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The missing corner

Can the theory of plethystically modified Macdonald polynomials

H,(x; g, t) be lifted to the nonsymmetric setting?

Ea(x1,..., XN G, 1)

nonsymmetric ?
Macdonalds
Hecke sym.
Ju,(X;qvt) H;J,(X;qvt)
integral form modified

F(x) = flx/(1 = t)]

Macdonalds Macdonalds



Macdonald polynomials

® Macdonald polynomials P,(x; g, t) form a basis for Ag(q, ().

® Integral form Macdonald polynomials J,(x; g, t) = ¢, P.(x; g, t) have
coefficients in Z][q, t].

® Plethystically modified Macdonald polynomials

Hu(x; g, t) = Ju[x/(1 —t); g, t].
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Macdonald polynomials

Macdonald polynomials P,,(x; g, t) form a basis for Ag(q,¢)(x)-

Integral form Macdonald polynomials J,(x; q, t) = ¢, P.(x; g, t) have
coefficients in Z][q, t].

Plethystically modified Macdonald polynomials
Hu(x; g, t) = Ju[x/(1 —t); g, t].
Macdonald positivity: the H,, are Schur positive.
HM(X; ]., ].) = (Sl)n = h(ln).
"W H,(x; g, t 1) = Frobenius series of the Garsia-Haiman module
M, a QS,-submodule of Q[x1,...,Xn, y1,...,¥n] of dimension n!.

= tsy 4 (1+qt + ¢%t)ss1 + (g + t¢%)s2 + (9 + ¢* + ¢°t)so11 + ° sunn
t1] Sa S31 S31+ Spp Sa1
0| S31 S+ S11 a1 S1111
0 1 2 3

q q q q



Nonsymmetric Macdonald polynomials

The Cherednik operators Yi,..., Yy act on Q(g, 1.“)[xfcl7 e ,xﬁl].
f— S,'f .
Tif=sf+(1—t)x;,——, (Demazure-Lusztig operators)
Xj — X,'+1

Of =f(x2,..., XN, gX1),
Yi=t T Tixqd T - TN

1

Def. The nonsymmetric Macdonald polynomials E,(x1,...,xn; g, t) are
the joint eigenfunctions of the commuting operators Yi,..., Y.
® {E.} ez forms a basis for Q(q, t)xi, ..., xbl).

e Knop introduced integral form nonsymmetric Macdonald polynomials
Eo = coE, which lie in Z[q, t][x{, . .. ,xﬁl].
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Can the theory of plethystically modified Macdonald polynomials
H,(x; g, t) be lifted to the nonsymmetric setting?

Ealx1;-- - xn: g, ) ?
Hecke sym.
Ju(x; g 1) Hu(x: g, t)

f(x)—f[x/(1—t)]



The missing corner

Can the theory of plethystically modified Macdonald polynomials
H,(x; g, t) be lifted to the nonsymmetric setting?

Ealx1;-- - xn: g, ) ?
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Ju(x; g 1) Hu(x: g, t)

f(x)—f[x/(1—t)]

Features of the plethystically modified Macdonald polynomials H,(x; g, t):
® Macdonald positivity: the H,, are Schur positive.
® Frobenius series of the Garsia-Haiman modules.
® V operator and shuffle theorems.

® H, is a positive sum of ribbon LLT polynomials.



Related work

5a(X1, coay XNG ], t) _ 7
Hecke sym.
Ju(x; g, t) Hu(x; q,t)

Fx) = fx/(1 = )]

Sanderson (2000) showed the &,|+=o are affine Demazure characters.
Assaf-Gonzalez (2019) showed the &, ;=0 are key positive.

Knop (2007) formulated a positivity conjecture for a stable version of
Eq involving Kazhdan-Lusztig theory.

Lapointe (2022) formulated another positivity conjecture for a stable
version of &,.

Related work by Goodberry and Orr, and Bechtloff Weising and Orr.



