

Rotation-invariant webs in arbitrary rank

Oliver Pechenik

Based on work with Ron Cherny,
Mike Cummings, Christian Gaetz,
Stephan Pfannerer, Jessica Striker,
& Josh Swanson

In type A, webs and relations on webs are fairly well understood.

But good web bases are not

You can get a web basis by choosing, for each dual canonical basis element, a web whose invariant has the same leading term

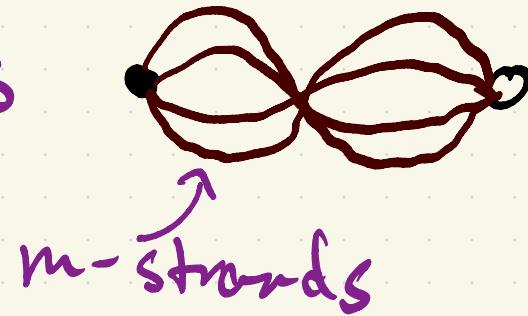
This is not so good!

Why is this bad?

- Cannot tell if a web is a basis web without a lookup
- no strategy for expanding a web in the basis without computing invariants
- Simple algebraic operations will look complicated

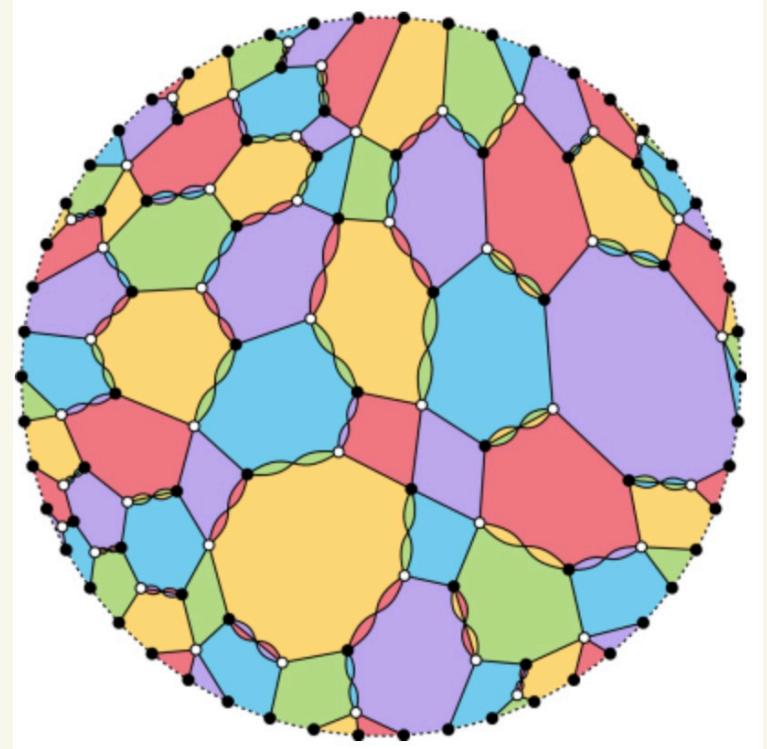
Claim: Hourglass plabic graphs are the correct sources for good bases

Def An m -hourglass edge is



Def An r -hourglass plabic graph is a properly bicolored graph embedded in a disk with internal vertices of degree r and boundary vertices of simple degree 1

