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(1) What is a cluster algebra?

A cluster algebra A is a kind of commutative C-algebra with a

collection of elements called cluster variables, which are

organized into sets called clusters. (This is a description, not a

definition.)

A is an integral domain, each cluster is algebraically independent

over C. For each cluster (x1, x2, . . . , xn), we have the Laurent

phenomenon:

A ⊆ C[x±
1 , x

±
2 , . . . , x

±
n ].
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(1) What is a cluster algebra?

A cluster algebra A is a kind of commutative C-algebra with a

collection of elements called cluster variables, which are

organized into sets called clusters. (This is a description, not a

definition.)

A is an integral domain, each cluster is algebraically independent

over C. For each cluster (x1, x2, . . . , xn), we have the Laurent

phenomenon:

A ⊆ C[x±
1 , x

±
2 , . . . , x

±
n ].

Second example:

C[x1, x2, x3, x4, x5]

/〈 x1x3=x2+1
x2x4=x3+1
x3x5=x4+1
x4x1=x5+1
x5x2=x1+1

〉
Clusters: (x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x1).

Laurent phenomenon: x3 = x2+1
x1

, x4 = x1+x2+1
x1x2

, x5 = x1+1
x2

.



I’ve focused on very small cluster varieties, so that I can draw

pictures. But cluster varieties also include many important spaces

such as:

• All braid varieties.

• All Bott-Samelson varieties.

• All Grassmannians. More about this later.

• All positroid varieties.

Also, to any root system, there is an associated cluster variety.



In each cluster, there are n mutable variables, and m frozen

variables. The frozen variables are the same in every cluster, and

are units of A.
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variables x1 and x2 are mutable; y is frozen.
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(x4, x5), (x5, x1). All variables are mutable.
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In each cluster, there are n mutable variables, and m frozen

variables. The frozen variables are the same in every cluster, and

are units of A.

In our first example, the clusters were (x1, y) and (x2, y). The

variables x1 and x2 are mutable; y is frozen.

In our second example, the clusters were (x1, x2), (x2, x3), (x3, x4),

(x4, x5), (x5, x1). All variables are mutable.

If x is a mutable variable in a cluster t, then there is another

cluster variable x′ and another cluster t′ with t \ {x} = t′ \ {x′} and

a relation of the form

xx′ = binomial in the variables of t ∩ t′.

Example 1: x1x2 = y + 1.

Example 2: xj−1xj+1 = xj + 1.



The cluster automorphism group, Aut(A), is the group of

C-algebra automorphisms α : A → A where α(x) is a C∗-multiple of

x for every cluster variable x. For any cluster (x1, x2, . . . , xn+m),

we can think of Aut(A) as a subgroup of (C∗)n+m.

In our first example, where x1x2 = y + 1, we have Aut(A) = C∗.

The automorphisms are (x1, x2, y) 7→ (tx1, t
−1x2, y). In our second

example, the automorphism group is trivial.



(2) What is a cluster variety?

Let A be a cluster algebra. Let

A = HomC−alg(A,C).

We call A a cluster variety .

I write this in an abstract way to emphasize that there is a clear,

unambiguous definition, even when A is infinitely generated and/or

we haven’t chosen a particular list of generators for A. But it has a

very clear concrete meaning:



(2) What is a cluster variety?

Let A be a cluster algebra. Let

A = HomC−alg(A,C)

A = C[x1, x2, y
±]/⟨x1x2 − y − 1⟩

A = {(x1,x2,y) ∈ C3 : x1x2 = y + 1, y ̸= 0}.

We send each cluster variable to a complex number, obeying the

cluster relations. The frozen variables must be sent to nonzero

complex numbers. We think of A as C-valued functions on A.



Continuing with our first example:

A = C[x1, x2, y
±]/⟨x1x2 − y − 1⟩

{(x1,x2,y) ∈ C3 : x1x2 = y + 1, y ̸= 0} ∼= {(x1,x2) : x1x2 ̸= 1}.



