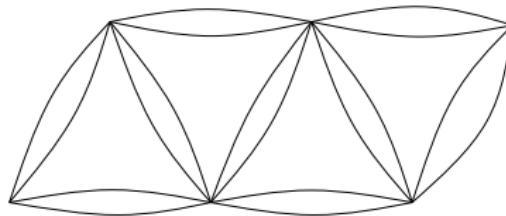
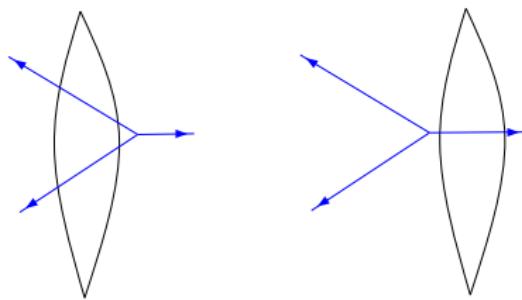


Figure: Split ideal triangulation.

we could put reduced 3-web  $W$  in **good position** such that

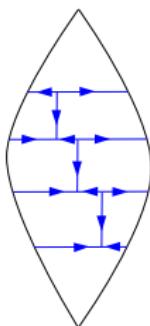
- $W$  intersects  $\mathcal{T}$  minimally,



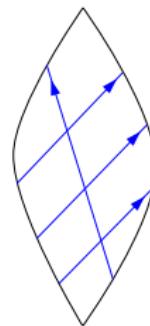
# Honeycomb

- the restriction of  $W$  to each bigon is a **minimal ladder**,

(1)

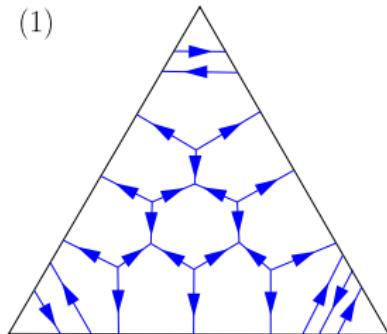


(2)

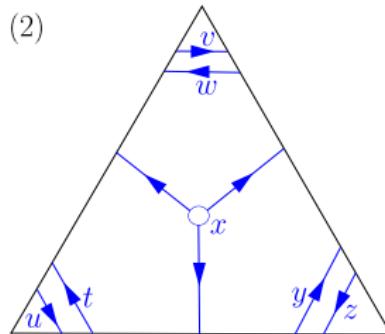


- the restriction of  $W$  to each ideal triangle is an **oriented honeycomb** with oriented arcs.

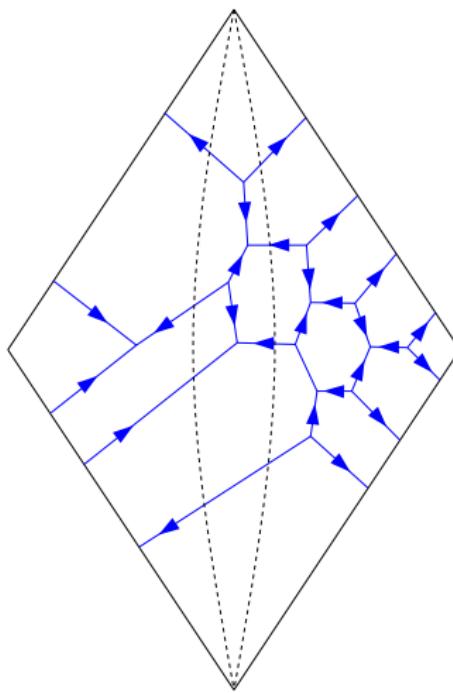
(1)



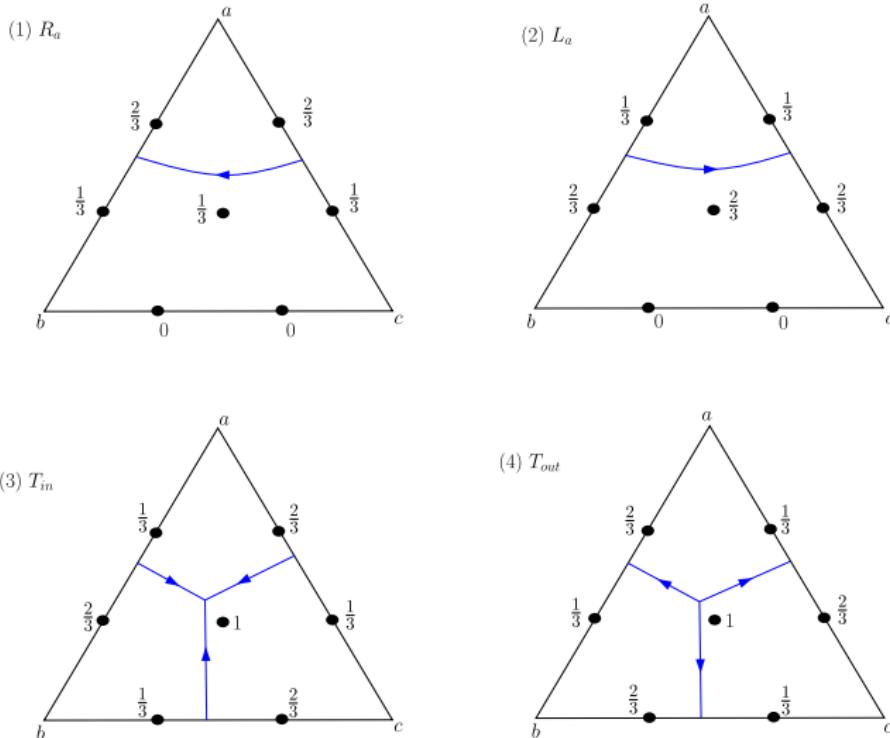
(2)



# Web in good position



# Basis assignments



**Figure:** Tropical coordinate in triangle is linear combination of above basis elements with coefficients  $(x, y, z, t, u, v, w) \in \mathbb{Z}_{\geq 0}^7$ .

