Monoidal categorification and crystals

Euiyong Park

University of Seoul

Workshop "Category Theory, Combinatorics, and Machine Learning" 17 September 2025

Categorification

Question (Categorification)

Given an algebraic object A, find a category C with functors F such that

$$(K(\mathcal{C}), [F]) \simeq A,$$

where $K(\mathcal{C})$ is the Grothendieck group of \mathcal{C} .

Question (Categorification)

Given an algebraic object A, find a category C with functors F such that

$$(K(\mathcal{C}), [F]) \simeq A,$$

where K(C) is the Grothendieck group of C.

Example Let A be a ring. Then the question can be written as follows:

Find a good abelian category ${\mathcal C}$ with \otimes such that

$$A \qquad \stackrel{\sim}{---} \qquad K(C)$$

$$+ \longleftrightarrow \oplus$$

$$\chi \longrightarrow$$

Categorification

Question (Categorification)

Given an algebraic object A, find a category C with functors F such that

$$(K(\mathcal{C}), [F]) \simeq A,$$

where K(C) is the Grothendieck group of C.

Example Let A be a ring. Then the question can be written as follows:

Find a good abelian category ${\mathcal C}$ with \otimes such that

$$\begin{array}{cccc}
A & \xrightarrow{\sim} & \mathcal{K}(\mathcal{C}) \\
+ & \longleftrightarrow & \oplus \\
x & \longleftrightarrow & \otimes
\end{array}$$

Question Can we consider a categorification for cluster algebras (algebra + cluster structure)?

Cluster algebras were introduced by Fomin-Zelevinsky ([FZ02]).

- ▶ Index set $K := K^{ex} \cup K^{fr}$,
- **Exchange matrix** $\widetilde{B} := (b_{i,j})_{(i,j) \in K \times K^{ex}}$ such that

 $\{\widetilde{B}\} \stackrel{1-1}{\longleftrightarrow}$ quiver with no loops and no 2 cycles

Cluster algebras

Monoidal categorification

Cluster algebras were introduced by Fomin-Zelevinsky ([FZ02]).

- ▶ Index set $K := K^{ex} \cup K^{fr}$,
- **Exchange matrix** $\widetilde{B} := (b_{i,j})_{(i,j) \in K \times K^{ex}}$ such that

 $\{\widetilde{B}\} \overset{1-1}{\longleftrightarrow}$ quiver with no loops and no 2 cycles

Example

Let $K=\{1,2,3\}$ with $K^{\text{ex}}=\{1\}$ and $K^{\text{fr}}=\{2,3\}.$

$$\widetilde{B} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \longleftrightarrow 1 \longrightarrow \boxed{2}$$

Let A be a commutative \mathbb{Q} -algebra contained in a field F.

▶ The pair $S = (\{x_i\}_{i \in K}, \widetilde{B})$ is a seed in A if x_i 's are alg. indep. and \widetilde{B} is an exchange matrix.

Let A be a commutative \mathbb{Q} -algebra contained in a field F.

- ▶ The pair $S = (\{x_i\}_{i \in K}, \widetilde{B})$ is a seed in A if x_i 's are alg. indep. and \widetilde{B} is an exchange matrix.
- ▶ For $t \in K^{\text{ex}}$, the mutation $\mu_t(\{x_i\}, \widetilde{B}) = (\{x_i'\}, \widetilde{B}')$ is given by

$$(\widetilde{B}')_{i,j} := egin{cases} -b_{i,j} & ext{if } i=t ext{ or } j=t, \ b_{i,j}+(-1)^{\delta(b_{i,t}<0)} ext{max}(b_{i,t}b_{t,j},0) & ext{otherwise,} \end{cases}$$
 $x_i' := egin{cases} (\prod_{b_{j,t}>0}x_j^{b_{j,t}}+\prod_{b_{j,t}<0}x_j^{-b_{j,t}})/x_t & ext{if } i=t, \ x_i & ext{otherwise,} \end{cases}$

Let A be a commutative \mathbb{Q} -algebra contained in a field F.