Ex
 $r=5$

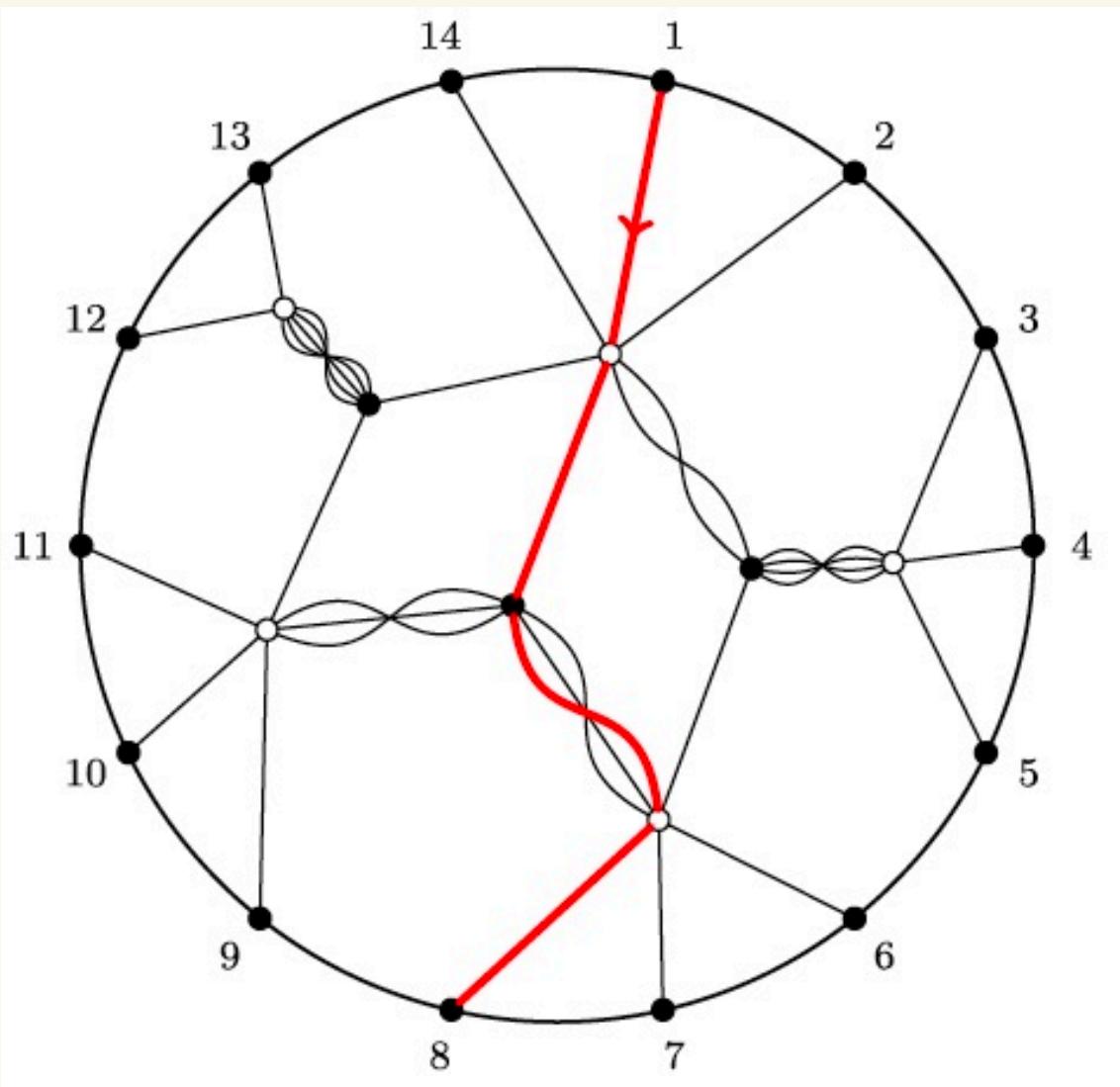


A r -HPG has $r-1$ trip permutations.

