

Skein Algebras of Surfaces and quantum groups

Thang Lê¹
based on joint work with A. Sikora

Georgia Institute of Technology

letu@math.gatech.edu

December, 2025

¹supported in part by NSF

Kauffman bracket, Jones polynomial

$D \subset \mathbb{R}^2$: link diagram $\rightarrow \langle D \rangle \in \mathbb{Z}[q^{\pm 1}]$

$$\text{Diagram 1} = q \text{Diagram 2} + q^{-1} \text{Diagram 3} \quad (1)$$

$$\textcolor{red}{\bigcirc} = (-q^2 - q^{-2}) \quad (2)$$

- Example:

$$\langle \bigcirc \bigcirc \rangle = d := -q^2 - q^{-2}$$

$$\langle \textcolor{red}{\text{8}} \rangle = q \langle \textcolor{red}{\text{8}} \rangle + q^{-1} \langle \textcolor{red}{\text{8}} \rangle = qd + q^{-1}d^2 = -q^{-3}d$$

$$\begin{aligned} \langle \text{Diagram 1} \rangle &= q^2 \langle \text{Diagram 2} \rangle + \langle \text{Diagram 3} \rangle + \langle \text{Diagram 4} \rangle + q^{-2} \langle \text{Diagram 5} \rangle \\ &\equiv q^2 d^2 + 2d + q^{-2} d^2 = q^6 + q^2 + q^{-2} + q^{-6} \end{aligned}$$

- $\langle D \rangle$ invariant of framed links. Framed Jones polynomial.

Kauffman bracket skein module

Ground ring $R = \mathbb{Z}[q, q^{-1}]$, or $R = \mathbb{C} \ni q \neq 0$.

\mathfrak{S} oriented surface. Skein module (Przytycki, Turaev)

$$\mathcal{S}(\mathfrak{S}) = \frac{R\text{-span of link diagrams on } \mathfrak{S}}{\text{---} = q \text{---} + q^{-1} \text{---}, \text{---} = (-q^2 - q^{-2}) \text{---}}$$

Convention: \emptyset is a link diagram.

Link diagrams = framed links in $\widetilde{\mathfrak{S}} := \mathfrak{S} \times (-1, 1)$.

- Example:

$$\text{Diagram 1} = q \text{ Diagram 2} + q^{-1} \text{ Diagram 3}$$

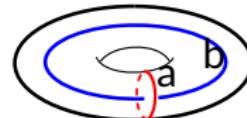
- Przytycki: $\{\text{simple diagrams}\} = R\text{-basis}$
 $(\text{simple} = \text{no crossings, no trivial knot}).$
 Simplifying relations + diamond lemma.

Algebra structure

$\mathcal{S}(\mathfrak{S})$ is an **associative algebra with unit** (Turaev)

$$\alpha_1 \alpha_2 = \begin{array}{|c|c|} \hline \alpha_1 \\ \hline \alpha_2 \\ \hline \end{array}$$

example: $a.b =$



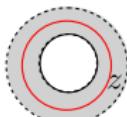
- unit = empty link.
- $\mathcal{S}(\mathfrak{S})$ non-commutative in general.
- There are $\mathfrak{S} \neq \mathfrak{S}'$ with $\tilde{\mathfrak{S}} = \tilde{\mathfrak{S}}'$. But as algebra $\mathcal{S}(\mathfrak{S}) \neq \mathcal{S}(\mathfrak{S}')$.

Examples: Simple surfaces

$$\Sigma_{0,1}$$

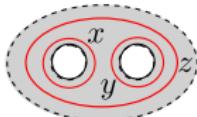
$$\mathcal{S} \cong R = \mathbb{Z}[q^{\pm 1}], \quad L \rightarrow \langle L \rangle$$

$$\Sigma_{0,2}$$



$$\mathcal{S} \cong R[z]$$

$$\Sigma_{0,3}$$



$$\mathcal{S} \cong R[x, y, z]$$

$$\Sigma_{1,1}$$

$$\mathcal{S} \cong R\langle x, y, z \rangle / Rel$$

$q^2 - q^{-2}$ is invertible. Rel is

$$[x, y]_q = z, [y, z]_q = x, [z, x]_q = y$$

Here $[x, y]_q = qxy - q^{-1}yx$. (Bullock-Przytycki; quantum $SO(3)$.)