- ▶ The pair $S = (\{x_i\}_{i \in K}, \widetilde{B})$ is a seed in A if x_i 's are alg. indep. and \widetilde{B} is an exchange matrix.
- ▶ For $t \in K^{\text{ex}}$, the mutation $\mu_t(\{x_i\}, \widetilde{B}) = (\{x_i'\}, \widetilde{B}')$ is given by

$$(\widetilde{B}')_{i,j} := \begin{cases} -b_{i,j} & \text{if } i = t \text{ or } j = t, \\ b_{i,j} + (-1)^{\delta(b_{i,t} < 0)} \max(b_{i,t}b_{t,j}, 0) & \text{otherwise,} \end{cases}$$

$$x'_i := \begin{cases} (\prod_{b_{j,t} > 0} x_j^{b_{j,t}} + \prod_{b_{j,t} < 0} x_j^{-b_{j,t}})/x_t & \text{if } i = t, \\ x_i & \text{otherwise,} \end{cases}$$

- The cluster algebra $\mathbb{A}(S)$ with the initial seed S= \langle all cluster variables obtained from S by applying many $\mu_t \rangle \subset F$
- ▶ A has a cluster algebra structure if A = A(S) for some initial seed S.

Example Let x, y, z be indeterminates.

$$A:=\langle x,y,z,\frac{y+z}{x}\rangle\subset\mathbb{Q}(x,y,z)=:F$$

Example Let x, y, z be indeterminates.

$$A := \langle x, y, z, \frac{y+z}{x} \rangle \subset \mathbb{Q}(x, y, z) =: F$$

Then A has a cluster algebra structure with the initial seed:

Here, \square denotes frozen variables. The mutation μ_x gives another seed.

Monoidal categorification

Monoidal categorification

We assume that

- ► A has a cluster alg structure,
- \triangleright \mathscr{C} is an abelian category with tensor functor \otimes ,
- \blacktriangleright we regard $\mathscr C$ as a categorification of A.

Monoidal categorification

We assume that

- ► A has a cluster alg structure,
- $ightharpoonup \mathscr{C}$ is an abelian category with tensor functor \otimes ,
- ightharpoonup we regard $\mathscr C$ as a categorification of A.

Definition $S := (\{M_i\}_{i \in K}, \widetilde{B})$ is said a monoidal seed in \mathscr{C} if

- (i) \widetilde{B} is an exchange matrix,
- (ii) any tensor product $M_{i_1} \otimes M_{i_2} \otimes \cdots \otimes M_{i_t}$ is simple,
- (iii) $M_i \otimes M_j \simeq M_j \otimes M_i$ for any i, j,

Note S matches with a seed $(\{x_i\}_{i \in K}, \widetilde{B})$ of A.

Definition

For any $k \in K^{\text{ex}}$, a monoidal seed $S = (\{M_i\}_{i \in K}, \widetilde{B})$ admits a mutation in direction k if \exists simple object M'_k such that

(i) \exists exact sequence in \mathscr{C}

$$0 \to \bigotimes_{b_{j,k} > 0} M_j^{\otimes b_{j,k}} \to M_k \otimes M_k' \to \bigotimes_{b_{j,k} < 0} M_j^{\otimes -b_{j,k}} \to 0$$

(ii) the pair $\mu_k(S) := (\{M_i\}_{i \neq k} \cup \{M'_k\}, \mu_k(\widetilde{B}))$ is a monoidal seed in \mathscr{C} .