# Gluing along the ideal edges

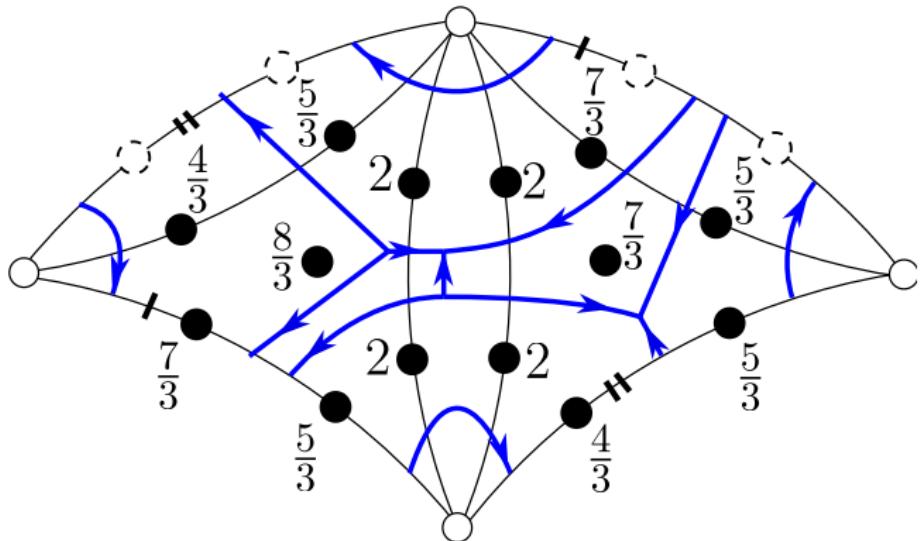


Figure: Example on  $S_{1,1}$ .

# Webs and tropical $\mathcal{A}$ coordinates

Let  $\mathcal{W}_{\hat{S}}$  be the space of reduced 3-webs up to homotopy.

Theorem (Douglas–S. 20')

$$\Phi : \mathcal{W}_{\hat{S}} \xrightarrow{\cong} \mathcal{A}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t).$$

More explicitly, we define  $\Phi_{\mathcal{T}} : \mathcal{W}_{\hat{S}} \xrightarrow{\cong} \mathcal{A}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t)_{\mathcal{T}}$  for any ideal triangulation  $\mathcal{T}$  and  $\Phi_{\mathcal{T}'} = \mu_{\mathcal{T}, \mathcal{T}'} \circ \Phi_{\mathcal{T}}$ .

Theorem (Kim 20')

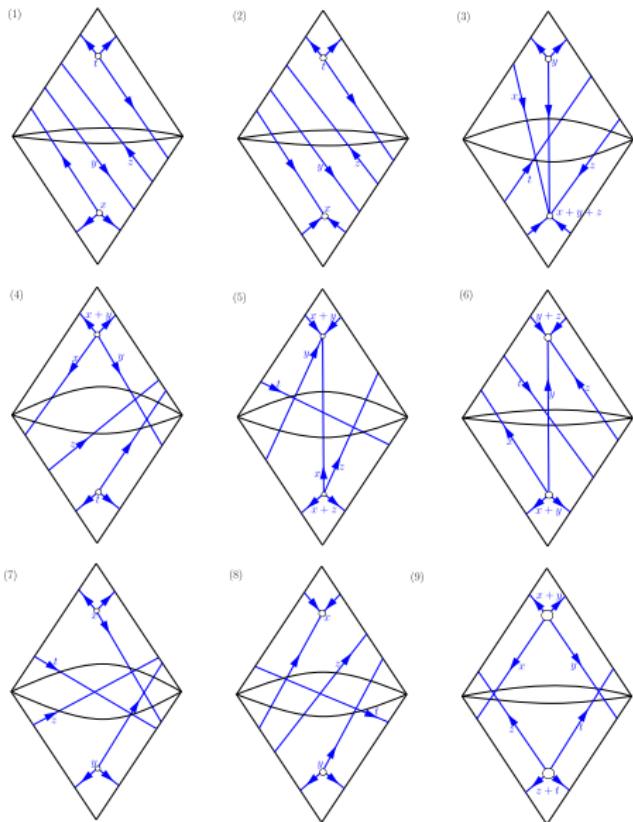
For  $\hat{S} = S_{g, m}$ , there is a quantum trace map

$$\mathrm{Tr}_q : \mathcal{RS}_q(\hat{S}) \rightarrow \mathcal{O}_q(\mathcal{P}_{\mathrm{PGL}_3, \hat{S}})$$

where the highest term degree of  $\mathrm{Tr}_q(W)$  is the same as  $\Phi(W)$ .

Generalizing Bonahon–Wong 11's quantum trace map for  $\mathrm{SL}_2$ . Lê and Yu 23' constructed the quantum trace map for  $\mathrm{SL}_n$ .