Quantization of Character variety

If $R = \mathbb{C}$, $q = \pm 1$, then $\mathcal{S}_{\pm 1}(M)$ is commutative

$$(q = -1)$$

$$\begin{array}{c} \text{X} \\ \text{---} \\ \text{X} \end{array} = - \begin{array}{c} \text{X} \\ \text{---} \\ \text{X} \end{array} - \begin{array}{c} \text{X} \\ \text{---} \\ \text{X} \end{array} = \begin{array}{c} \text{X} \\ \text{---} \\ \text{X} \end{array}$$

Turaev, Przytycki-Sikora, Bullock-Frohman-Kania-Bartoszynska:

$\mathcal{S}_{-1}(\mathfrak{S}) \cong \mathbb{C}[\chi_{SL_2}(\mathfrak{S})]$, $\chi_{SL_2}(\mathfrak{S})$: character variety:

$\chi_{SL_2}(\mathfrak{S}) := \text{Hom}(\pi_1(\mathfrak{S}) \rightarrow SL_2(\mathbb{C})) // SL_2(\mathbb{C})$

- quantization along the Atiyah-Bott-Goldman bracket.
- connects Jones polynomial and classical topology.
- Used in TQFT.
- Helps proving AJ conjecture for many knots.
- Closely related to (quantum) Teichmüller space, cluster algebras.

\mathfrak{g} -skein algebra

Generalization of Jones polynomial (Reshetikhin-Turaev):
Ribbon category $\mathcal{C} \rightsquigarrow$ operator invariants of ribbon graphs,
including (colored) framed oriented links.

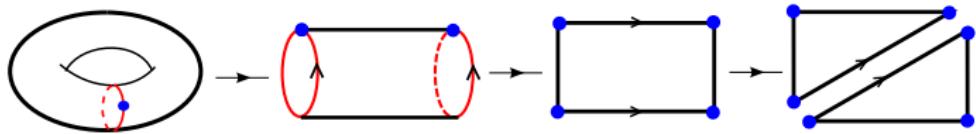
$\rightsquigarrow \mathcal{C}$ -skein algebra (Walker)

$$\mathcal{S}_{\mathcal{C}}(\mathfrak{S}) = \frac{R\langle \text{ribbon graphs in } \mathfrak{S} \times (0, 1) \rangle}{\text{local RT operator relations}}$$

- Main examples of ribbon categories: \mathfrak{g} simple Lie algebra
 $\rightsquigarrow U_q(\mathfrak{g})$ quantized enveloping algebra
 $\text{Rep}(U_q(\mathfrak{g}))$ is a ribbon category $\rightsquigarrow \mathcal{S}_{\mathfrak{g}}(\mathfrak{S})$
- quantization of the $G(\mathfrak{g})$ -character variety;
Atiyah-Bott-Goldman's Poisson structure.
- $\mathfrak{g} = sl_2 \rightsquigarrow$ Kauffman bracket skein modules.
- For root of unity q , there are many versions of $\text{Rep}(U_q(\mathfrak{g}))$.

Cutting surfaces

Most punctured surfaces can be cut into ideal triangles:



$$\mathfrak{S} = \bigsqcup \tau_i / (\text{edge identifications})$$

Can we study $\mathcal{S}(\mathfrak{S})$ using the triangulation?

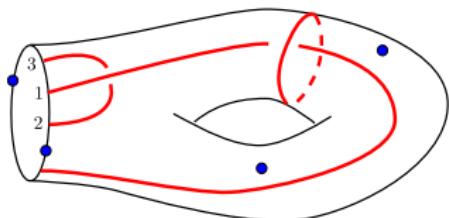
- Understand behavior of $\mathcal{S}(\mathfrak{S})$ under cutting of surfaces.
- Need to extend skein algebra to involve the boundary.