Note This exact sequence matches with mutation in *A*, i.e.,

$$x'_{k} = (\prod_{b_{j,k>0}} x_{j}^{b_{j,k}} + \prod_{b_{j,k<0}} x_{j}^{-b_{k,k}})/x_{k}$$



Definition

For any $k \in K^{\text{ex}}$, a monoidal seed $S = (\{M_i\}_{i \in K}, \widetilde{B})$ admits a mutation in direction k if \exists simple object M'_k such that

(i) \exists exact sequence in \mathscr{C}

$$0 \to \bigotimes_{b_{j,k} > 0} M_j^{\otimes b_{j,k}} \to M_k \otimes M_k' \to \bigotimes_{b_{j,k} < 0} M_j^{\otimes -b_{j,k}} \to 0$$

(ii) the pair $\mu_k(\mathcal{S}) := (\{M_i\}_{i \neq k} \cup \{M_k'\}, \mu_k(\widetilde{B}))$ is a monoidal seed in \mathscr{C} .

Note This exact sequence matches with mutation in *A*, i.e.,

$$x_k \cdot x_k' = (\prod_{b_{j,k>0}} x_j^{b_{j,k}} + \prod_{b_{j,k<0}} x_j^{-b_{k,k}})$$

The following notion was introduced by Hernandez-Lerclerc [HL10].

Definition

The category C is a monoidal categorification of a cluster alg A if

(i) the category C categorifies A as an algebra, i.e.,

$$\begin{array}{cccc} \mathcal{C} & \oplus & \otimes \\ \text{decategorification} & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

- (ii) \exists a monoidal seed $S = (\{M_i\}_{i \in K}, \widetilde{B})$ s.t. $[S] := (\{[M_i]\}_{i \in K}, \widetilde{B})$ is an initial seed of A.
- (iii) the monoidal seed S admits successive mutations in all directions.

Remark Let C be a (good) category with \otimes , and set

$$G := \{ \text{ [simples] in } C \} \subset A.$$

Suppose that C is a monoidal categorification of A.

- ▶ The structure constants for the basis G are non-negative integers.
- Every cluster monomial is contained in G.

Remark Let C be a (good) category with \otimes , and set

$$G := \{ \text{ [simples] in } C \} \subset A.$$

Suppose that C is a monoidal categorification of A.

- ▶ The structure constants for the basis G are non-negative integers.
- Every cluster monomial is contained in G.

Example

- (i) Monoidal categorification for quantum unipotent coordinate rings (Kang-Kashiwara-Kim-Oh [KKKO18]),
- (ii) Monoidal categorification for Hernandez-Leclerc categories (Hernandez-Leclerc, Nakajima, Qin, Kashiwara-Kim-Oh-P. [KKOP24])

Quantum groups and quiver Hecke algebras

Quantum groups and quiver Hecke algebras

Let

- $ightharpoonup A := (a_{ii})_{i,i \in I}$ (generalized Cartan matrix)
- $ightharpoonup Q^+ := \sum_{i \in I} \mathbb{Z}_{>0} \alpha_i$ (positive root lattice)

For convenience, we assume that A is of **symmetric type** in the talk.

Quantum groups and quiver Hecke algebras

Let

- $ightharpoonup A := (a_{ij})_{i,j \in I}$ (generalized Cartan matrix)
- ▶ $Q^+ := \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ (positive root lattice)

For convenience, we assume that A is of symmetric type in the talk.

Definition

▶ The quantum group $U_q(\mathfrak{g})$ associated with A is the $\mathbb{Q}(q)$ -alg generated by e_i, f_i $(i \in I)$ and q^h / \sim .

Quantum groups and quiver Hecke algebras

Let

- ▶ A := $(a_{ij})_{i,j \in I}$ (generalized Cartan matrix)
- ▶ $Q^+ := \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ (positive root lattice)

For convenience, we assume that A is of symmetric type in the talk.