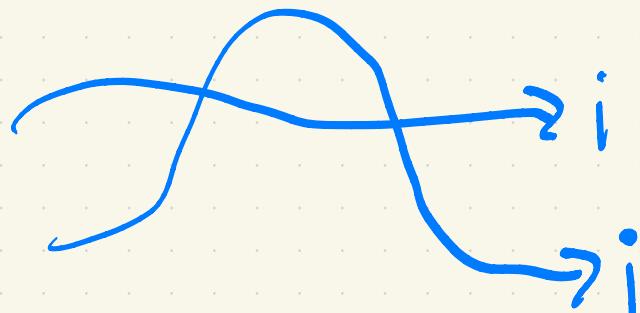
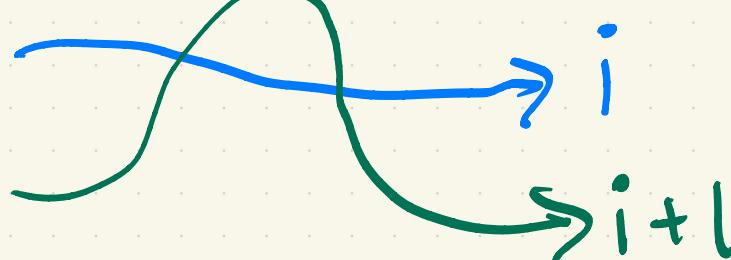
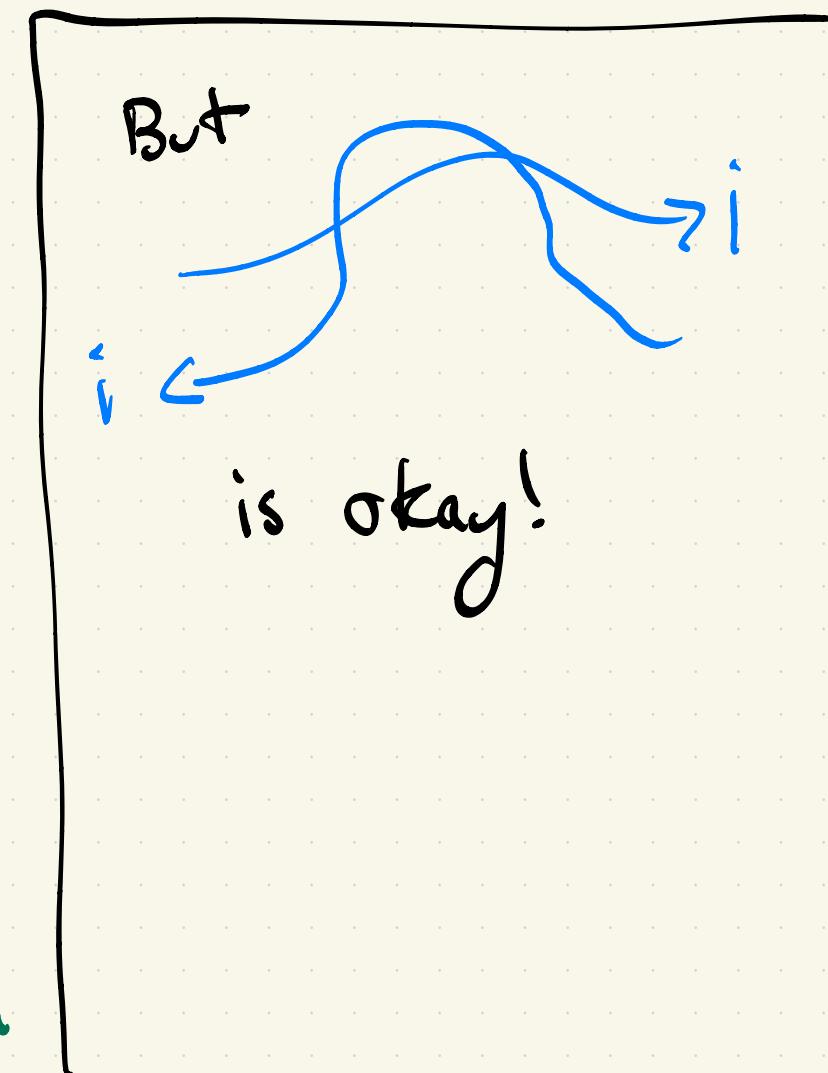
Trip i takes the i th left at each \circ
and the i th right at each \bullet

