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Standard Young tableaux

A standard Young tableau is a filling of a Young diagram with
with n boxes positive integers such that

m entries 1,...,n each appear exactly once and

B entries strictly increase across rows and down columns.
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Promotion on SYT
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Promotion on SYT

What are the orbit sizes of standard Young tableaux under
promotion?

Schiitzenberger: For rectangular T with n boxes, p"(T) = T.
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Bijection between webs and 3-row rectangular SYT

(Originally due to Khovanov—Kuperberg)
m Make a proper edge coloring using the following preference:
m e prefers 1, then 2, then 3

m Look at edge colors adjacent to [ Z
boundary vertices to determine row. :
(Bazier-Matte—Douville-Garver—

P.—Thomas-Yildirim)

g

Rebecca Patrias (with Oliver Pechenik, Jessica Striker, Chris Fraser, Jesse Kim)



Bijection between webs and 3-row rectangular SYT

(Originally due to Khovanov—Kuperberg)

m From left to right, connect entry y with the largest entry in
the row above that is < y.

m Form corresponding tripods.

m Resolve crossings.
(Tymoczko)
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Theorem (Petersen—Pylyavskyy—Rhoades)

Let D be a web with cyclically labeled boundary vertices and all black boundary
vertices. The standard Young tableau associated with counterclockwise
rotation of D is given by promotion of the tableau associated with D itself.
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Corollary: Let p(T) denote the promotion of a rectangular, 3-row
standard Young tableau with n boxes. Then p"(T) = T.
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Theorem (Petersen—Pylyavskyy—Rhoades)

Let D be a web with cyclically labeled boundary vertices and all
black boundary vertices. The standard Young tableau associated
with counterclockwise rotation of D is given by promotion of the
tableau associated with D itself.

Theorem (Russell, P.)

Let D be a web with cyclically labeled boundary vertices. Web
rotation corresponds to semistandard/generalized oscillating
tableau promotion.
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Analogous 2-row result
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Corollary: Let p(T) denote the promotion of a rectangular, 2-row
standard Young tableaux with n boxes. Then p"(T) = T.
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Increasing tableaux

An increasing tableau is a filling of a Young diagram with positive
integers such that rows and columns are strictly increasing.
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We are sometimes interested in “packed” increasing tableaux,
meaning if the largest entry is k, then everything in [1, k] appears

as an entry,
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Increasing tableaux ([ Just vihes)

Increasing tableaux are a K-theoretic analogue of (semi)standard
Young tableaux:

m Semistandard Young tableaux are used to study the
cohomology ring of the Grassmannian.

m Increasing tableaux are used to study the K-theory ring of the
Grassmannian. (Thomas-Yong)
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K-promotion on increasing tableaux
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K-promotion

What is the order of K-promotion on rectangular increasing
tableaux?

Theorem (P.—Pechenik 2020)

Let T be a rectangular increasing tableau with largest entry q and
K-promotion orbit of size k. Then k and q share a prime divisor
(except when T is minimal).
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2-row rectangles

bloks stk >2

Two-row rectangles are easy (Pechenik 2014): S -
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4-row rectangles

Four-row rectangles are crazy. Tableau T has orbit size

675 = 2527
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3-row rectangles

Conjecture (Dilks—Pechenik—Striker 2017)

For T a three-row rectangular increasing tableau with largest entry
q, we have p9(T)=T.
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Our motivation for this project

Conjecture (Dilks—Pechenik—Striker 2017)

For T a three-row rectangular increasing tableau with largest entry
q, we have p9(T)=T.

P77

Question: Can we prove this conjecture for 3-row increasing
tableaux by inventing the correct web analogue?

Rebecca Patrias (with Oliver Pechenik, Jessica Striker, Chris Fraser, Jesse Kim)




Idea: Understand the 2-row story better.

Both matchings and si3 webs have nice web invariants associated
to them. Maybe we first need to understand what polynomials
should be associated with noncrossing partitions.
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2-row SYT /noncrossing matching review AMCVDSS i g
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2-row SYT /noncrossing matching review

SLy(C) acts by left multiplication. For example,

L 2 (xi x2 x3 -+ xp)_[x1+2y1 x2+2p0  x3+2y3 -+ Xp+ 2y,
S5 2/ \y1 yvo vz -+ yp Bxy+2y1 bxo+2y, bx3+2y3 -0 bxp+ 2y,
_— N N —— —— —

P13 = x1y3 — x3y1 — (x1 + 2y1)(.5x3 + 2y3) — (x3 + 2y3)(.5x1 + 2y1)
== X1y3 — X3Y1 = P13

S, acts by right multiplication and permutes the columns of M,,.