## Proof of flip equivariance 20'



# Meaning of $\mathcal{A}_{\mathrm{PGL}_3, S}^+(\mathbb{Z}^t)$ : Goncharov–Shen potential

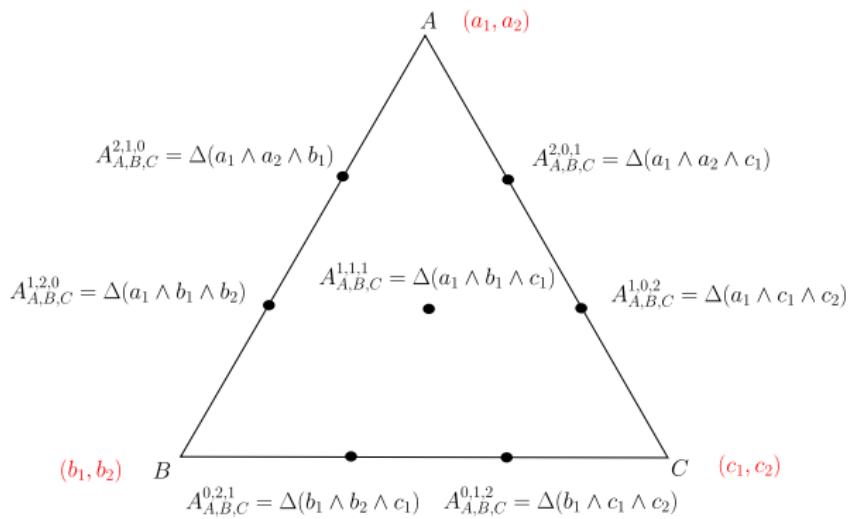


Figure:  $\mathcal{A}$  coordinates for  $n = 3$ .

# Meaning of $\mathcal{A}_{\mathrm{PGL}_3, S}^+(\mathbb{Z}^t)$ : Goncharov–Shen potential

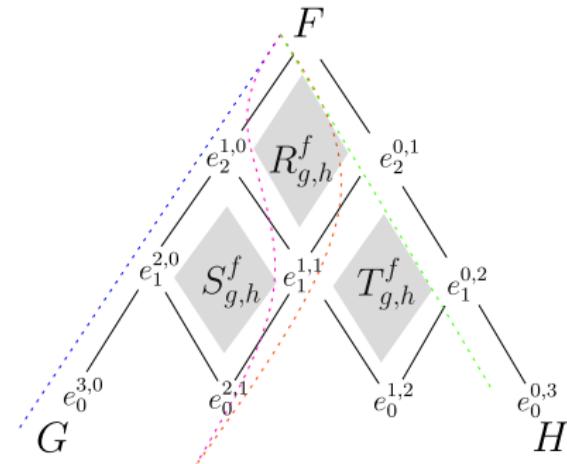


Figure:  $\pi : G/U \rightarrow G/B$ ,  $(F, \pi(H)) = u(F, \pi(G))$ .

$$u = E_1(S_f^{g,h}) \cdot E_2(R_f^{g,h}) \cdot E_1(T_f^{g,h}) = \begin{pmatrix} 1 & S_f^{g,h} + T_f^{g,h} & S_f^{g,h} R_f^{g,h} \\ 0 & 1 & R_f^{g,h} \\ 0 & 0 & 1 \end{pmatrix},$$

# Meaning of $\mathcal{A}_{\mathrm{PGL}_3, S}^+(\mathbb{Z}^t)$ : Goncharov–Shen potential

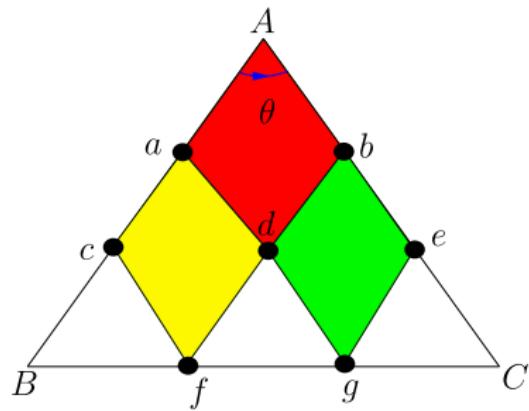


Figure: Rhombus terms.

The **Goncharov–Shen potential** for the marked ideal triangle  $\theta = (A, B, C)$  is

$$P(\theta) = \frac{d}{ab} + \frac{af}{cd} + \frac{bg}{de}.$$

# Meaning of $\mathcal{A}_{\mathrm{PGL}_3, S}^+(\mathbb{Z}^t)$ : Goncharov–Shen potential

- The **Goncharov–Shen potential** is the  $\mathrm{Mod}(S)$  equivariant regular function

$$P = \sum_{\theta} P(\theta)$$

summing over all the anticlockwise oriented marked ideal triangles on the surface.

- $P^t(\theta) = \max\{d - a - b, a + f - c - d, b + g - d - e\}$  where  $a, b, c, d, e, f, g \in \mathbb{R}$ .

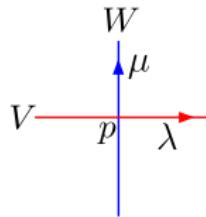
## Theorem (Goncharov–Shen, 13')

Let  $\mathcal{A}_{G, \hat{S}}^+(\mathbb{R}^t)$  be the subset of  $\mathcal{A}_{G, \hat{S}}(\mathbb{R}^t)$  with  $P^t \leq 0$ . Then  $\mathcal{A}_{\mathrm{GL}_n, \Delta}^+(\mathbb{R}^t)$  coincides with the Knutson–Tao's hives.