Extension of skein algebras: Tangle diagrams

Goal: Extend $\mathcal{S}(\mathfrak{S})$ to involve boundary edges.

Assumption: each component of $\partial\mathfrak{S}$ is $(0, 1)$.

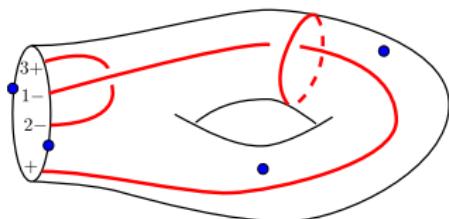
Links in $\widetilde{\mathfrak{S}} = \mathfrak{S} \times (-1, 1)$ can “come” to boundary: **Tangles** in $\widetilde{\mathfrak{S}}$.



Tangle diagram α on \mathfrak{S} : closed curves and arcs with endpoints on $\partial\mathfrak{S}$.

In interior of \mathfrak{S} : like a link diagram

Each boundary edge b of \mathfrak{S} : **a linear (height) order on $b \cap \partial\alpha$**



State $s : \partial\alpha \rightarrow \{\pm\}$

Stated skein algebra (L. 2016, $\mathfrak{g} = sl_2$)

$$\mathcal{S}(\mathfrak{S}) := \frac{R\text{-span of stated tangles in } \widetilde{\mathfrak{S}}}{(1), \text{ boundary rels (2) \& (3)}}$$

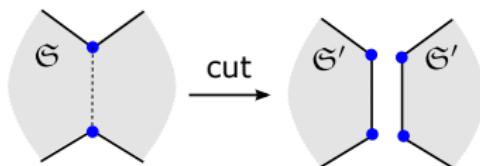
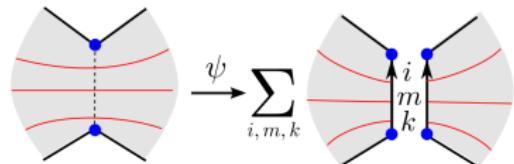
$$\text{X} = q \text{ } \text{X} + q^{-1} \text{ } \text{X}, \quad \text{O} = (-q^2 - q^{-2}) \text{ } \text{O} \quad (1)$$

$$\text{C}_-^+ = q^{-1/2} \text{ } \text{C}_-^+, \quad \text{C}_+^+ = 0, \quad \text{C}_-^- = 0 \quad (2)$$

$$\text{R}_+^- = q^2 \text{R}_-^+ + q^{-1/2} \text{R}_+^+ \quad (3)$$

- RT sl_2 -operator invariant, (dual)canonical basis.
Equ (2): Bonahon-Wong work on quantum trace.
- **Geometric Basis:** simple diagrams with **increasing states** in counterclockwise direction. (Simplifying relations + diamond lemma.)
- product $\alpha\beta$: α is above β , higher on each boundary edge.

Cutting homomorphism



Theorem (L. 2016)

ψ is an algebra homomorphism $\psi : \mathcal{S}(\mathfrak{S}) \rightarrow \mathcal{S}(\mathfrak{S}')$.
Injective (any ground ring).

The exact image is known. (Hochschild cohomology, [CL,KQ])

$$\text{triangulation } \lambda \rightsquigarrow \Psi : \mathcal{S}(\mathfrak{S}) \rightarrow \bigotimes_{\tau: \text{faces}} \mathcal{S}(\tau)$$

A presentation of $\mathcal{S}(\tau)$ is known.

\rightsquigarrow many useful facts; quantum trace map (Bonahon-Wong sl_2 ;
L.-Yu sl_n ; Kim sl_3). Quantization of Fock-Goncharov map sl_n).