Definition

- ▶ The quantum group $U_q(\mathfrak{g})$ associated with A is the $\mathbb{Q}(q)$ -alg generated by e_i, f_i $(i \in I)$ and q^h / \sim .
- (Quantum unipotent coordinate ring)

$$A_q(\mathfrak{n}) := \bigoplus_{\beta \in Q_-} A_q(\mathfrak{n})_{\beta},$$

where $\mathrm{A}_q(\mathfrak{n})_{eta}:=\mathsf{Hom}(\mathit{U}^+_q(\mathfrak{g})_{eta},\mathbb{Q}(q))$

Note As an algebra, $A_q(\mathfrak{n}) \simeq U_q^-(\mathfrak{g})$.

Definition (Khovanov-Lauda [KL09], Rouquier [R08])

Let $\beta \in \mathbb{Q}^+$ with height m. The quiver Hecke algebra $R(\beta)$ (or KLR algebra) associated with A is the \mathbb{Z} -graded \mathbb{C} -algebra generated by

$$e(\nu) \ (\nu \in I^{\beta}), \quad x_k \ (1 \le k \le m), \quad \tau_t \ (1 \le t \le m-1)$$

satisfying certain defining relations.

Definition (Khovanov-Lauda [KL09], Rouguier [R08])

Let $\beta \in \mathbb{Q}^+$ with height m. The quiver Hecke algebra $R(\beta)$ (or KLR algebra) associated with A is the Z-graded C-algebra generated by

$$e(\nu) \ (\nu \in I^{\beta}), \quad \mathsf{x}_k \ (1 \le k \le m), \quad \tau_t \ (1 \le t \le m-1)$$

satisfying certain defining relations.

Category R-gmod := \bigcap $R(\beta)$ -gmod, $\beta \in Q^+$

where $R(\beta)$ -gmod := cat. of finite dimensional graded $R(\beta)$ -modules.

Definition (Khovanov-Lauda [KL09], Rouquier [R08])

Let $\beta \in \mathbb{Q}^+$ with height m. The quiver Hecke algebra $R(\beta)$ (or KLR algebra) associated with A is the \mathbb{Z} -graded \mathbb{C} -algebra generated by

$$e(\nu) \ (\nu \in I^{\beta}), \quad \mathsf{x}_k \ (1 \le k \le m), \quad \tau_t \ (1 \le t \le m-1)$$

satisfying certain defining relations.

Category R-gmod := $\bigoplus_{\beta \in Q^+} R(\beta)$ -gmod,

where $R(\beta)$ -gmod := cat. of finite dimensional graded $R(\beta)$ -modules.

 \rightsquigarrow Convolution product $M \circ N$

$$- \circ - : R(\beta)\operatorname{-gmod} \times R(\gamma)\operatorname{-gmod} \longrightarrow R(\beta + \gamma)\operatorname{-gmod}$$

$$(M, N) \longmapsto R(\beta + \gamma) \otimes_A (M \boxtimes N)$$

where $A := R(\beta) \otimes R(\gamma)$.

Theorem Categorification theorem (Khovanov-Lauda, Rouquier)

The category R-gmod categorifies $A_q(\mathfrak{n})$, i.e.,

$$R ext{-gmod}$$
decategorification \bigwedge categorification $K(R ext{-gmod}) \overset{\sim}{\sim} A_q(\mathfrak{n})$

where the \mathbb{Z} -grading of R gives a $\mathbb{Z}[q, q^{-1}]$ -module structure.

 $\mathrm{A}_q(\mathfrak{n}(w)):=\mathsf{subalg}$ of $\mathrm{A}_q(\mathfrak{n})$ gen. by dual PBW vectors w.r.t. w.

Quantum groups and quiver Hecke algebras

 $A_q(\mathfrak{n}(w)) := \text{subalg of } A_q(\mathfrak{n}) \text{ gen. by dual PBW vectors w.r.t. } w.$

A_q($\mathfrak{n}(w)$) has a quantum cluster algebra structure (Geiß-Leclerc-Schröer [GLS13], Goodearl-Yakimov [GY17]).