Ex
 $r=7$

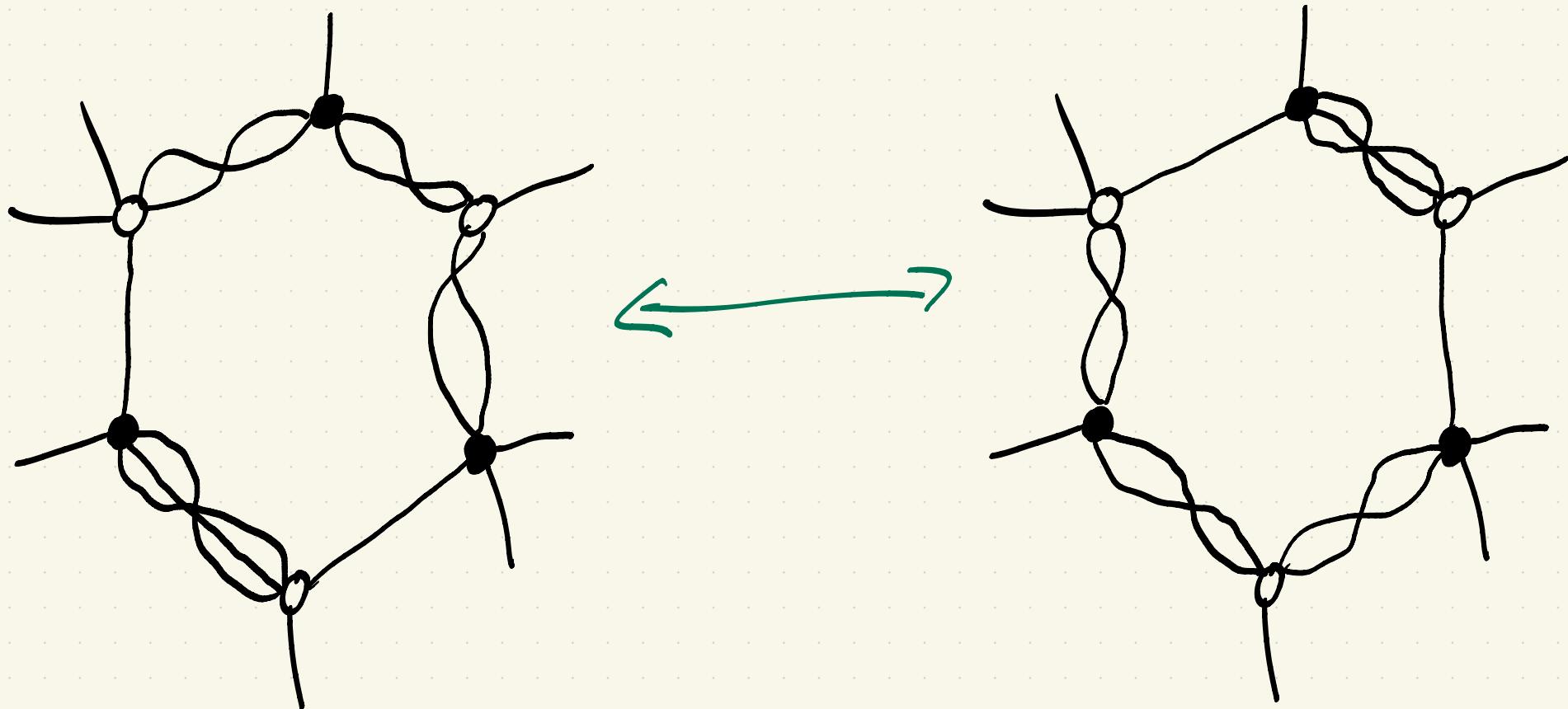
$\text{trip}_4(1)$
 $= 8$



Def An r - HPG is fully reduced if it avoids the following crossings of trip strands:

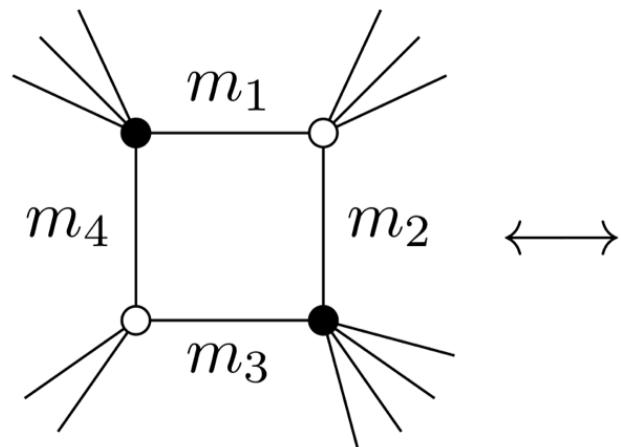
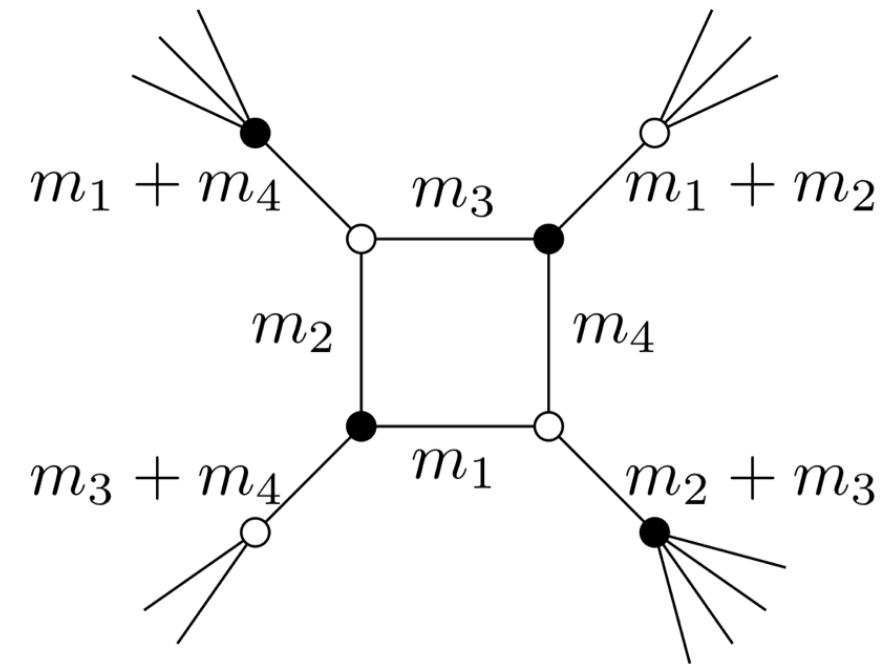


Moves are local surgeries that preserve trip permutations.