Filling in the missing corner

We fill in the missing corner with a nonsymmetric plethysm map I, and
modified r-nonsymmetric Macdonald polynomials nsHy\(x; g, t).

r

stable&, |\ (x; g, t) nsH, 1 (x; g, t)
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Filling in the missing corner

We fill in the missing corner with a nonsymmetric plethysm map I, and
modified r-nonsymmetric Macdonald polynomials nsHy\(x; g, t).

r

stable&, |\ (x; g, t) nsH, 1 (x; g, t)

Hecke sym. Weyl sym.

Jmn (% 9, ) Hipny, (xi g, 1)

F(x) = flx/(1 = t)]

P(r) = Q(qa t)[le <e 7Xr] ® /\Q(q,t)(xr—l-ly s )
® X = X1,X2,....
The nsH,\(x; g, t), for (n|A) € N" x Par, form a basis for P(r).

(7; A+ is the partition rearrangement of the concatenation (7; A).



Flagged fillings

® For B € N9 the column diagram of 3, cdg(p), consists of d
bottom-justified columns of heights 31, ..., 84.

cdg((2,1,0,4,2))



Flagged fillings

® For B € N9, the column diagram of 3, cdg(/3), consists of d
bottom-justified columns of heights (1, ..., 54.

® An r-flagged filling of cdg(B) is a map T: cdg(f) — Z such that

the box in the bottom of column / (if it exists) is < i, fori=1,...,r.
6
5
3 113
1]2 217
<1 <2

An r-flagged filling T, for r =2



Inversions

® An attacking pair is a pair a, b € cdg() such that

e b is strictly to the left of and in the same row as a, or
e b is one row below and strictly to the right of a.

e An attacking inversion is an attacking pair (a, b) with T(a) > T(b).
® inv(T) = # of attacking inversions of T.

Nl ]JO] O
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Inversions

® An attacking pair is a pair a, b € cdg() such that

e b is strictly to the left of and in the same row as a, or
e b is one row below and strictly to the right of a.

e An attacking inversion is an attacking pair (a, b) with T(a) > T(b).
® inv(T) = # of attacking inversions of T.

Nl ]JO] O

inv(T)=9



Modified r-nonsymmetric Macdonald polynomials nsH,;

® Des(T) = set of boxes b € cdg(8) such that T(b) > T(south(b)).

e arm(b) = # of boxes above and in the same column as b.

NEE

6 |
5 |
1
2

2]

Des(T) arms

Def. [B.-Haiman-Morse-Pun-Seelinger] The modified r-nonsymmetric
Macdonald polynomial indexed by nn € N" and partition A is

a0 ) =00 3T (] g )i
r-flagged fillings T beDes(T)
of cdg(8)

where 5 = (1; A).



Modified r-nonsymmetric Macdonald polynomials nsH,;

nSHm)\(X; q, t) = t”(5+) Z ( H qarm(b)+1 tleg(b)) = inv( T)XT

r-flagged fillings T b€Des(T)
of cdg(B)

Example. r =2, (n|\) = (21]2)

1 1 2 2 3 3
T 1] [1l2] [1[1] [i[2] [i[1] [i]2]
H qarm+1 tleg 1 1 qt qt qt qt
£n(B+) t t t t t t
total g, t statistic t 1 qt qt qt q

nSH21\G(X15X27X3; q, t) =

tx13 + X12X2 + thfxz + thlx22 + gt X12X3 + g x1x0X3



Key polynomials

Def. The Demazure operator w; acts on f € Q(q, t)[xlil, e ,xﬁl] by

xif — xjp18i(f
ﬂ_’_(f): i i+1 I( )
Xi — Xj+1
Def. The key polynomials or Demazure characters are constructed from
e Dy =x':= xl)‘1 . -x,’\\,"’ for partition .
® D (a) = TiDq for aj > ajya, for any a € NV,

Example.
5.2
5.2 5.2 4.3 3.4 2.5
D250 = 7T1D520 = 7T1(X1X2) = X1 X5 +X1X2 +X1X2 +X1X2