 $A_q(\mathfrak{n}(w)) := \text{subalg of } A_q(\mathfrak{n}) \text{ gen. by dual PBW vectors w.r.t. } w.$

- A_q($\mathfrak{n}(w)$) has a quantum cluster algebra structure (Geiß-Leclerc-Schröer [GLS13], Goodearl-Yakimov [GY17]).
- ▶ \exists subcategory $C_w \subset R\text{-gmod}$ such that

$$K(\mathcal{C}_w) \simeq \mathrm{A}_q(\mathfrak{n}(w))$$

(McNamara, Brundan-Kleshchev-McNamara, Kashiwara-Kim-Oh-P.)

 $A_q(\mathfrak{n}(w)) := \text{subalg of } A_q(\mathfrak{n}) \text{ gen. by dual PBW vectors w.r.t. } w.$

- A_q($\mathfrak{n}(w)$) has a quantum cluster algebra structure (Geiß-Leclerc-Schröer [GLS13], Goodearl-Yakimov [GY17]).
- ▶ \exists subcategory $C_w \subset R\text{-gmod}$ such that

$$K(\mathcal{C}_w) \simeq \mathrm{A}_q(\mathfrak{n}(w))$$

(McNamara, Brundan-Kleshchev-McNamara, Kashiwara-Kim-Oh-P.)

Theorem Monoidal categorification ([Kang-Kashiwara-Kim-Oh])

- $ightharpoonup C_w$ gives a monoidal categorification of $A_q(\mathfrak{n}(w))$.
- The set

$$G(w) := \{ \text{ simple modules in } C_w \}$$

is a $\mathbb{Z}[q^{\pm 1}]$ -basis of $A_q(\mathfrak{n}(w))$. Moreover

 $\{\text{every cluster monomial}\}\subset \mathbf{G}(w)$

In this case, we have

$$\mathrm{A}_q(\mathfrak{n}) \simeq U_q^-(\mathfrak{sl}_3) \simeq \mathbb{Q}(q) \langle f_1, f_2
angle / ext{(quantum serre relation)}.$$

Example (A_2 type, $w = w_0$ case, i.e., $C_{w_0} = R$ -gmod)

In this case, we have

$$\mathrm{A}_q(\mathfrak{n})\simeq U_q^-(\mathfrak{sl}_3)\simeq \mathbb{Q}(q)\langle f_1,f_2
angle/(\mathsf{quantum\ serre\ relation}).$$

We set

$$x := f_1, \quad y := \frac{f_1 f_2 - q f_2 f_1}{1 - q^2}, \quad z := \frac{f_2 f_1 - q f_1 f_2}{1 - q^2}.$$

Then we have $x \cdot f_2 = v + az$.

Example (A_2 type, $w = w_0$ case, i.e., $C_{w_0} = R$ -gmod)

In this case, we have

$$\mathrm{A}_q(\mathfrak{n}) \simeq U_q^-(\mathfrak{sl}_3) \simeq \mathbb{Q}(q) \langle \mathit{f}_1, \mathit{f}_2 \rangle / (\mathsf{quantum\ serre\ relation}).$$

We set

$$x := f_1, \quad y := \frac{f_1 f_2 - q f_2 f_1}{1 - q^2}, \quad z := \frac{f_2 f_1 - q f_1 f_2}{1 - q^2}.$$

Then we have $x \cdot f_2 = y + qz$, that is, $f_2 = \frac{1}{y} \cdot (y + qz)$.

Example (A_2 type, $w = w_0$ case, i.e., $C_{w_0} = R$ -gmod)

In this case, we have

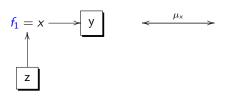
$$\mathrm{A}_q(\mathfrak{n}) \simeq U_q^-(\mathfrak{sl}_3) \simeq \mathbb{Q}(q) \langle f_1, f_2 \rangle / (\mathsf{quantum\ serre\ relation}).$$

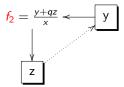
We set

$$x := f_1, \quad y := \frac{f_1 f_2 - q f_2 f_1}{1 - q^2}, \quad z := \frac{f_2 f_1 - q f_1 f_2}{1 - q^2}.$$

Then we have $x \cdot f_2 = y + qz$, that is, $f_2 = \frac{1}{x} \cdot (y + qz)$.

