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Fock–Goncharov Duality Conjecture

Conjecture (Fock–Goncharov 03’)
The tropical integral points of X parameterize the canonical
basis of the regular function ring of the mirror XV .
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Fock–Goncharov Duality Conjecture

The marked surface Ŝ is the connected oriented topological
surface S with punctures mp and finitely many marked points
mb ⊂ ∂S considered up to isotopy.

Framing(decoration): The flat section of ρ×G G/B
(ρ×G G/U) around m.
AG,Ŝ consists of pairs (ρ, ξ) where unipotent bordered twisted
representation ρ ∈ Hom(π1(T 1S),G)/G with ρ(ε) = sG and ξ
is the decorations at mp ∪ mb .
(ρ, ξ) ∼ (gρg−1, gξ), ∀g .
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Fock–Goncharov Duality Conjecture

XGL,Ŝ consists of pairs (ρ, ξ) where ρ ∈ Hom(π1(S),GL)/GL

and ξ is the framings at mp ∪ mb .
To match up with the dimension of AG,Ŝ , Goncharov–Shen
changed XGL,Ŝ into PGL,Ŝ where ξ is the decorations at mb
and framings at mp .

The character variety LGL,Ŝ consists of pairs (ρ, ξ) where
ρ ∈ Hom(π1(S),GL)/GL and ξ is the decorations at mb .
X = AG,Ŝ then XV = PGL,Ŝ or LGL,Ŝ , and vice versa.
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Goncharov–Shen Conjecture
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Goncharov–Shen Conjecture

Goncharov–Shen adjusted the original Fock–Goncharov duality
conjecture by adding the potential P .

Conjecture (Goncharov–Shen 13’)
Let LGL,Ŝ be the character variety. There is a holomogical mirror
symmetry between (AG,Ŝ ,P) and LGL,Ŝ .
The tropical integral points A+

G,Ŝ
(Zt) parameterize the canonical

basis of O(LGL,Ŝ).

It has a beautiful explicit solution for PGL2 after Fock and
Goncharov using Thurston’s transversely measured laminations.
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Lamination
A positive integer lamination l on Ŝ is a formal sum

l =
∑

ni [αi ] +
∑

mj [βj ], ni ,mj ∈ Z>0.

4

3

Figure: 3[α1] + 4[β1]

Theorem (Hoste–Przytycki 93’)
All Ml =

∏
i Trρ(αi)

ni
∏

j Trρ(βj)
mj form a linear basis of

O(LSL2,Ŝ).
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Ideal triangulation

Given an ideal triangulation,

Figure: 4th punctured sphere case.
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Laminations and tropical A coordinates

Figure: a = 1
2 ∗ 5 = 5

2 , b = 1
2 ∗ 7 = 7

2 , c = 1
2 ∗ 10 = 5.

Lamination l intersects the ideal triangulation of Ŝ minimally.
We assign 1/2 of the intersection number to each edge to obtain
an element in A+

SL2,Ŝ
(Rt)T .
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Mutation for A coordinates

Figure: Mutation.
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Mutation for tropical A coordinates

Figure: Tropical mutation.
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Laminations and tropical A coordinates
A+

PGL2,Ŝ
(Zt) is the subset of A+

SL2,Ŝ
(Rt) such that for a given

chart and any angle a − b − c ∈ Z≤0.

Theorem (Fock–Goncharov 03’, Goncharov–Shen 13’)

There is a Mod(Ŝ)-equivariant bijection Φ from the space of
positive integer laminations WŜ to A+

PGL2,Ŝ
(Zt).

Figure: Proof: a = 1, b = 2, c = 3/2, d = 3/2, e = 2,
f = 3/2 = max{a + c, b + d} − e.
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Counting multicurves
MLg,n space of geodesic measure laminations on Ŝ = Sg,n, which
is the R≥0 completion of the space of multicurves.
Tg,n and MLg,n embedded into space of currents
C(S) = {π1(S)− invariant measure on S1 × S1\∆}.
µ the unique Mod(Sg,n)-invariant Thurston measure on MLg,n.

m(a) = µ({x ∈ MLg,n | i(a, x) ≤ 1}).

Bg,n =

∫
Mg,n

m(X)dX .

Theorem (Mirzakhani 08’)
γ0 multicurve on Sg,n. ρ hyperbolic metric on Sg,n.
Let Nρ

L = #{γ ∈ Mod(Sg,n) · γ0 | `ρ(γ) ≤ L}. Then

lim
L→+∞

Nρ
L

L6g−6+2n =
m(ρ)m(γ0)

Bg,n
.
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Webs as integer higher laminations

Figure: (Kuperberg, CMP 96’) A SL3-web is an oriented graph on the
surface with 3-valent interior vertices such that the three oriented edges
at any interior vertex point inward or outward.
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Webs as integer higher laminations

A SL3-web is non-elliptic if it does not contain 0-, 2-, 4-faces
(cannot be decomposed by the skein relation any more).
On Ŝ, a non-elliptic SL3-web is reduced if the edge on the
boundary is 1-valence. And we do not have any path of ≤ 3
edges parallel to a boundary interval:

Dual graph of a non-elliptic SL3-web is triangulation of the
surface.
Non-elliptic = the dual graph is combinatorial CAT (0)—each
interior vertex has valence ≥ 6.
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Dual graph of a web
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SL3-skein algebra

Figure: SL3 skein relation

Theorem (Kuperberg 96’ for polygon, Sikora–Westbury 07’)
Reduced SL3-webs form a linear basis of the reduced SL3 skein
algebra.