How does the Laurent phenomenon come in?

Let t = (x1, x2, . . . , xn+m) be a cluster of A. We have

A[(x1x2 · · ·xn+m)−1] = C[x±
1 , x

±
2 , . . . , x

±
n+m].

The geometric meaning of this is that the open set

T (t) := {x1x2 · · ·xn+m ̸= 0} ⊂ A

is isomorphic to

HomC−alg(C[x±
1 , x

±
2 , . . . , x

±
n+m],C) = (C∗)n+m.

We call T (t) a cluster torus inside A.



The cluster tori inside our first example:

A=C[x1, x2, y
±]/(x1x2 = y + 1)

A={(x1,x2) : x1x2 − 1 ̸= 0}

A[x−1
1 ]=C[x±

1 , y
±]

A ={(x1,x2) : x1(x1x2 − 1) ̸= 0}
={(x1,y) : x1y ̸= 0}

A[x−1
2 ]=C[x±

2 , y
±]

A ={(x1,x2) : x2(x1x2 − 1) ̸= 0}
={(x2,y) : x2y ̸= 0}



How does the cluster automorphism group fit in?

For every cluster (x1, x2, . . . , xm+n), a cluster automorphism α acts

on C[x±
1 , . . . , x

±
n+m] by α(xi) = ζixi.

Geometrically, this corresponds to translation by (ζ1, . . . , ζn+m) in

the torus T (t) ∼= (C∗)n+m.



How does the cluster automorphism group fit in?

For every cluster (x1, x2, . . . , xm+n), a cluster automorphism α acts

on C[x±
1 , . . . , x

±
n+m] by α(xi) = ζixi.

Geometrically, this corresponds to translation by (ζ1, . . . , ζn+m) in

the torus T (t) ∼= (C∗)n+m.

{(x1,x2) : x1x2 ̸= 1} (x1,x2) 7→ (t · x1, t
−1 · x2).



What is the deep locus?

People often informally say that the cluster variety is covered by

the cluster tori. But this isn’t right!

∪ =

The point (x1, x2, y) = (0, 0,−1) is missing!
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What is the deep locus?

We define the deep locus, D(A), of a cluster variety A to be the

closed set A \
⋃

t T (t).

The deep locus is important in mirror symmetry. There is a

function W : A → C called the superpotential , and mirror

theorists want to compute its critical points. Mirror theorists can

compute W |T (t). If there are critical points of W in D(A), then

this won’t see them.
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Recall that Aut(A) acts on every torus T (t) by translation. Thus,

if x ∈ A lies in some cluster torus, then the stabilizer of x for the

Aut(A) action is trivial. We define the stabilizer locus, S(A), to

be the closed sub-variety of A consisting of points with non-trivial

stabilizer for the Aut(A) action. So S(A) ⊆ D(A).
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The deep locus and the stabilizer locus

Recall that Aut(A) acts on every torus T (t) by translation. Thus,

if x ∈ A lies in some cluster torus, then the stabilizer of x for the

Aut(A) action is trivial. We define the stabilizer locus, S(A), to

be the closed sub-variety of A consisting of points with non-trivial

stabilizer for the Aut(A) action. So S(A) ⊆ D(A).

We call a point mysterious if it is deep (not in a cluster torus)

but has trivial stabilizer. In other words, its deepness cannot be

explained by automorphisms.

Conjecture: Let A be a locally acyclic cluster variety. Then

A has no mysterious points.

This conjecture emerged in private conversation between me and

Vivek Shende in May 2016, and is stated publicly the paper with

M. Castronovo, M. Gorsky and J. Simental.



Conjecture: Let A be a locally acyclic cluster variety. Then

A has no mysterious points.

To prove this conjecture, we must take an arbitrary point z ∈ A
and either

(1) Find a cluster torus T (t) containing z or

(2) Find a cluster automorphism α stabilizing z.



Generalities about the deep locus

Every singular point of A is in the deep locus. It is not clear

whether every singular point is in the stabillizer locus.