The (quantum) cluster algebra structure is given as follows:





Example (Type A_2 , Cluster algebra structure on R_{A_2} -gmod)

$$\begin{array}{cccc} \mathrm{A}_q(\mathfrak{n}) & \stackrel{\mathsf{categorification}}{\longleftrightarrow} & R_{A_2}\text{-gmod} \\ x,y,z,x' & & & & L(1),L(12),L(21), \underline{L(2)} \\ \mathsf{mutation} & & & \mathsf{special exact sequence} \end{array}$$

where L(i) := 1-dim'l $R(\alpha_i)$ -module, $L(ij) := hd(L(i) \circ L(j))$ and

$$x = f_1, \quad y = \frac{f_1 f_2 - q f_2 f_1}{1 - q^2}, \quad z = \frac{f_2 f_1 - q f_1 f_2}{1 - q^2}, \quad x' := f_2.$$

Example (Type A_2 , Cluster algebra structure on R_{A_2} -gmod)

$$A_q(\mathfrak{n}) \stackrel{\mathsf{categorification}}{\longleftrightarrow} R_{A_2}\operatorname{-gmod}$$
 $x, y, z, x' \longleftrightarrow L(1), L(12), L(21), L(2)$
mutation \longleftrightarrow special exact sequence

where L(i) := 1-dim'l $R(\alpha_i)$ -module, $L(ij) := hd(L(i) \circ L(j))$ and

$$x = f_1, \quad y = \frac{f_1 f_2 - q f_2 f_1}{1 - q^2}, \quad z = \frac{f_2 f_1 - q f_1 f_2}{1 - q^2}, \quad \mathbf{x'} := \mathbf{f_2}.$$

The mutation $\mathbf{x}' = \frac{1}{z} \cdot (\mathbf{y} + \mathbf{q}\mathbf{z})$ corresponds

$$0 \rightarrow qL(21) \rightarrow L(1) \circ L(2) \rightarrow L(12) \rightarrow 0.$$

Crystals

For convenience, we assume that it is of **finite type**.

Observation $A_q(\mathfrak{n})$ has a rich structure.

Crystals

For convenience, we assume that it is of **finite type**.

Observation $A_a(\mathfrak{n})$ has a rich structure.

▶ (Kashiwara [K91]) $B(\infty) :=$ the infinite crystal of $U_q^-(\mathfrak{g}) \simeq A_q(\mathfrak{n})$

crystal base → crystal graph → algebraic combinatorics

Crystals

For convenience, we assume that it is of **finite type**.

Observation $A_a(\mathfrak{n})$ has a rich structure.

- ▶ (Kashiwara [K91]) $B(\infty) :=$ the infinite crystal of $U_a^-(\mathfrak{g}) \simeq A_a(\mathfrak{n})$ crystal base \rightsquigarrow crystal graph \rightsquigarrow algebraic combinatorics
- ► (Lauda-Vazirani [LV11]) There is a crystal structure on simples, i.e.,

Categorical crystal :
$$\{ \text{ simple } R\text{-modules } \} \xrightarrow{\simeq} B(\infty)$$

where $\tilde{f}_i(M) := \operatorname{hd}(L(i) \circ M)$ for $i \in I$.

Crystals

For convenience, we assume that it is of **finite type**.

Observation $A_q(\mathfrak{n})$ has a rich structure.