The classical limit of the web is the trace function of the web.
Theorem (Turaev 91’)
The SLn-skein algebra is (almost) the quantization of O(LSLn,Ŝ)
with respect to the Goldman Poisson structure.
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Good position after Kuperberg
Given a split ideal triangulation T of the surface S,

Figure: Split ideal triangulaton.

we could put reduced 3-web W in good position such that
W intersects T minimally,
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Honeycomb
the restriction of W to each bigon is a minimal ladder,

the restriction of W to each ideal triangle is an oriented
honeycomb with oriented arcs.
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Web in good position
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Basis assignments

Figure: Tropical coordinate in triangle is linear combination of above
basis elements with coefficients (x , y , z, t, u, v ,w) ∈ Z7

≥0.
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Gluing along the ideal edges

Figure: Example on S1,1.
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Webs and tropical A coordinates
Let WŜ be the space of reduced 3-webs up to homotopy.

Theorem (Douglas–S. 20’)

Φ : WŜ
∼=−→ A+

PGL3,Ŝ
(Zt).

More explicitly, we define ΦT : WŜ
∼=−→ A+

PGL3,Ŝ
(Zt)T for any ideal

triangulation T and ΦT ′ = µT ,T ′ ◦ ΦT .

Theorem (Kim 20’)

For Ŝ = Sg,m, there is a quantum trace map

Trq : RSq(Ŝ) → Oq(PPGL3,Ŝ)

where the highest term degree of Trq(W ) is the same as Φ(W ).

Generalizing Bonahon–Wong 11’s quantum trace map for SL2. Lê
and Yu 23’ constructed the quantum trace map for SLn.
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Proof of flip equivariance 20’
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Meaning of A+
PGL3,S(Z

t): Goncharov–Shen potential

Figure: A coordinates for n = 3.
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Meaning of A+
PGL3,S(Z

t): Goncharov–Shen potential

Figure: π : G/U → G/B, (F , π(H)) = u(F , π(G)).

u = E1(Sg,h
f ) · E2(Rg,h

f ) · E1(T g,h
f ) =

 1 Sg,h
f + T g,h

f Sg,h
f Rg,h

f
0 1 Rg,h

f
0 0 1

 ,
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Meaning of A+
PGL3,S(Z

t): Goncharov–Shen potential

Figure: Rhombus terms.

The Goncharov–Shen potential for the marked ideal triangle
θ = (A,B,C) is

P(θ) =
d
ab +

af
cd +

bg
de .
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Meaning of A+
PGL3,S(Z

t): Goncharov–Shen potential
The Goncharov–Shen potential is the Mod(S) equivariant
regular function

P =
∑
θ

P(θ)

summing over all the anticlockwise oriented marked ideal
triangles on the surface.
P t(θ) = max{d − a − b, a + f − c − d , b + g − d − e} where
a, b, c, d , e, f , g ∈ R.

Theorem (Goncharov–Shen, 13’)
Let A+

G,Ŝ
(Rt) be the subset of AG,Ŝ(R

t) with P t ≤ 0. Then
A+

GLn,∆
(Rt) coincides with the Knutson–Tao’s hives.

A+

PGL3,Ŝ
(Zt) is the subset of A+

SL3,Ŝ
(Rt) such that for a given chart

and any rhombus αt ∈ Z≤0. Here any rhombus αt ∈ Z≤0 holds for
any triangulation.
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Goncharov–Shen potential and other topics

1 (Goncharov–Shen 19’) The Goncharov–Shen partial potentials
play important roles in the quantization of the moduli spaces
of G-local systems.

2 (Huang-S., 19’) For each simple root and each puncture, the
Goncharov–Shen partial potential is understood as generalized
horocycle length which provides a family of McShane-type
identities.

3 (Goncharov–S., 24’) The Goncharov–Shen partial potentials is
essential in the exponential volume of the moduli space of
ideal hyperbolic surfaces with marked points on the boundary.
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Intersection between two dual webs (Shen–S.–Weng)

G-web: oriented graph with only 3-valent pointing inward
(outward resp.) interior vertices where three edges colored by
λ, µ, ν such that dim (Vλ ⊗ Vµ ⊗ Vν)

G = 1
(dim

(
V ∗
λ ⊗ V ∗

µ ⊗ V ∗
ν

)G
= 1 resp.).