$\mathcal{A}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t)$  is the subset of  $\mathcal{A}_{\mathrm{SL}_3, \hat{S}}^+(\mathbb{R}^t)$  such that for a given chart and any rhombus  $\alpha^t \in \mathbb{Z}_{\leq 0}$ . Here any rhombus  $\alpha^t \in \mathbb{Z}_{\leq 0}$  holds for any triangulation.

- ① (Goncharov–Shen 19') The Goncharov–Shen partial potentials play important roles in the quantization of the moduli spaces of  $G$ -local systems.
- ② (Huang-S., 19') For each simple root and each puncture, the Goncharov–Shen partial potential is understood as generalized horocycle length which provides a family of McShane-type identities.
- ③ (Goncharov–S., 24') The Goncharov–Shen partial potentials is essential in the exponential volume of the moduli space of ideal hyperbolic surfaces with marked points on the boundary.

- $G$ -web: oriented graph with only 3-valent pointing inward (outward resp.) interior vertices where three edges colored by  $\lambda, \mu, \nu$  such that  $\dim (V_\lambda \otimes V_\mu \otimes V_\nu)^G = 1$  ( $\dim (V_\lambda^* \otimes V_\mu^* \otimes V_\nu^*)^G = 1$  resp.).
- $(G, \mathcal{A})$ -web  $W$ : ends at boundary intervals,  $(G^L, \mathcal{X})$ -web  $V$ : ends at punctures or marked points,
- intersecting transversely, the **intersection number** of the **ordered** pair  $(W, V)$  at a point  $p$



$$\epsilon_p(W, V) = \langle \lambda, \mu \rangle$$

# Intersection between two dual webs

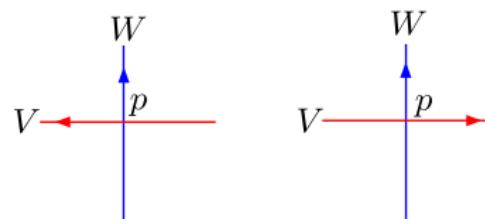
Then the **intersection number** of  $(W, V)$

$$i(W, V) := \sum_{p \in W \cap V} \epsilon_p(W, V).$$

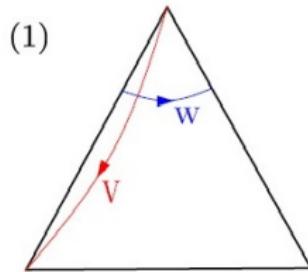
The **intersection number** of  $([W], [V])$

$$i([W], [V]) := \inf_{w \in [W], v \in [V]} \{i(w, v)\}.$$

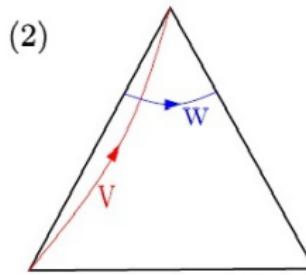
$SL_3$  case



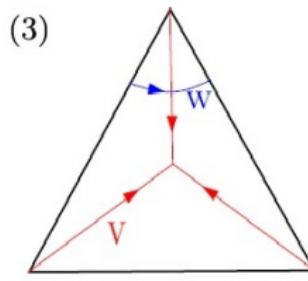
$$\epsilon_p(W, V) = 1/3 \quad \epsilon_p(W, V) = 2/3$$



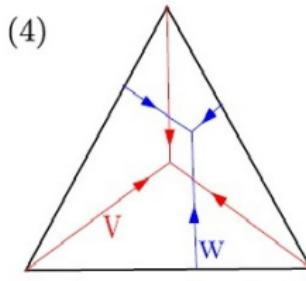
$$i(W, V) = \frac{2}{3}$$



$$i(W, V) = \frac{1}{3}$$



$$i(W, V) = \frac{2}{3}$$



$$i(W, V) = \frac{1}{3} + \frac{2}{3} = 1$$

# SL<sub>3</sub> intersection number coordinates

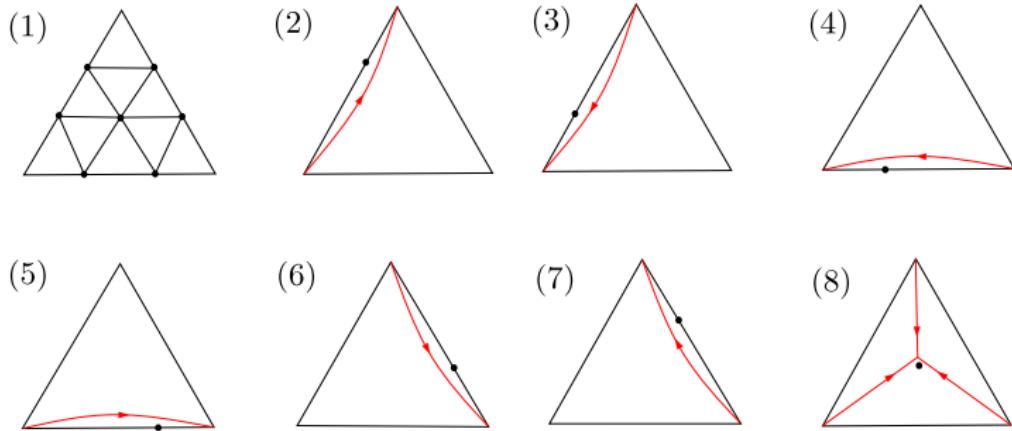


Figure: The  $(\text{SL}_3, \mathcal{X})$ -webs  $V_a$  corresponding to  $a$  in seed  $\mathbf{s}$ .