- ► (Kashiwara [K91]) $B(\infty) :=$ the infinite crystal of $U_q^-(\mathfrak{g}) \simeq A_q(\mathfrak{n})$ crystal base \rightsquigarrow crystal graph \rightsquigarrow algebraic combinatorics
- ► (Lauda-Vazirani [LV11]) There is a crystal structure on simples, i.e.,

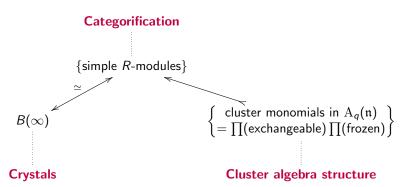
Categorical crystal :
$$\{ \text{ simple } R\text{-modules } \} \xrightarrow{\simeq} B(\infty)$$

where $\tilde{f}_i(M) := hd(L(i) \circ M)$ for $i \in I$.

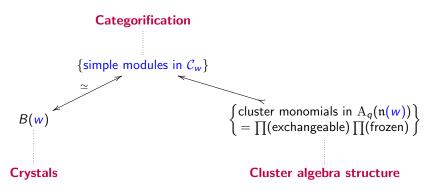
 $ightharpoonup A_q(\mathfrak{n}(w))$ has a quantum cluster algebra structure, i.e.,

Cluster alg str : { cluster monomials } \longrightarrow $B(\infty)$

Three structures related to $A_q(\mathfrak{n})$



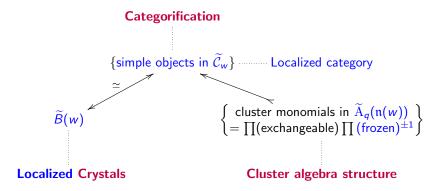
Three structures related to $A_q(\mathfrak{n}(w))$



Here
$$B(w) := \{b \in B(\infty) \mid G^{\mathrm{up}}(b) \in A_q(\mathfrak{n}(w))\},$$

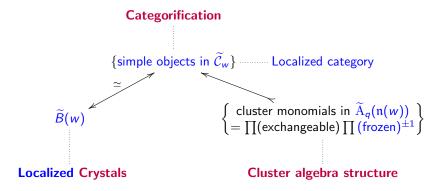
 $G^{\mathrm{up}}(b) = \text{the member of the dual canonical basis cor. to } b.$

Three structures related to the localized algebra $\widehat{A}_q(\mathfrak{n}(w))$



(Localized crystal structure : (Nakashima [N22], Kashiwara-Nakashima [KN25])

Three structures related to **the localized algebra** $\widetilde{A}_q(\mathfrak{n}(w))$



(Localized crystal structure : (Nakashima [N22], Kashiwara-Nakashima [KN25])

Idea Use **crystals** to study the cluster structure via categorification!!

Quantum twist automorphism

We consider

 $\eta_w := \text{quantum twist automorphism of the localized alg } \widehat{A}_q(\mathfrak{n}(w))$ introduced by Kimura-Oya ([KO21]).

- ▶ η_w is a quantum analogue of the Berenstein-Fomin-Zelevinsky twist automorphisms on unipotent cells ([BFZ96]). (* $^{\exists}$ other quantum twist automorphism by Berenstein-Rupel [BR15]).
- η_w is related to the dual functor on $\widetilde{\mathcal{C}}_w$ under monoidal categorification (Kashiwara-Kim-Oh-P. [KKOP21]).
- η_w is related to the notion of green-to-red sequence or injective-reachablity in cluster algebras.

Proposition (Kimura-Oya)

The quantum twist map η_w permutes the dual canonical basis of $\widetilde{\mathrm{A}}_q(\mathfrak{n}(w))$.

Proposition (Kimura-Oya)

The quantum twist map η_w permutes the dual canonical basis of $\widetilde{A}_a(\mathfrak{n}(w)).$

 \rightsquigarrow we have $\mathcal{D}_w := \eta_w^{-1}|_{q=0} \curvearrowright \text{ localized crystal } \widetilde{B}(\infty)$

Proposition (Kimura-Oya)

The quantum twist map η_w permutes the dual canonical basis of $\widetilde{A}_q(\mathfrak{n}(w))$.

$$ightsquigarrow$$
 we have $\mathcal{D}_w:=\eta_w^{-1}|_{q=0} \curvearrowright ext{ localized crystal } \widetilde{B}(\infty)$

Recent result (Jung-P.) ([JP25]; arXiv:2507.01306)

Let $U_q(\mathfrak{g})$ be a quantum group of a symmetrizable Kac-Moody type and w an arbitrary element in W.