2 4 4 2
Doos = m2Dasp = Wz(Xf'Xz + X1 X5 + X% +X1X§)



Key polynomials and crystals

® B(A) = highest weight gl crystal of highest weight \.
® For SCB(A\)andi€[N-1], S:={f"b:be S, m>0} C B(\).

iz, 1 [
12] 12]
% f
A [A]2] f
2[2]—3 1[1]
13 3] 3

B(2,1,0)

ohe
b3
w(\an—l
Sl

character sp1(x1, x2, x3)



Key polynomials and crystals

® B(A) = highest weight gl crystal of highest weight \.
® For SCB(A\)andi€[N-1], S:={f"b:be S, m>0} C B(\).

1]1]
2

2
D10 = X{x2



Key polynomials and crystals

® B(A) = highest weight gl crystal of highest weight \.
® For SCB(A\)andi€[N-1], S:={f"b:be S, m>0} C B(\).

1[2] 1]1]
2 2

2 2 2
D19 = 7T1(X1X2) = X{X2 + X1X5



Key polynomials and crystals

® B(A) = highest weight gl crystal of highest weight \.
® For SCB(A\)andi€[N-1], S:={f"b:be S, m>0} C B(\).

1[2] 1]1]
2 12]

—

3] 3] FZFI{ 11}

<—
w<\|mr-l 1
T
|

D1go = momy (X12X2) = X12X2 + X12X3 + X1X22 + x1X0X3 + X1X§



Key polynomials and crystals

® B(A) = highest weight gl crystal of highest weight \.
® For SCB(A\)andi€[N-1], S:={f"b:be S, m>0} C B(\).

1[2] 1][1]
12] 2]
1]2]
22\€/i ‘ :1,,1‘
3

RRA{ )

o —[S]=

2[3] 1

Doz = mmami(x2x2) = s21(x1, X2, X3)



Demazure atoms

® Demazure atoms are defined the same as keys but with 7; :=7; — 1
in place of ;.

® Demazure atoms are related to key polynomials by Bruhat order
inclusion-exclusion.

D210 = A210

D120 = Az10 + Ai120

D201 = A210 + A2o1

D102 = Az10 + A120 + A201 + A102

Do21 = Az10 + A120 + A201 + Ao21

Do12 = A0 + A120 + Az01 + A102 + Ao21 + Aoi2



Demazure atoms

® Demazure atoms are defined the same as keys but with 7; :=7; — 1
in place of ;.

® Demazure atoms are related to key polynomials by Bruhat order
inclusion-exclusion.

./4120 ; 21} ; 1[ -/4210
1 J | )
1[3] ; U | Azgy
12] )
Aio2 Z
1]3]
13]

D102 = A210 + A120 + A201 + A102



Weyl symmetrization

For w = s;sj, - - - sj,, € Sy reduced, 7, = w7, - -,

Tw, 1S the Weyl symmetrization operator.

“Non-partition Schur function” s, := m,,x* is & an ordinary Schur
function or 0, for any o € NNV,

Sa(x1,...,xn) if a is a partition
Twy Ao = .
0 otherwise.



Atom positivity

Macdonald positivity: the modified Macdonald polynomials H,(x; q, t) are
Schur positive.

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The modified r-nonsymmetric Macdonald polynomials Weyl symmetrize to
modified Macdonald polynomials:

Two nsHp (X1, - -, X5 G, t) = Higony, (X1, -+ -5 xwvs g5 B),

where (n; )+ is the partition rearrangement of the concatenation (n; \).

Conjecture (B.-Haiman-Morse-Pun-Seelinger)

The nsH,\ are Demazure atom positive.

This gives a conjectural strengthening of Macdonald positivity.