For any seed  $\mathbf{s}$  (collection of these  $\mathcal{A}$  coordinates),

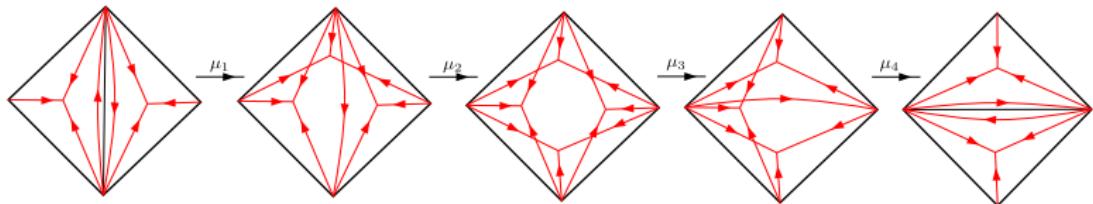
$$i_{\mathbf{s}} : \mathcal{W}_{\hat{\mathcal{S}}} \rightarrow \left( \frac{1}{3} \mathbb{Z}_{\geq 0} \right)^N, \quad i_{\mathbf{s}}(W) := (i([W], [V_a]))_{a \in \mathbf{s}}.$$

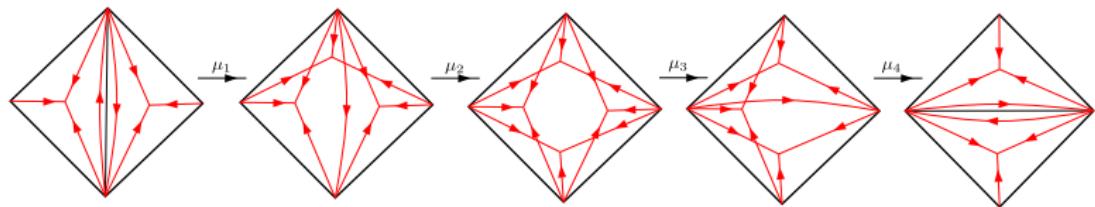
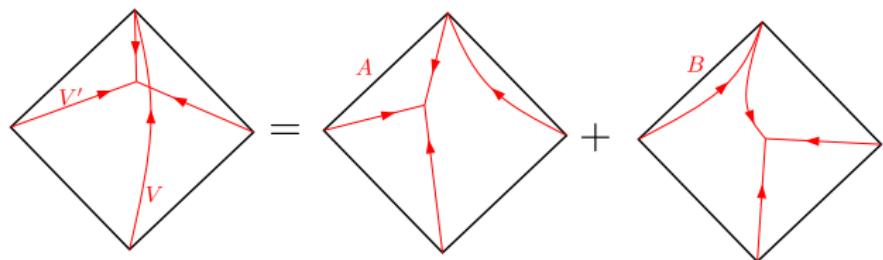
## Theorem (Shen–S.–Weng 23')

$i_{\mathfrak{s}} = \Phi_{\mathfrak{s}}$  in (Douglas–S. 20'). For any two seeds  $\mathfrak{s}$  and  $\mathfrak{s}'$  related by the mutation  $\mu$  in the sequence of flip of diagonal of ideal triangulation  $\mathcal{T}$ , we have

$$\mu \circ i_{\mathfrak{s}} = i_{\mathfrak{s}'}.$$

Particularly, applying to the seeds in the flip sequence of the square  $\square$  implies mapping class group equivariance.





Simple examples:

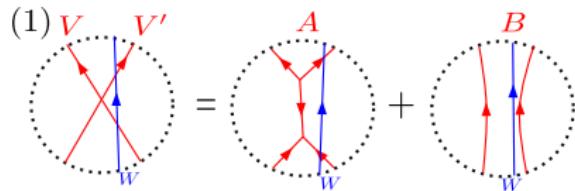
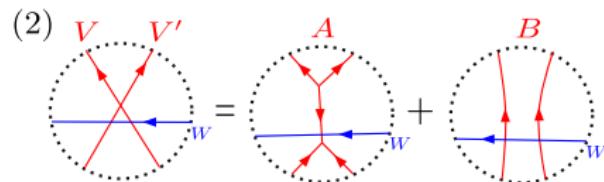
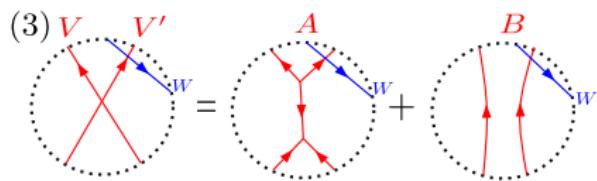
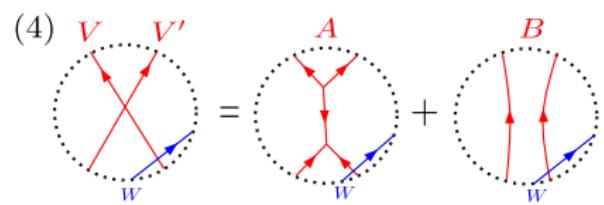
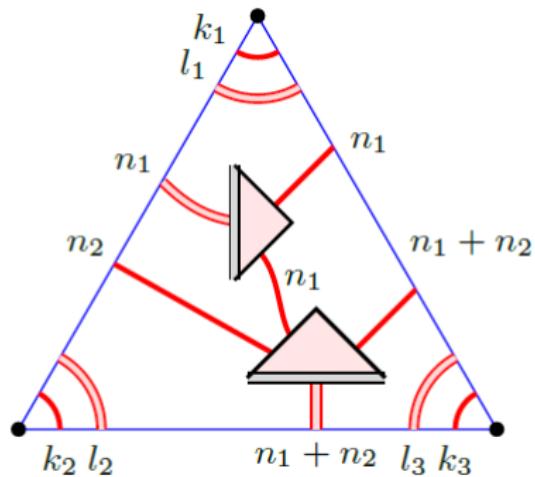