There is a square move in each r

$$r = m_1 + m_2 + m_3 + m_4$$



This preserves trip permutations
and web invariants

False but good

Conjecture

More equivalence classes of fully reduced HPGs
are a good web basis for $U_q(\mathfrak{sl}_r)$

invariants

Moreover they are in bijection with tableaux
under $\text{trip.}(w) = \text{prom.}(T)$

Special cases :

$r \leq 4$ (previous talk)

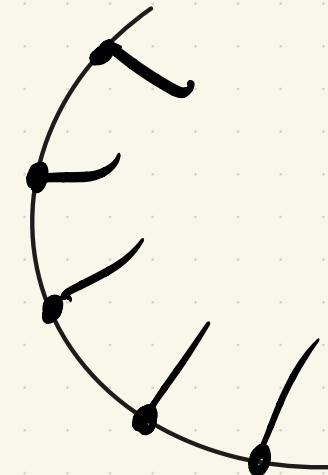
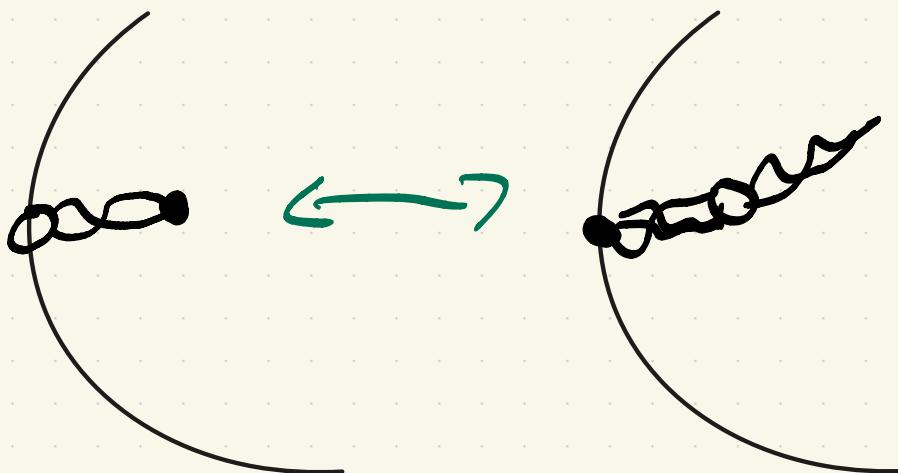
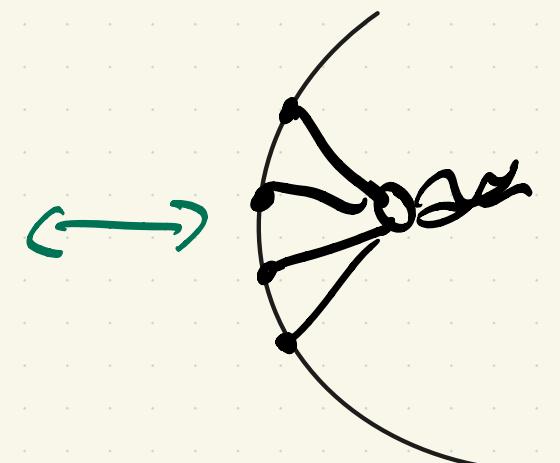
$r = 5$ (in progress w/ same people)

arbitrarily $\begin{cases} 2\text{-column case} \\ \text{arborescent case} \end{cases}$

r w/ Cherny & Pfanenreder

(basically) Suffices to consider the case
of Standard boundary

because



$$\Lambda^k(V^*) \underset{\cong}{\equiv} \Lambda^{r-k}(V) \xrightarrow{\quad} V^{\otimes r-k}$$