Atom positivity

® TwonsHyn = Hepay, -

® Conj: nsH,, are Demazure atom positive.

t! S3 S21
t0 S21 S111
q° q!

symmetric Macdonald Ha1(x1, x2, x3; g, t) in Schurs



Atom positivity

® TwonsHyn = Hepay, -

® Conj: nsH,, are Demazure atom positive.

Az Ao Ao

tl| A
300 Aoz Aooz Az Agst Aoss

Azio Az Ao
0 A
A2 Ag21 Aor2

0 1

q q

symmetric Macdonald Hai(x1, x2, x3; g, t) in Demazure atoms



Atom positivity

® TwonsHyn = Hepay, -

® Conj: nsH,, are Demazure atom positive.

Azio Ao Ao
tl| Asg

Ao
0 A

0 1

q q

nsHo1 o (X1, X2, X3; @, ) in Demazure atoms

nsHp g = txf + X12X2 + gt X12X2 + gt X1X22 + gt X12X3 + g x1X2X3

= t A3po + A210 + qt A210 + gt A120 + gt A2o1 + g A111



Atom positivity

® TwonsHyn = Hepay, -

® Conj: nsH,, are Demazure atom positive.
] A Ao Ao
0 Ao Ao Ay
q° q

nsHioo(x1, X2, X3; @, ) in Demazure atoms



t-adic limit

e P(r) = Q(q, t)[Xl, R ,X,] & /\Q(q,t)(XH—l’ .. )
® X = X1,X2,....
Def. The sequence g1, g, ..., with gy € Q(q, t)[x1,...,xn], converges
t-adically to f(x) € P(r) if for all e > 0,
gN(Xl,...,XN)—f(Xl,...,XN,0,0,...)

has coefficients whose order of vanishing in t is at least e, for sufficiently
large N.

Example.
e L1+t 1+t+1t%... — .
® xq,tx1 + X2, t2x1 + X0 +x3, 3x1 + X0+ X3+ x4 — x0 +x3+--- € P(1).



Stable nonsymmetric Macdonald polynomials

Recall £,(x; g, t) = integral form nonsymmetric Macdonald polynomials.

Def. For (n|A\) € N" x Par, the integral form stable r-nonsymmetric
Macdonald polynomial stable&y 5 (x; g, t) € P(r) is given by

Stab|eg77|)\(x; q, t) = n||—>nf:o 5(77?0"?)\) (Xl7 ooy Xrgony OK()‘); q, t).

Remark. The stable&,\(X; g, t) are integral forms of stable versions
introduced by Bechtloff Weising.



Combinatorial and algebraic descriptions agree

® Define p0|: Q(qa t)[Xlila e 7Xr:t1] - @(q7 t)[X17 s 7Xr] by

.
pol(D,) = D, foraeN
0 fora € 2"\ N".

Def. The r-nonsymmetric plethysm map M,: P(r) — P(r) is given on
f(x1,...,x)g(x), where g is symmetric in x = x1,x2,..., by

I'I,(f(xl,...,xr)g(x)):g{ ] pol ( fha, .. x) )

H1§i<j§r(1 — tX;/x})

(1-1)



Combinatorial and algebraic descriptions agree

* Define pol: Q(q, t)[x;", -+, xF] = Q(q, t)[x1, ..., x/] by

,
pol(D,) = D, foraeN
0 fora € 2"\ N".

Def. The r-nonsymmetric plethysm map M,: P(r) — P(r) is given on
f(x1,...,x)g(x), where g is symmetric in x = x1,x2,..., by

N(f(x,...,x)g(x)) = g[ ] pol ( fha, .. x) )

[icicj<, (1 = txi/x))

(1-1)

Theorem (B.-Haiman-Morse-Pun-Seelinger)
Let (n|\) € N" x Par and set = (n; \). Then

M, (stable&y A (X; g, t)) = nsHy A (x; g, t)
_ #n(B+) Z ( H qarm(b)—i—ltleg(b)) = inv(T)y T

r-flagged fillings T~ b€Des(T)
of cdg(f)