Figure:  $i([W], [V]) + i([W], [V']) = \max\{i([W], [A]), i([W], [B])\}.$



Reduced Sp<sub>4</sub>-webs in a triangle.

Flattening the reduced Sp<sub>4</sub>-webs by

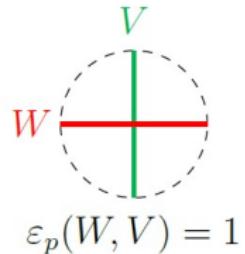
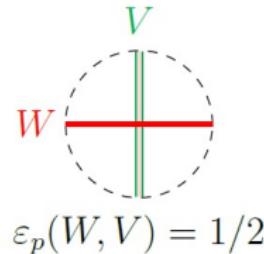
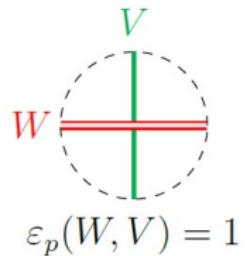
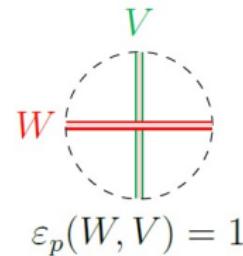
$$\text{Diagram 1} := \text{Diagram 2} - \frac{1}{[2]} \text{Diagram 3} = \text{Diagram 4} - \frac{1}{[2]} \text{Diagram 5}.$$

Obtaining reduced Sp<sub>4</sub>-crossroad webs.

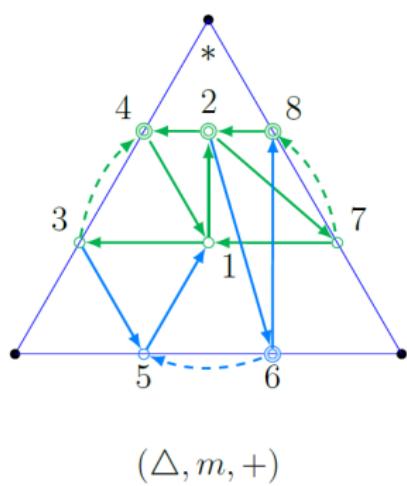
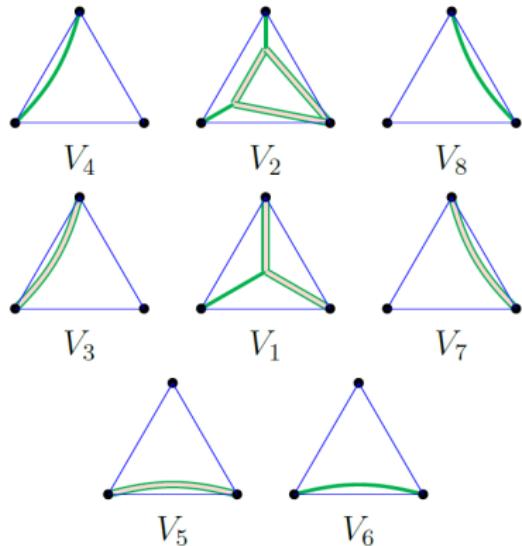
Theorem (Ishibashi–Yuasa 22')

*Reduced Sp<sub>4</sub>-crossroad webs form a linear basis of clasped Sp<sub>4</sub>-skein algebra.*

# $Sp_4$ intersection number coordinates



# Sp<sub>4</sub> intersection number coordinates



For any seed  $\mathbf{s}$  (collection of these  $\mathcal{A}$  coordinates),

$$i_{\mathbf{s}} : \mathcal{W}_{\hat{S}} \rightarrow \left( \frac{1}{2} \mathbb{Z}_{\geq 0} \right)^N, \quad i_{\mathbf{s}}(W) := (i([W], [V_a]))_{a \in \mathbf{s}}.$$