Let Ψ : A2 → A1 be a cluster quasi-homomorphism, in the sense of

Fraser. Then Ψ(D(A2)) ⊆ D(A1). If A2 has no mysterious points,

then neither does A1.

In particular, let A1 correspond to the exchange matrix B̃, and let

A2 correspond to an exchange matrix of the form
[
B̃
d

]
, with an

extra frozen row. Then, if A2 has no mysterious points, then

neither does A1.

More generally, let B̃1 and B̃2 be two exchange matrices of the

form
[

B
C1

]
and

[
B
C2

]
, such that B̃T

1 Zn+m1 ⊆ B̃T
2 Zn+m2 . If A2 has

no mysterious points, then neither does A1. If

B̃T
1 Zn+m1 = B̃T

2 Zn+m2 , then A2 has no mysterious points if and

only if A1 has no mysterious points.



(3) What can we can prove?

Theorem: (Castronovo-Gorsky-Rodriguez-S.) The “no

mysterious points conjecture” holds for all 2-strand braid varieties

B(σk
1 ) and for 3-strand braid varieties of the form

X(k, ℓ) := B(σk
1 (σ2σ1)

ℓ).



(3) What can we can prove?

Theorem: (Castronovo-Gorsky-Rodriguez-S.) The “no

mysterious points conjecture” holds for all 2-strand braid varieties

B(σk
1 ) and for 3-strand braid varieties of the form

X(k, ℓ) := B(σk
1 (σ2σ1)

ℓ).

• B(σk
1 ) has cluster type Ak−2, the same as G(2, k + 1).

• X(k, 4) has cluster type Dk+3.

• X(1, 5), X(2, 5) and X(1, 6) have cluster types E6, E7, E8.

• X(1, k) has the same cluster type as G(3, k + 2).

Thus, we have proved the conjecture for all simply laced finite

types (A, D, E6, E7, E8) and for Grassmannians of type G(2, n)

and G(3, n).



(4) Why might webs help? Grassmannians and positroid varieties:

The Grassmannian G(k, n) is the space of k-planes in n-space. We

record a point of G(k, n) as the row span of a k × n matrix M .

Replacing M by gM , for g ∈ GLk, gives the same point of the

Grassmannian.



Grassmannians and positroid varieties:

The Grassmannian G(k, n) is the space of k-planes in n-space. We

record a point of G(k, n) as the row span of a k × n matrix M .

Replacing M by gM , for g ∈ GLk, gives the same point of the

Grassmannian.
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in n-tuples of vectors, v1, v2, . . . , vn, up to GLk action. We’ll work

with the affine cone over the Grassmannian, which means we are

working with SLk-invariants.
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We are interested in n-tuples of vectors, v1, v2, . . . , kn, up to GLk

action. We’ll work with the affine cone over the Grassmannian,

which means we are working with SLk-invariants.

For 1 ≤ i1 < i2 < · · · ik ≤ n, we set

∆(i1, i2, . . . , ik) = det(vi1 , vi2 , . . . , vik).

People casually say that “the Grassmannian has a cluster

structure”. The actual cluster algebra in question is the Plücker

algebra generated by the ∆(I)’s, with the coordinates ∆(12 · · · k),
∆(23 · · · (k + 1)), . . . , ∆(n12 · · · (k − 1)) inverted. The

corresponding geometric space is n-tuples of vectors v1, v2, . . . , vn

modulo SLk, such that det(vivi+1 · · · vi+k−1) ̸= 0 for every

1 ≤ i ≤ n.
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algebra generated by the ∆(I)’s, with the coordinates ∆(12 · · · k),
∆(23 · · · (k + 1)), . . . , ∆(n12 · · · (k − 1)) inverted. The

corresponding geometric space is n-tuples of vectors v1, v2, . . . , vn

modulo SLk, such that det(vivi+1 · · · vi+k−1) ̸= 0 for every

1 ≤ i ≤ n (subscripts modulo n).
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rescaling the vectors by (v1, v2, . . . , vn) 7→ (t1v1, t2v2, . . . , tnvn)
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⊕
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For example, [ 1 0 1 0
0 1 0 1 ] is disconnected. The point (v1, . . . , vn) has a

nontrivial stabilizer if and only if it is disconnected.
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We need to show that, if v1, v2, . . . , vn is connected, than we can

find enough cluster variables not vanishing at (v1, v2, . . . , vn) to

form a cluster.