Filling in the missing corner

stablegm)\(x; q, t) i nanp\(X; q, t)
Hecke sym. Weyl sym.
Jny. (X g, t) Hyiny. (X g, t)

f(x)—f[x/(1—t)]

n € N, X\ is a partition.
(7; M)+ is the partition rearrangement of the concatenation (7; \).

stable&y\(X; g, t) is the integral form stable r-nonsymmetric
Macdonald polynomial.

nsHy A (X; g, t) is the modified r-nonsymmetric Macdonald polynomial.
Jin:n). (X; g, t) is the integral form Macdonald polynomial.
H:ny, (X; g, t) is the modified Macdonald polynomial.



LLT polynomials

Let v = (11, - - -, Vk)) be a tuple of skew shapes.

Example.

(. B)




Let v = (11, - - -, Vk)) be a tuple of skew shapes.

® The content of a box in row y, column x is x — y.

Example.

=

LLT polynomials

-41-3 -2 -1(0]|1
3.2 -1/0|1]2
-2-10/1 23
-110(1 /23 4
0[1]2(3 4 5




LLT polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
® The content of a box in row y, column x is x — y.

® Reading order: label boxes by, ..., by by scanning each diagonal from
southwest to northeast, in order of increasing content.

bs | bg

( \ ) bs | bg

by | by
by | by
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® A pair (a, b) € v is attacking if a precedes b in reading order and
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® The content of a box in row y, column x is x — y.

® Reading order: label boxes by, ..., by by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a, b) € v is attacking if a precedes b in reading order and

o content(a) = content(b) and a € v(;), b € vy with i < j, or
o content(a) 4 1 = content(b) and a € v(;), b € vy with i > j.

Example.

bs | bg

( \ ) bs | bg
V= ), |

by | by
by | b7

AttaCking pairs: (b27 b3)7 (b3) b4)a (b47 b5)a (b47 bﬁ)a (b57 b7)7 (b67 b7)) (b77 b8)
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LLT polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
® The content of a box in row y, column x is x — y.

® Reading order: label boxes by, ..., by by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a, b) € v is attacking if a precedes b in reading order and

o content(a) = content(b) and a € v(;), b € vy with i < j, or
o content(a) 4 1 = content(b) and a € v(;), b € vy with i > j.

Example.

bs | bg

( \ ) bs | bg
V= ), |

by | by
by | b7

AttaCking pairs: (b2a b3)7 (b3a b4)a (b47 b5)a (b47 bﬁ)a (b57 b7)a (b67 b7)a (b7« b8)



LLT polynomials

® A semistandard tableau on v is a map T: v — Z, which restricts to a
semistandard tableau on each v;).

® An attacking inversion in T is an attacking pair (a, b) such
that T(a) > T(b).

Def. The LLT polynomial indexed by a tuple of skew shapes v is

g,,(x; t) — Z tinV(T)XT,

TESSYT(v)

where inv(T) is the number of attacking inversions in T and x” =[], x7(s)-
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LLT polynomials

® A semistandard tableau on v is a map T: v — Z, which restricts to a
semistandard tableau on each v;).

® An attacking inversion in T is an attacking pair (a, b) such
that T(a) > T(b).

Def. The LLT polynomial indexed by a tuple of skew shapes v is

g,,(x; t) — Z tinV(T)XT,

TESSYT(v)

where inv(T) is the number of attacking inversions in T and x” =[], x7(s)-

inversion

315

inv(T) =4, x| = xZxox3xaX2 x5



Flagged LLT polynomials

® letey,...,eq be the row ends of v, ordered in reverse reading order.
[ ]
[ ]
[ ]
Example. &
\ o
UV =
], |
€4
€2




Flagged LLT polynomials

Let eq,...,eq be the row ends of v, ordered in reverse reading order.
® Fix a nonnegative integer r < d.

T € SSYT(v) is flagged if T(e;) <ifori=1,2,...,r.

® FT,(v) = set of flagged semistandard tableaux on v.