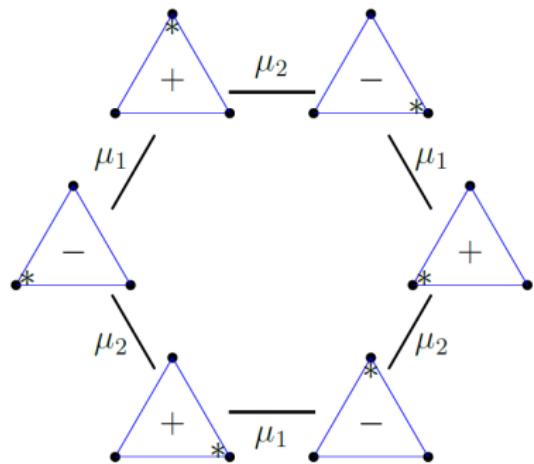
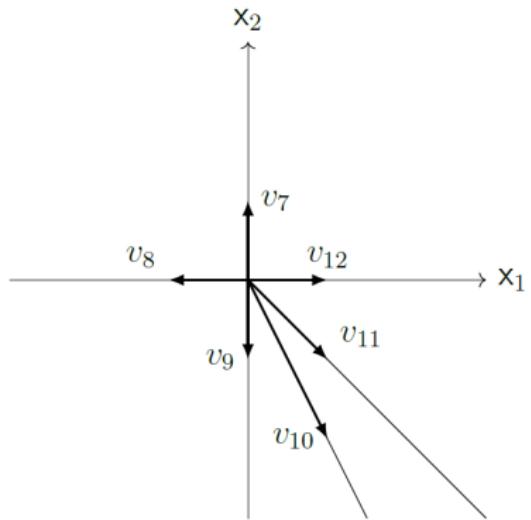
Let  $\mathcal{L}_{\text{Sp}_4}^{\mathcal{A}}(\hat{S}, \mathbb{Q})$  be the collection of disjoint unions of  $\mathbb{Q}$ -weighted peripheral elements and  $\mathbb{Q}_{>0}$ -weighted reduced Sp<sub>4</sub>-crossroad webs.

Theorem (Ishibashi–S.–Yuasa arXiv:2509.25014)

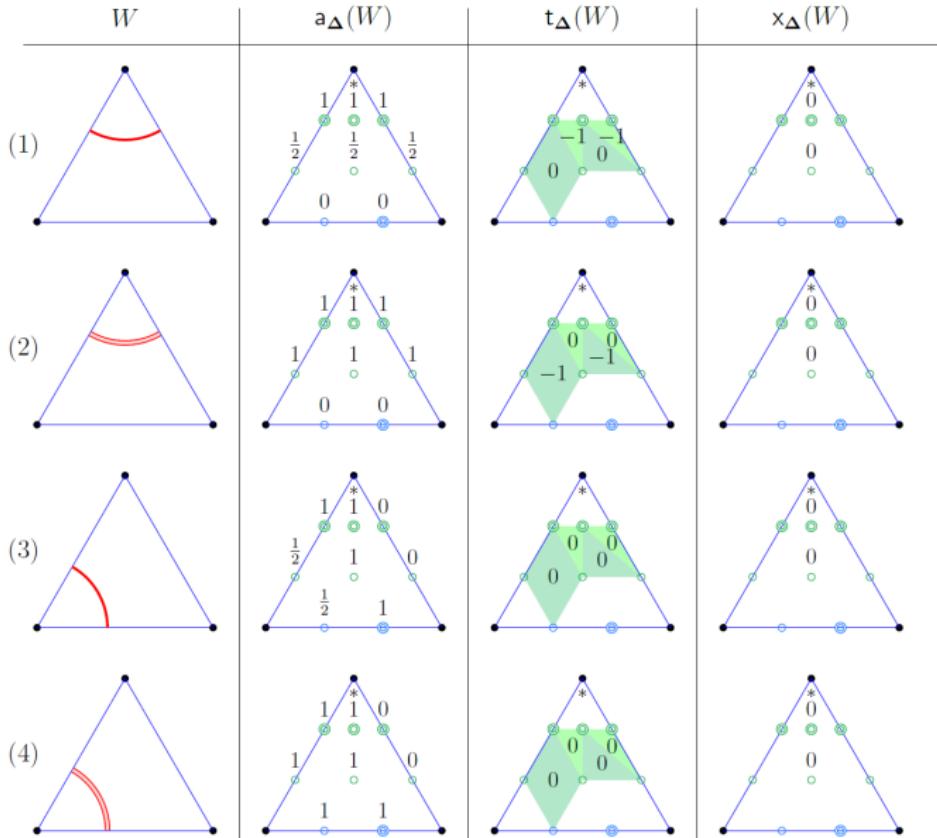
$i_s : \mathcal{L}_{\text{Sp}_4}^{\mathcal{A}}(\hat{S}, \mathbb{Q}) \rightarrow \mathbb{Q}^N$  is a bijection.

In our sequel paper, we will show that  $i_s : \mathcal{W}_{\hat{S}} \rightarrow \mathcal{A}_{\text{SO}_5, \hat{S}}^+(\mathbb{Z}^t)$  is a bijection.