(G,A)-web W : ends at boundary intervals,
(GL,X )-web V : ends at punctures or marked points,
intersecting transversely, the intersection number of the
ordered pair (W ,V ) at a point p
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Intersection between two dual webs
Then the intersection number of (W ,V )

i(W ,V ) :=
∑

p∈W∩V
εp(W ,V ).

The intersection number of ([W ], [V ])

i([W ], [V ]) := inf
w∈[W ],v∈[V ]

{i(w , v)} .

SL3 case
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SL3 case

Zhe Sun, University of Science and Technology of China Webs and their intersections 32 / 49



SL3 intersection number coordinates

Figure: The (SL3,X )-webs Va corresponding to a in seed s.

For any seed s (collection of these A coordinates),

is : WŜ →
(

1
3Z≥0

)N
, is(W ) := (i([W ], [Va]))a∈s.
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SL3 case

Theorem (Shen–S.–Weng 23’)
is = Φs in (Douglas–S. 20’). For any two seeds s and s′ related by
the mutation µ in the sequence of flip of diagonal of ideal
triangulation T , we have

µ ◦ is = is′ .

Particularly, applying to the seeds in the flip sequence of the square
� implies mapping class group equivariance.
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SL3 case
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SL3 case

Simple examples:

Figure: i([W ], [V ]) + i([W ], [V ′]) = max{i([W ], [A]), i([W ], [B])}.
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Sp4 case

Reduced Sp4-webs in a triangle.
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Sp4 case

Flatting the reduced Sp4-webs by

Obtaining reduced Sp4-crossroad webs.

Theorem (Ishibashi–Yuasa 22’)
Reduced Sp4-crossroad webs form a linear basis of clasped
Sp4-skein algebra.
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Sp4 intersection number coordinates
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Sp4 intersection number coordinates

For any seed s (collection of these A coordinates),

is : WŜ →
(

1
2Z≥0

)N
, is(W ) := (i([W ], [Va]))a∈s.
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Sp4 case

Let LA
Sp4

(Ŝ,Q) be the collection of disjoint unions of Q-weighted
peripheral elements and Q>0-weighted reduced Sp4-crossroad
webs.

Theorem (Ishibashi–S.–Yuasa arXiv:2509.25014)

is : LA
Sp4

(Ŝ,Q) → QN is a bijection.

In our sequel paper, we will show that is : WŜ → A+

SO5,Ŝ
(Zt) is a

bijection.
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Sp4 triangle case
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Sp4 elementary webs

Zhe Sun, University of Science and Technology of China Webs and their intersections 43 / 49



Sp4 elementary webs
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Webs and cluster algebra

Theorem (Gross–Hacking–Keel–Kontsevich, 14’)
The Fock–Goncharov duality conjecture holds for certain cluster
algebras under certain convexity condition.

Theorem (Goncharov–Shen 16’+ Fraser–Pylyavskyy 22’)
Fock–Goncharov duality conjecture holds for (ASLn,Ŝ ,PPGLn,Ŝ) for
(Ŝ, n) 6= (Sg,1, 2) after the existence of the Donaldson-Thomas
transformation.

Theorem (Mandel–Qin 23’)
GHKK’s theta basis is the same as bracelet basis for PGL2.

Conjecture
GHKK’s theta basis is the same as reduced web bracelet basis for
PGL3?
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Webs and cluster algebra
Theorem (Ishibashi–Kano, 24’)
There is a natural bijection: P+

PGL3,Ŝ
(Zt) ∼= WX

Ŝ .

1 The intersection pairing between webs induces a pairing:

I : A+

PGL3,Ŝ
(Zt)× P+

PGL3,Ŝ
(Zt) → 1

3Z.

2 By Fock–Goncharov duality, there is a pairing:
IFG : A(Zt)× PV (Zt) → Z.

3 Given seed s and (l ,m) ∈ A(Zt)× PV (Zt), coordinates (ai)i
and (xi)i for s has pairing: < l ,m >s:=

∑
i aixi .

Conjecture (Shen–S.–Weng 23’)

I(l ,m) = IFG(l ,m) = max
s

< l ,m >s .

∀l ∈ A+

SL3,Ŝ
(Zt),∀m ∈ P+

PGL3,Ŝ
(Zt).
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Further direction

1 Positivity for the Laurent polynomials under this
Fock–Goncharov duality and the structure constants.

2 Log concave conjecture for coefficients of trace functions and
structure constants. Zhichao Chen and Guanhua Huang have
some progress on some examples arXiv:2408.03792.

3 Relation between webs and n-graph weavings (related to
bipartite graphs, Legendrian links, spetral networks).
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Further direction

1 Relation between k-differentials and webs.
2 Generalize Thurston’s transversely measured laminations into

higher laminations containing webs as integral points.
3 Generalize Mirzakhani’s counting problem on multi-curves to

webs. Distribution of webs. Random webs.
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