special case of clasping ↑

Plücker degree 2

$\text{Inv}_{\text{Sl}_r}(V^{\otimes 2r})$

Relevant tableaux are standard of shape 2^r

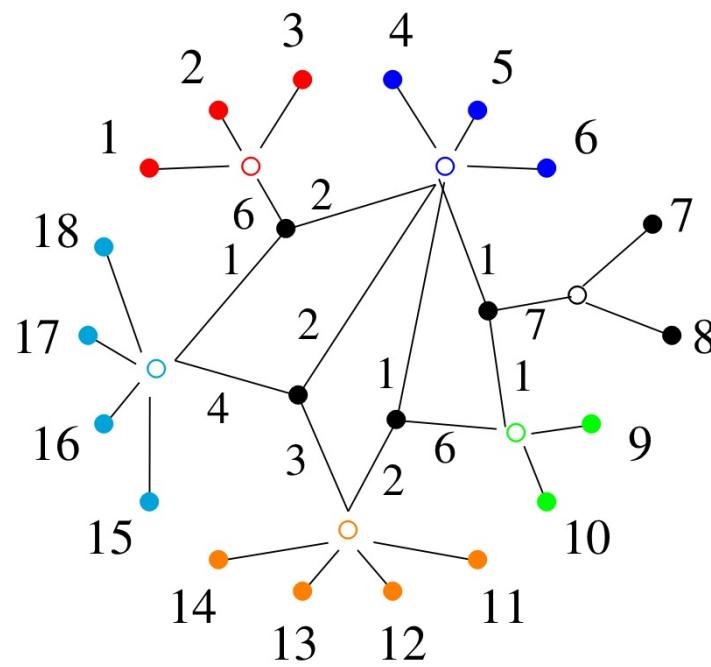
$r=8$

1	4
2	6
3	7
5	10
8	11
9	13
12	14
15	16

Chris Fraser (2023) finds a web basis element for each such tableau.

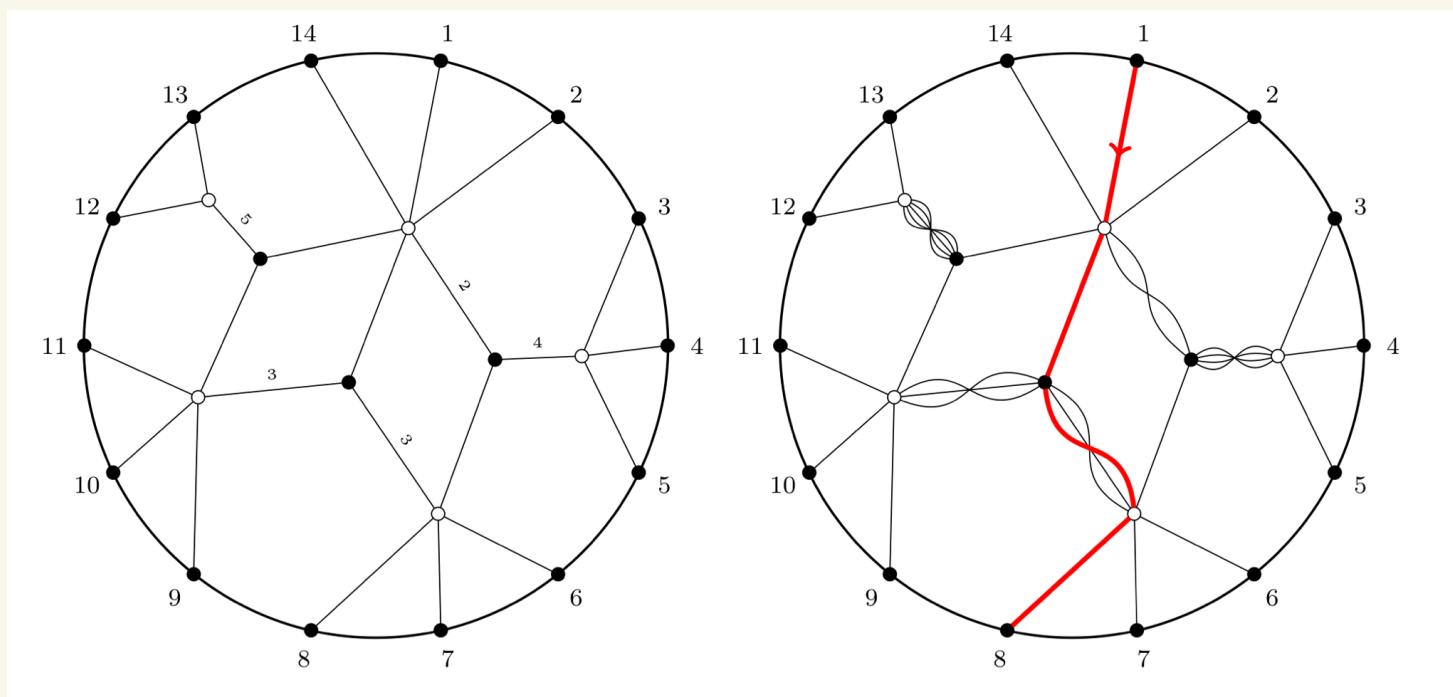
- Construction is by intricate Catalan combinatorics
- has no intrinsic characterization of the webs
- in fact, the web basis is dual canonical