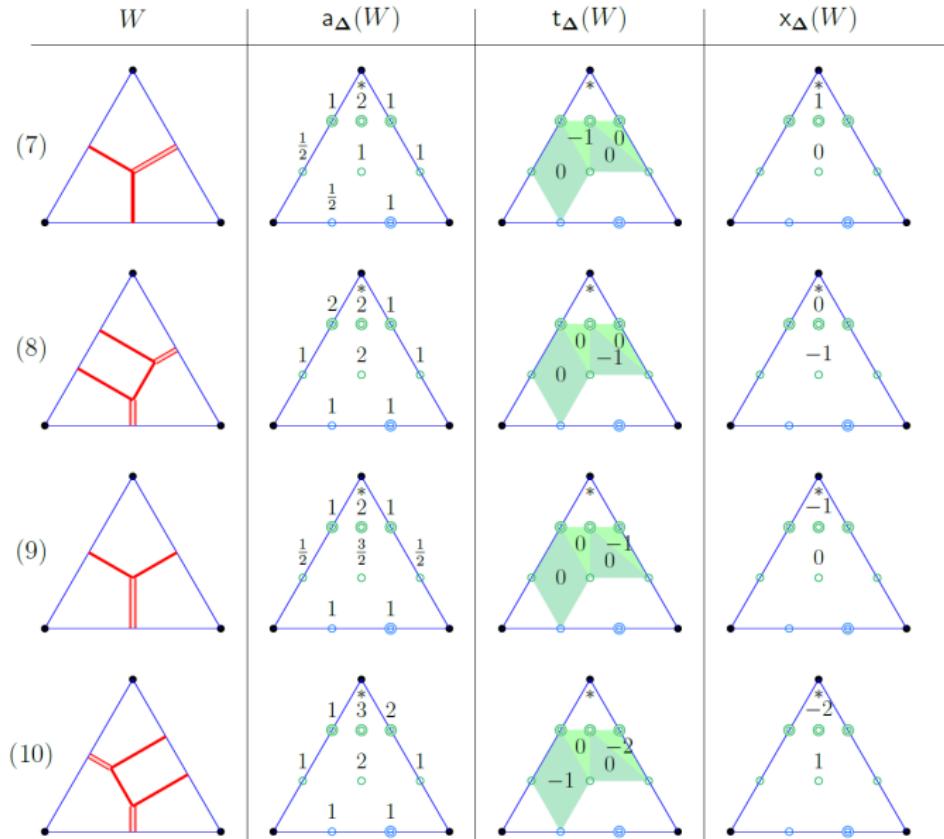
# Sp<sub>4</sub> triangle case



# Sp<sub>4</sub> elementary webs



# Sp<sub>4</sub> elementary webs



# Webs and cluster algebra

## Theorem (Gross–Hacking–Keel–Kontsevich, 14')

*The Fock–Goncharov duality conjecture holds for certain cluster algebras under certain convexity condition.*

## Theorem (Goncharov–Shen 16' + Fraser–Pylyavskyy 22')

*Fock–Goncharov duality conjecture holds for  $(\mathcal{A}_{\mathrm{SL}_n, \hat{S}}, \mathcal{P}_{\mathrm{PGL}_n, \hat{S}})$  for  $(\hat{S}, n) \neq (S_{g,1}, 2)$  after the existence of the Donaldson–Thomas transformation.*

## Theorem (Mandel–Qin 23')

*GHKK's theta basis is the same as bracelet basis for  $\mathrm{PGL}_2$ .*

## Conjecture

*GHKK's theta basis is the same as reduced web bracelet basis for  $\mathrm{PGL}_3$ ?*

# Webs and cluster algebra

Theorem (Ishibashi–Kano, 24')

*There is a natural bijection:  $\mathcal{P}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t) \cong \mathcal{W}_{\hat{S}}^{\mathcal{X}}$ .*

① The intersection pairing between webs induces a pairing:

$$I : \mathcal{A}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t) \times \mathcal{P}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t) \rightarrow \frac{1}{3}\mathbb{Z}.$$

② By Fock–Goncharov duality, there is a pairing:

$$I_{FG} : \mathcal{A}(\mathbb{Z}^t) \times \mathcal{P}^V(\mathbb{Z}^t) \rightarrow \mathbb{Z}.$$

③ Given seed  $\mathbf{s}$  and  $(l, m) \in \mathcal{A}(\mathbb{Z}^t) \times \mathcal{P}^V(\mathbb{Z}^t)$ , coordinates  $(a_i)_i$  and  $(x_i)_i$  for  $\mathbf{s}$  has pairing:  $\langle l, m \rangle_{\mathbf{s}} := \sum_i a_i x_i$ .

Conjecture (Shen–S.–Weng 23')

$$I(l, m) = I_{FG}(l, m) = \max_{\mathbf{s}} \langle l, m \rangle_{\mathbf{s}}.$$

$$\forall l \in \mathcal{A}_{\mathrm{SL}_3, \hat{S}}^+(\mathbb{Z}^t), \forall m \in \mathcal{P}_{\mathrm{PGL}_3, \hat{S}}^+(\mathbb{Z}^t).$$

- ① **Positivity** for the Laurent polynomials under this Fock–Goncharov duality and the structure constants.
- ② **Log concave** conjecture for coefficients of trace functions and structure constants. Zhichao Chen and Guanhua Huang have some progress on some examples arXiv:2408.03792.
- ③ Relation between webs and  **$n$ -graph weavings** (related to bipartite graphs, Legendrian links, spetral networks).

- ① Relation between  $k$ -**differentials** and webs.
- ② Generalize Thurston's transversely measured laminations into **higher laminations** containing webs as integral points.
- ③ Generalize Mirzakhani's **counting problem** on multi-curves to webs. Distribution of webs. Random webs.

# Thank you for your attention!

Daniel Douglas and Zhe Sun, Tropical Fock-Goncharov coordinates for SL3-webs on surfaces I: construction, *Forum of Mathematics, Sigma* (2024), Vol. 12:e5 1–55.

Daniel Douglas and Zhe Sun, Tropical Fock-Goncharov coordinates for SL3-webs on surfaces II: naturality, *Algebr. Comb.* 8 (2025), no. 1, 101–156.

Linhui Shen, Zhe Sun and Daping Weng, Intersections of Dual SL3-Webs, *Trans. Am. Math. Soc.* 378 (2025), No. 8, 5513–5549.

Tsukasa Ishibashi, Zhe Sun and Wataru Yuasa, Bounded  $sp(4)$ -laminations and their intersection coordinates, preprint, arXiv:2509.25014, 56 pages.