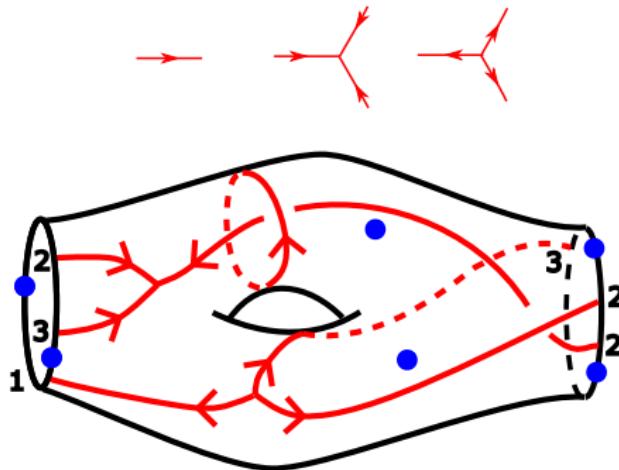
General Lie algebras

Stated skein algebra

- $\mathfrak{g} = sl_3$: V. Higgins. (Kuperberg's relations, reduction rules)
Basis. Cutting homomorphism is injective.
- $\mathfrak{g} = sl_n$: L.-Sikora.
- Costantino-Korinman-L.: General Tannakian ribbon category.
- over $\mathbb{Q}(q)$: related to factorization homology, lattice field theory of Alekseev-Grosse-Schomerus and Buffenoir-Roche, skein category (work of Ben-Zvi-Brochier-Jordan, Cooke, Haioun).
- Important problems: sl_n with $n \geq 4$
 - (1) natural geometric bases?
 - (2) Is cutting homomorphism injective? (over $\mathbb{Z}[q, q^{\pm 1}]$)

Generators of $\mathcal{S}_{sl_n}(\mathfrak{S})$

- n -web-diagram on \mathfrak{S} : 1-dimensonal & oriented; locally either a smooth point (including boundary point), or an n -valent sink or source (Example: $n = 3$)



Height order on each boundary edge. States are from $1, \dots, n$. Relations coming from local identities of the RT operators.

Interior Relations for SL_n -skein algebra

$$q^{\frac{1}{n}} \text{Diagram} - q^{-\frac{1}{n}} \text{Diagram} = (q - q^{-1}) \text{Diagram},$$

$$\text{Diagram} = (-1)^{n-1} q^{n-1/n} \text{Diagram},$$

$$\text{Diagram} = (-1)^{n-1} [n]_q \text{Diagram}, \quad [n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$$

$$\text{Diagram} = (-q)^{\binom{n}{2}} \cdot \sum_{\sigma \in S_n} (-q^{(1-n)/n})^{\ell(\sigma)} \text{Diagram}.$$

($\ell(\sigma)$ length, σ_+ positive braid)

(Sikora 2005; **twisted version**)

Boundary Relations for sl_n

$$\begin{aligned}
 & \text{Diagram: } \text{Three red lines with open circles at the top, ending at a vertical line with a downward arrow.} \\
 & = q^{\frac{(1-n)(2n+1)}{4}} \sum_{\sigma \in S_n} (-q)^{\ell(\sigma)} \quad \text{Diagram: } \text{Three red lines with open circles at the top, labeled } \sigma(1), \sigma(2), \sigma(n) \text{ from bottom to top, ending at a vertical line with a downward arrow.} \\
 & \text{Diagram: } \text{A red line with an open circle at the top, ending at a vertical line with a downward arrow.} \\
 & = \delta_{\bar{j},i} c_i, \quad \text{where } c_i = (-1)^{n-i} q^{\frac{2n^2+n-1}{2n}-i} \\
 & \text{Diagram: } \text{A red line with an open circle at the top, ending at a vertical line with a downward arrow.} \\
 & = \sum_{i=1}^n (c_{\bar{i}})^{-1} \quad \text{Diagram: } \text{A red line with an open circle at the top, a black dot in the middle, and a vertical line with a downward arrow labeled } \bar{i}.
 \end{aligned}$$

Here $\text{---} \circ$ stands for \rightarrow or \leftarrow .