Def. The flagged LLT polynomial indexed by r and v is

gr,u(X; t) — Z tinV(T)XT7

TEFT,(v)

Example. &

”:< |,} ) .

€4




Flagged LLT polynomials

® et eg,...,eq be the row ends of v, ordered in reverse reading order.
® Fix a nonnegative integer r < d.

T € SSYT(v) is flagged if T(e) <ifori=1,2,...,r.

FT,(v) = set of flagged semistandard tableaux on v.

Def. The flagged LLT polynomial indexed by r and v is
gr,u(x; t) _ Z tinv( T)XT,

TEeFT,(v)

Example.
2(3]|<3
| 11<1

vV =

], |

214 <4
1(2 <2

T € FT,(v) for r =4



Flagged LLT polynomials

Example. r=2 u:(EDED)

111 11 1

T 7 ./
11 1]2 2=

#inv(T) 1 t t?

Gru(xit) = x{ + txixe + t2xx3




Flagged LLT polynomials
Example. r=2 u:(EDED)

T 7 %
#inv(T) 1 " .2

Gro(x:t) = x{ + txix + t2x{x5

Example. P b (D | )
tinv(T) 1 ¢ ,

gr,u(x; t) :Xf’-i- tX12(X2—|—X3_|-...)



Signed flagged LLT polynomials

e Signed alphabet A=1<1<2<2---
e FTH(v) = fillings of v from A satisfying
e unbarred letters weakly increase in rows, strictly increase in columns.

e barred letters strictly increase in rows, weakly increase in columns.
o T(e)<ifori=1,...,r.

Def. The signed flagged LLT polynomial indexed by r and v is

gri’y(x; 1.') — Z tinv(T)(_t)f#bar(T)x|T|?
TeFTE(v)

where | T| is the result of removing all bars from T.



Signed flagged LLT polynomials

e Signed alphabet A=1<1<2<2---
g;ty(x; t) — Z tinv(T)(_t)—#bar(T)x|T|‘

TeFTE(v)
Example.
xamp r=2 v=(O3,03)
1]1 1]1 1]1 1|1
T /! 2/ _/ _
1|1 1]2 2]2 1|71 1
tinv(T) 1 t t2 ¢
fo,,(x; t) = xt + tdx + 2533 - X - txdx

_ 2328



[, takes signed LLTs to unsigned LLTs

Well-known fact: in the r = 0 (fully symmetric) case,

géfu(x; t™1) = Gou[x(1 —t); 7.

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The r-nonsymmetric plethysm map I, takes signed LLTs to unsigned
tLTs: NG5 (i t7) = Gru(xi t7).



[, takes signed LLTs to unsigned LLTs

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The r-nonsymmetric plethysm map I, takes signed LLTs to unsigned
LLTs: nr(gfy(X; 1.‘_1)) _ gr,u(X; 1_'_1).

Example. r=2 1/:(|:|:|,|:|:|)

Q,i’l,(x; til) = t*2x12x22

Gro(x; t71) = t72xx3 4+ t I x + X

=t~ % pol (X12X22 + txixd + xS + 30 4+ - )

t7 238+t I+ Xt = Gru(xtTh)



LLT and Macdonald polynomials

We show how to convert the nonsymmetric Haglund-Haiman-Loehr
formula for &, to a signed flagged LLTs formula for &,.

Signed flagged LLT formula for their stable limits stable&, 5 (x; g, t).
M, turns this into a flagged LLT formula for H,(x; g,t).

I, takes Hecke symmetrization to Weyl symmetrization.



LLT and Macdonald polynomials

EOé(Xla"'aXN;qvt) =
> " signed flagged LLTs

stabilize
stable&, A (x;q,t) = n, nsH, A (x;q,t) =
> " signed flagged LLTs > flagged LLTs
Hecke sym. Weyl sym.
(g t) = FR)= /(L= Hyy, (xig,t) =

> signed LLTs > LLTs