For example,

(Xl X2 X”> n1234-”(n—1):<xn e XH)

Yi Y2 y3 -+ Yn Yn Y1 Y2 - Yn—1
P13 = X1Y3 — X3Y1 — —P2n = XnY2 — X2¥n
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2-row SYT /noncrossing matching review

Theorem

The collection of polynomials corresponding to noncrossing
matchings of n elements gives a basis for the Specht module
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2-row SYT /noncrossing matching review
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3-row SYT/sl3 web review
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m Basis of Specht module 5(3:3:3).
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On to 2-row increasing tableaux and noncrossing partitions (where
all blocks have size > 2)!
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Invariants for noncrossing partitions

Naive guess:
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Invariants for noncrossing partitions

Naive guess:
X12
X11  X14| [X22
X21  X24| [X32
X42

X13
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Want our work to agree with Brendan Rhoades’s uncrossing rules

up to sign.
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Invariants

Naive guess:
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Invariants

Jellyfish tableaux
m Blocks are columns

m Each column has entry in
first two rows

m Exactly one entry in each

row > 2
v
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Invariants

X11 X12 X13
X21 X2 X23
X31 X32 X33
X41 X42  Xa3
X5l X52 X53
X6l X62 X63
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Invariants
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S(d,dﬂ)

Theorem (Pechenik 2014, Rhoades 2017, Kim—Rhoades 2022,

P.—Pechenik-Striker 2022)

Noncrossing partitions of 2d + £ into d parts with no singletons
give a basis for the Specht module S(d.d1) The long cycle
nl2---(n—1) acts by rotation and wy by reflection.
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Generalization

In Fraser—P.—Pechenik—Striker (2025), we associate r-jellyfish
tableaux to each ordered set partition with blocks sizes at least r.
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________________________________________
Generalization: Fraser—P.—Pechenik—Striker (2025)

We associate r-jellyfish tableaux to each ordered set partition with
blocks sizes at least r.

r=3(141215|381016|56913|27 11 14) igg;
12(10{ 9|11
16

For r > 2, Q

m The set of noncrossing ordered set partitions with block size
T . L r qn—dr
at least r is linearly independent inside S9"1 but does not

span.
m The set of all ordered set partitions with block size at least r
r 1n—dr
spans S91"77
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Flamingo Specht modules

m Noncrossing partitions of 2d + £ into d parts with no singletons give
a basis for the Specht module §(d.d1%)

m For r > 2, the set of noncrossing ordered set partitions with blocks
. . . . . . r qn—dr
at least size r is linearly independent inside Sd>/1__but does not

e
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A basis for flamingo Specht module

For r > 2,
m the set of noncrossing ordered set partitions with block size at
. . . . . r 1n—dr
least r is linearly independent inside S9! but does not
span.

m the set of all ordered set partitions with block size at least r
r 1n—dr
spans S

J. Kim proved that

m the set of r-weakly noncrossing partitions is a basis of
r 1n—dr
S5 put

m it is not rotation or reflection invariant.
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Flamingo webs: a web basis §(@-d:41">)
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Flamingo webs: a web basis §(¢.4.9:1""*)

ownie  deq >3
blocke =3
Theorem (J. Kim 2024+)

The set of flamingo webs with n boundary vertices is a rotation
H g . n—3d
invariant basis for §(d-d,d;177)
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Idea: “trip=prom” can help us discover the correct variation of
web we need to correspond to 3-row rectangular increasing
tableaux.

(Hopkins—Rubey 2022,
Gaetz—Pechenik—Pfannerer—Striker-Swanson 2023, 2025)
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Promotion digraphs for increasing tableaux
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Promotion digraphs for increasing tableaux

1]2]3]6]_, [2][3]6]9],[3[5]6[9] - [4]5]6]9]_,[5[6]9[10 _, [6]8[9[10
4|5(6]9| [4[5|9]10] [4[8[9[t0 [7[8[9f10 [7[8]10[3] [7[102[3
7[8[oft0] [7[8[to[1] [7[0[1][2] |[to[1[2[3] [O[1[2]4] [10[1[4[5
_, [7[8]9[10] _, [8]9[t0[3] _, [9[10[2][3] _, [LO[1[2]3] _, [1]2]3]6
10[1]2[3] [t0[1]2]6] [0[1[5]6] [1]4|5]6] [4]5]6]9

1[4[5/6] [1]a[5]7] [1]4]7[8] [a4]7[8]9] [7[8]9[10

1—6—7

N

prom,(U) = 9 /2’\ prom,(U) =

s1 L

10— 4«—3

NPZAN

)
1

NS
«

Rebecca Patrias (with Oliver Pechenik, Jessica Striker, Chris Fraser, Jesse Kim)




Promotion digraphs for increasing tableaux

Theorem (P.—Pechenik—Striker 2025+)

Suppose that T, T' are rectangular increasing tableaux with the
same tuples of promotion digraphs. Then T = T'. Indeed, there is
an algorithm to reconstruct the rectangular tableau from its
promotion digraphs.

This does not hold for non-rectangular increasing tableaux!
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Trip digraphs for flamingo webs
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Conjecture (P.—Pechenik—Striker 2025+)

m Each flamingo web has a distinct pair of trip digraphs.

m For each flamingo web W, there is a unique 3-row increasing
tableau whose promotion digraphs are the same as the trip
digraphs of W.

m This injection from flamingo webs to increasing tableaux
respects K-promotion.
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Webs corresponding to 3-row increasing rectangular
tableaux
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Thank you!
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