- Can be defined using MOY graphs or CKM graphs, if $[n]_q!$ is invertible. (A. Poudel, $\partial\Sigma = \emptyset$)

Monogon \mathbb{P}_1 and bigon \mathbb{P}_2

$$\mathbb{P}_1 \circlearrowleft \mathcal{S} = R = \mathbb{Z}[\hat{q}^{\pm 1}] \ni r \rightarrow r \emptyset.$$

$$\left. \begin{array}{l} \text{---} \circlearrowleft \text{---} \mathcal{S}(\mathbb{P}_2) \rightarrow \mathcal{S}(\mathbb{P}_2) \otimes \mathcal{S}(\mathbb{P}_2), \text{coproduct} \\ \text{---} \circlearrowleft \text{---} \mathcal{S}(\mathbb{P}_2) \rightarrow \mathcal{S}(\mathbb{P}_1) = R \text{ (twisted), counit} \\ \text{---} \circlearrowleft \text{---} \mathcal{S}(\mathbb{P}_2) \rightarrow \mathcal{S}(\mathbb{P}_2) \text{ (twisted), antipode} \end{array} \right\} \text{Hopf algebra}$$

- L.-Sikora: $\mathcal{S}_{sl_n}(\mathbb{P}_2) \cong \mathcal{O}_q(sl_n)$ (integral version;
Krein-Tannaka reconstruction using coend).

($n = 2$, Costantino-L., Korinman-Quesney; $n = 3$ Higgins)

- $\mathcal{O}_q(sl_2) = \mathbb{Z}[q^{\pm 1}]$ -algebra generated by entries of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Relations $\left\{ \begin{array}{l} ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb \\ ad - da = (q - q^{-1})bc, \quad \det_q(A) := ad - qbc = 1. \end{array} \right.$

Quantized coordinate ring of $SL_2(\mathbb{C})$. Hopf dual of $\mathcal{U}_q(sl_2)$.

(Dual) canonical basis

Kashiwara, Lusztig: $\mathcal{O}_q(sl_n)$ has **dual canonical basis** B^* .

Dual to the **canonical basis** of $\dot{\mathcal{U}}_q(sl_n)$.

Important roles in representation theory.

Explicit Formulas? $n = 2$ (Kashiwara), $n = 3$ (Zhang, Skandera, Rhoades).

- sl_2 : $\mathcal{O}_q(sl_2)$ is generated by entries of $\begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$B^* = \{b^m a^k c^l\} \cup \{b^m d^k c^l\}$$

Two clusters $\{a, b, c\}$ and $\{d, b, c\}$; all cluster monomials.

- sl_3 : $\mathcal{O}_q(sl_3)$ is generated by entries of $(u_{ij})_{i,j=1}^3$.

There are 50 clusters. Rhoades, Skandera:

$$B^* = \bigcup \{\text{cluster monomials}\}$$

One cluster $\{u_{13}, u_{31}, (12|23), (23|12), u_{23}, u_{33}, (12|13), (132)\}$
 $(ij|kl) = (ij \times kl)$ - q -minor; $(132) = (12|12)u_{23} - q(23|12)u_{23}$

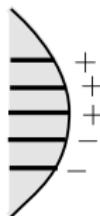
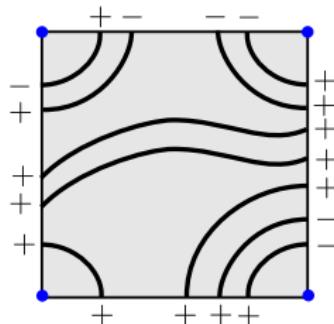
Dual canonical basis of $\mathcal{O}_q(sl_2) = \mathcal{S}(\mathbb{P}_2)$

L.: Defining relations for $sl_2 \rightsquigarrow$ reductions of skeins

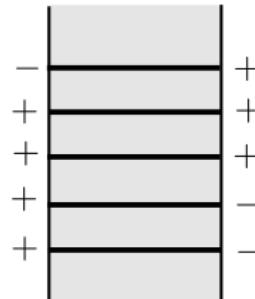
diamond lemma

Geometric Basis of $\mathcal{S}(\mathfrak{S})$ (any surface)

{ simple diagrams; counterclockwise increasing states }
simple: no crossings, no trivial loops, no trivial arcs.