• Are Plücker cluster variables enough?

• Or, do we need more cluster variables?

I don’t know, but our proof (which goes through braid varieties)

does not stay in the world of Plücker variables.



The Grassmannian is stratified into postiroid subvarieties, of which

the one which we have described is the largest one. For other

positroid varieties, we definitely need to go to webs.

For example, consider 3k-tuples of vectors

(u1, u2, . . . , uk, v1, v2, . . . , vk, w1, w2, . . . , wk) obeying the conditions

rank(up+1, . . . , uk, v1, v2, . . . , vq) = max(k − p, q)

rank(up+1, . . . , uk, w1, w2, . . . , wr) = max(k − p, r)

rank(vq+1, . . . , vk, w1, w2, . . . , wr) = max(k − q, r)

.



rank(up+1, . . . , uk, v1, v2, . . . , vq) = max(k − p, q)

rank(up+1, . . . , uk, w1, w2, . . . , wr) = max(k − p, r)

rank(vq+1, . . . , vk, w1, w2, . . . , wr) = max(k − q, r)

.

This is a postroid variety, the corresponding plabic graph is

Since the plabic graph has no moves, there is only one cluster of

Plücker variables. It is

{det(u1, u2, . . . , ua, v1, v2, . . . , vb, w1, w2, . . . , wc) := a+ b+ c = n}



So, if we were to prove the “no mysterious points” conjecture for

the Grassmannian, we need to take v1, v2, . . . , vn which cannot be

split up into a direct sum, and build many webs not vanishing on

them, so that the webs form a cluster.

The Fomin-Pylyavskyy conjectures on when webs form a cluster

seem very hard. So here is a variant conjecture that only mentions

webs:



Given a SLk-web W on n boundary vertices with clasp type Symd1 ,

Symd2 , . . . , Sym dn, let ∆W(v1, v2, . . . , vn) be the web evaluated on

(v⊗d1
1 , v⊗d2

2 , . . . , v⊗dn
n ). Let ΩW be the locus where ∆W is nonzero.

Let W1, W2, . . . , Wk(n−k)+1 be webs. Let Ω• :=
⋂

ΩWi
and let

∆• : Ω• → (C∗)k(n−k)+1 be the map (∆W1
,∆W2

, . . . ,∆Wk(n−k)+1
).

We’ll say that W1, W2, . . . , Wk(n−k)+1 are web coordinates if

∆• : Ω• → (C∗)k(n−k)+1 is an isomorphism, and we’ll say that Ω• is

a web torus.

Conjecture: Suppose that (v1, v2, . . . , vn) is connected. Then

(v1, v2, . . . , vn) lies in a web torus.



More generally, I think we should develop tools to compute when

we would expect web invariants to form a cluster, without having

to solve Fomin and Pylyavskyy’s difficult conjectures:

• Given webs W1, W2, . . . , Wk(n−k)+1, how can we tell if

∆• : Ω• → (C∗)k(n−k)+1 is an isomorphism?

• Is there a way that we could test pairwise compatability of

webs? Can we compute the Poisson bracket {W1,W2}?

And we should develop ways, given vectors, to find webs which

don’t vanish on them. If v1, v2, . . . , vn is connected, then we can

find a k-element subset I of [n], and a spanning tree (i1, j1),

(i2, j2), . . . , (in−1, jn−1) on I × ([n] \ I), such that ∆(I) and all of

the ∆(I \ {ip} ∪ {jp}) are nonzero.

• How can we soup that up to big list of nonvanishing webs?