- (i) We give an crystal theoretic-description of \mathcal{D}_w .
- (ii) Using this description, we study
 - In minuscule cases (ABCD type), combinatorial description of \mathcal{D}_w ,
 - In type A, an explicit formula of the periodicity of \(\mathcal{D}_w \) (up to frozens) for special \(w \)
 - examples for periodicity of \mathcal{D}_w (up to frozens) using computer program.

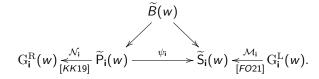
(Idea of proof for (i))

- (a) Cosider two kinds of g-vectors $g_{\mathbf{i}}^{\mathrm{L}}(b)$ and $g_{\mathbf{i}}^{\mathrm{R}}(b)$ for $b \in \widetilde{B}(w)$
- (b) ([Kashiwara-Kim], [Kashiwara-Kim-Oh-P.])

$$\mathrm{g}^{\mathrm{R}}_{\mathbf{i}}(\mathit{M}) + \mathrm{g}^{\mathrm{L}}_{\mathbf{i}}(\mathscr{D}_{\mathit{w}}(\mathit{M})) = 0 \qquad \text{for a simple module } \mathit{M} \in \mathcal{C}_{\mathit{w}}.$$

where \mathscr{D} is the right dual functor of $\widetilde{\mathcal{C}}_w$.

(c) Consider the following commuting diagram:



where $\widetilde{P}_{i}(w)$ is the PBW parameterization and $\widetilde{S}_{i}(w)$ is the string parametrization for $\widetilde{B}(\infty)$.

References

- [BFZ96] A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122(1):49–149, 1996.
- [BR15] A. Berenstein and D. Rupel, Quantum cluster characters of Hall algebras, Selecta Math. (N.S.), 21(4):1121–1176, 2015.
- [FZ02] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529.
- [GLS13] C. Geiß, B. Leclerc, and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math. (N.S.), 19(2):337–397, 2013.
- [GY17] K. R. Goodearl and M. T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc. 247 (2017), no. 1169, vii+119 pp.
- [HL10] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341.
- [JP25] W.-S. Jung and E. Park, Crystals and quantum twist automorphisms, arXiv:2507.01306 (2025).
- [KKK018] S.-J. Kang, M. Kashiwara, M. Kim, and S.-j.Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426.
 - [K91] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke. Math. J. 154 (1991), 265–341.
 - [KK19] M. Kashiwara and M. Kim, Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math., 155(12):2263–2295, 2019.
- [KKOP21] M. Kashiwara, M. Kim, S.-J. Oh, and E. Park, Localizations for quiver Hecke algebras, Pure Appl. Math. Q., 17(4):1465–1548, 2021.
- [KKOP24] M. Kashiwara, M. Kim, S.-j. Oh, and E. Park, Monoidal categorification and quantum affine algebras II, Inventiones Mathematicae 236 (2024), 1–88.
 - [KN25] M. Kashiwara and T. Nakashima, Crystal Structure of Localized Quantum Unipotent Coordinate Category, arXiv:2502.14319 (2025).
 - [KO21] Y. Kimura and H. Oya, Twist automorphisms on quantum unipotent cells and dual canonical bases, Int. Math. Res. Not. IMRN, (9):6772–6847, 2021.
 - [KL09] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309-347.
 - [LV11] A. Lauda, and M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803-861.
 - [N22] T. Nakashima, Categorified crystal structure on localized quantum coordinate rings, arXiv:2208.08396 (2022).
 - [R08] R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).

THANK YOU