in a square



in a bigon

L.-Costantino: For bigon

Geometric basis = Dual canonical basis

$$= \{b^m a^k c^l\} \cup \{b^m d^k c^l\}$$

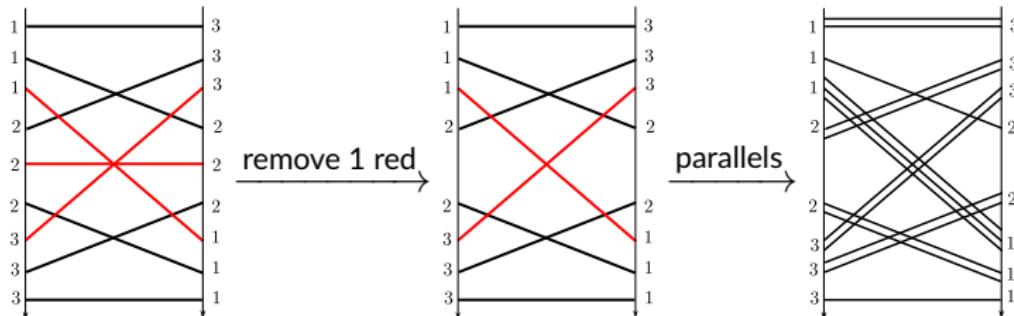
Dual canonical basis of $\mathcal{O}_q(sl_3) = \mathcal{S}_{sl_3}(\mathbb{P}_2)$

$\partial\mathfrak{S} \neq \emptyset$, Higgins: Skein relations, diamond lemma \rightsquigarrow basis.

No similar basis known for sl_n , $n \geq 4$.

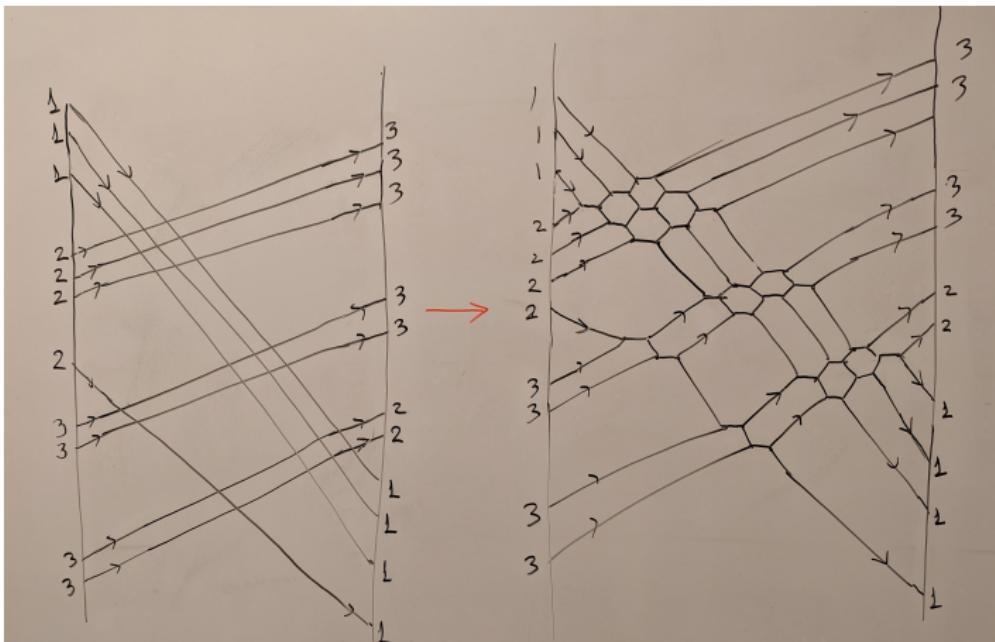
L.-Sikora: **Dual canonical basis = modified Higgins' basis.**

{irred diagrams; increasing states, near $\partial\mathbb{P}_2$ direction is left to right}.



Convert crossings to 3-valent vertices:

Dual canonical basis: $\mathcal{O}_q(sl_3)$



Set of all such diagrams is the **dual canonical basis**.

THANK YOU!