1	4
2	7
3	9
5	11
6	12
8	15
10	16
13	17
14	18



Thm (Gaetz - P - Pfannerer - Striker - Swanson 2025)

- Fraser's webs, interpreted as HPGs, are exactly the fully reduced HPGs with appropriate boundary
- The Correspondence with tableaux is $\text{trip.}(\omega) = \text{prom.}(\tau)$



All internal faces of 2-column webs are squares.

Only $5l_r$ -square moves apply.

The web invariant is constant on the move class.

Springer (1976) gives a resolution of the variety of nilpotents in Sl_r , fibre $X_\lambda \subseteq \mathrm{Sl}_r/B$ is a Springer fibre

$$X_\lambda \xrightarrow{\text{partition}} \mathrm{Sl}_r/B$$

Springer fibres are far from irreducible:

$$\text{Components} \longleftrightarrow \mathrm{SYT}(\lambda)$$

X_λ is almost never smooth, but components can be smooth (not well understood)

Thm (Perrin-Smirnov 2012)

If $\lambda = 2^k = \boxed{\text{grid}}$, then all components of X_λ are normal and CM, but not all smooth

Thm (Fresse-Melnikov 2011)

Combinatorial characterization of smoothness

Let T be a standard tableau of shape $Y(u)$. To T , we associate the involution $\sigma_T \in \mathbf{S}_n^2(k)$ by the following procedure. Let $a_1 < \dots < a_{n-k}$ (resp. $j_1 < \dots < j_k$) be the entries in the first (resp. second) column of T . Put $\sigma_T = (i_1, j_1) \dots (i_k, j_k)$ where $i_1 = j_1 - 1$ and $i_p = \max\{a \in \{a_1, \dots, a_{n-k}\} \setminus \{i_1, \dots, i_{p-1}\} : a < j_p\}$ for $p = 2, \dots, k$.

For $i = 1, \dots, n$, let $c_T(i) \in \{1, 2\}$ be the index of the column of T containing i . Write $\tau^*(T) = \{i \in \{1, \dots, n-1\} : c_T(i) < c_T(i+1)\}$. Let $|\tau^*(T)|$ be the cardinality of $\tau^*(T)$.

1	4
2	6
3	7
5	
8	

Example Let $T = \boxed{\text{grid}}$. Then $\sigma_T = (3, 4)(5, 6)(2, 7)$. Thus 2, 3, 4, 5, 6, 7 are the end points of σ_T , and 1, 8 are the fixed points. We have $\tau^*(T) = \{3, 5\}$.

Our first criterion gives an explicit description of tableaux T for which the component \mathcal{K}^T is singular.

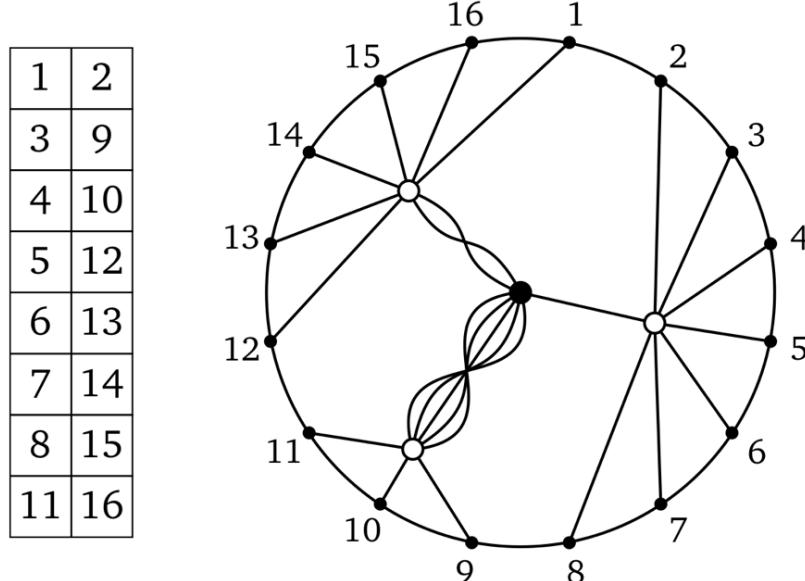
Theorem 1.2 Suppose that $Y(u)$ has two columns. Let T be a standard tableau of shape $Y(u)$. Let $\mathcal{K}^T \subset \mathcal{F}_u$ be the irreducible component associated to T .

- If $|\tau^*(T)| = 1$, then \mathcal{K}^T is smooth.
- If $|\tau^*(T)| = 2$, then \mathcal{K}^T is smooth if and only if at least one of $\{1, n\}$ is an end point of σ_T .
- If $|\tau^*(T)| = 3$, then \mathcal{K}^T is smooth if and only if both 1 and n are end points of σ_T and $(1, n) \notin \sigma_T$.
- If $|\tau^*(T)| \geq 4$, then \mathcal{K}^T is singular.

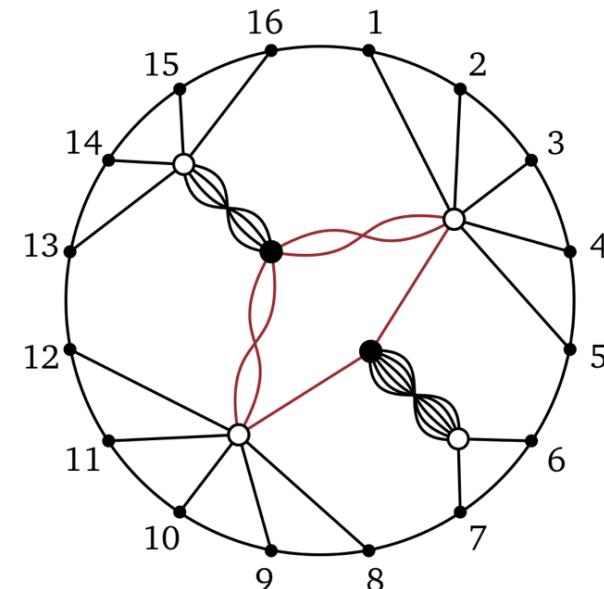
Thm (Cummings 2025+ε)

For $T \in \text{SYT}(r \times 2)$, the T -component of the Springer fibre is

Smooth \longleftrightarrow the web is a forest



1	6
2	8
3	9
4	10
5	13
7	14
11	15
12	16



Thm cont (Cummings 2025+6)

Smooth components X_T, X_U

have the

Same Poincaré
polynomial

T, U lie in the
Same promotion-evacuation
Orbit

Webs lie in the same
dihedral orbit

Exact enumeration of smooth components,
correcting Mansour (2025)

Equinumerous with a pattern avoidance class
of permutations

Arboreal webs

We say an HPG is arboreal if the underlying graph is a forest

Thm (Cherny-P-Pfannerer 2025+2E)

Arboreal HPGs are fully reduced and correspond to "arboreal" tableaux under

$$\text{trip.}(\omega) = \text{prom.}(\tau)$$

Gives a good basis of the subspace of "arboreal" invariants

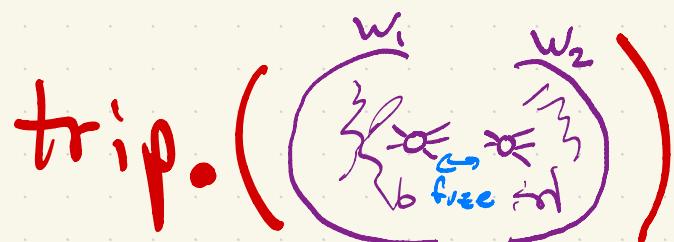
This comes from a more general "gluing" operation.

Thm (Cherny-P-Pfannenrever 2025 + 2€)

If W_1, W_2 are fully reduced r -HPGs with

$\text{trip.}(W_i) = \text{prom.}(\mathcal{T}_i)$, then

is fully reduced with



$$\text{trip.} \left(\text{union of } W_1 \text{ and } W_2 \right) = \text{prom.} \left(\text{matrix} \right)$$

Diagram illustrating the mapping between the union of two components and a corresponding matrix. The matrix is a 6x3 grid with the following values:

1	2	4
3	5	7
6	8	11
9	10	14
12	13	15

A blue bracket labeled "free" points to the value 14 in the fourth row, third column. A red bracket encloses the entire matrix.

So we can handle also

- few cycles
- isolated cycles
- 2-column regions

Thank

you!

