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The missing corner

Can the theory of plethystically modified Macdonald polynomials
Hµ(x; q, t) be lifted to the nonsymmetric setting?
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integral form
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Macdonald polynomials

• Macdonald polynomials Pµ(x; q, t) form a basis for ΛQ(q,t)(x).
• Integral form Macdonald polynomials Jµ(x; q, t) = cµPµ(x; q, t) have
coefficients in Z[q, t].

• Plethystically modified Macdonald polynomials
Hµ(x; q, t) = Jµ[x/(1− t); q, t].

• Macdonald positivity: the Hµ are Schur positive.

• Hµ(x; 1, 1) = (s1)
n = h(1n).

• tn(µ)Hµ(x; q, t−1) = Frobenius series of the Garsia-Haiman module
Mµ, a QSn-submodule of Q[x1, . . . , xn, y1, . . . , yn] of dimension n!.

H31 = t s4 + (1 + qt + q2t)s31 + (q + tq2)s22 + (q + q2 + q3t)s211 + q3 s1111
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Nonsymmetric Macdonald polynomials

The Cherednik operators Y1, . . . ,YN act on Q(q, t)[x±1
1 , . . . , x±1

N ].

Ti f = si f + (1− t)xi
f − si f

xi − xi+1
, (Demazure-Lusztig operators)

Φf = f (x2, . . . , xN , qx1),

Yi = t−i+1Ti−1 · · ·T1x1ΦT−1
N−1 · · ·T

−1
i .

Def. The nonsymmetric Macdonald polynomials Eα(x1, . . . , xN ; q, t) are
the joint eigenfunctions of the commuting operators Y1, . . . ,YN .

• {Eα}α∈ZN forms a basis for Q(q, t)[x±1
1 , . . . , x±1

N ].

• Knop introduced integral form nonsymmetric Macdonald polynomials
Eα = cαEα which lie in Z[q, t][x±1

1 , . . . , x±1
N ].



The missing corner

Can the theory of plethystically modified Macdonald polynomials
Hµ(x; q, t) be lifted to the nonsymmetric setting?

Eα(x1, . . . , xN ; q, t) ?

Jµ(x; q, t) Hµ(x; q, t)
f (x) 7→ f [x/(1− t)]

Hecke sym.

Features of the plethystically modified Macdonald polynomials Hµ(x; q, t):

• Macdonald positivity: the Hµ are Schur positive.

• Frobenius series of the Garsia-Haiman modules.

• ∇ operator and shuffle theorems.

• Hµ is a positive sum of ribbon LLT polynomials.
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Related work

Eα(x1, . . . , xN ; q, t) ?

Jµ(x; q, t) Hµ(x; q, t)
f (x) 7→ f [x/(1− t)]

Hecke sym.

• Sanderson (2000) showed the Eα|t=0 are affine Demazure characters.

• Assaf-Gonzalez (2019) showed the Eα|t=0 are key positive.

• Knop (2007) formulated a positivity conjecture for a stable version of
Eα involving Kazhdan-Lusztig theory.

• Lapointe (2022) formulated another positivity conjecture for a stable
version of Eα.

• Related work by Goodberry and Orr, and Bechtloff Weising and Orr.



Filling in the missing corner

We fill in the missing corner with a nonsymmetric plethysm map Πr and
modified r-nonsymmetric Macdonald polynomials nsHη|λ(x; q, t).

stableEη|λ(x; q, t) nsHη|λ(x; q, t)

J(η;λ)+(x; q, t) H(η;λ)+(x; q, t)

Πr

f (x) 7→ f [x/(1− t)]

Hecke sym. Weyl sym.

• P(r) = Q(q, t)[x1, . . . , xr ]⊗ ΛQ(q,t)(xr+1, . . . ).

• x = x1, x2, . . . .

• The nsHη|λ(x; q, t), for (η|λ) ∈ Nr × Par, form a basis for P(r).

• (η;λ)+ is the partition rearrangement of the concatenation (η;λ).
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Flagged fillings

• For β ∈ Nd , the column diagram of β, cdg(β), consists of d
bottom-justified columns of heights β1, . . . , βd .

• An r -flagged filling of cdg(β) is a map T : cdg(β) → Z+ such that
the box in the bottom of column i (if it exists) is ≤ i , for i = 1, . . . , r .

cdg((2, 1, 0, 4, 2))
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Inversions

• An attacking pair is a pair a, b ∈ cdg(β) such that

b is strictly to the left of and in the same row as a, or
b is one row below and strictly to the right of a.

• An attacking inversion is an attacking pair (a, b) with T (a) > T (b).

• inv(T ) = # of attacking inversions of T .
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Modified r -nonsymmetric Macdonald polynomials nsHη|λ

• Des(T ) = set of boxes b ∈ cdg(β) such that T (b) > T (south(b)).

• arm(b) = # of boxes above and in the same column as b.

3

1 2

5

6

1

2

3

7

Des(T )

0

0

1

2 0

arms

Def. [B.-Haiman-Morse-Pun-Seelinger] The modified r-nonsymmetric
Macdonald polynomial indexed by η ∈ Nr and partition λ is

nsHη|λ(x; q, t) = tn(β+)
∑

r -flagged fillings T
of cdg(β)

( ∏
b∈Des(T )

qarm(b)+1t leg(b)
)
t− inv(T )xT ,

where β = (η;λ).



Modified r -nonsymmetric Macdonald polynomials nsHη|λ

nsHη|λ(x; q, t) = tn(β+)
∑

r -flagged fillings T
of cdg(β)

( ∏
b∈Des(T )

qarm(b)+1t leg(b)
)
t− inv(T )xT

Example. r = 2, (η|λ) = (21|∅)

T
1

1 1

1

1 2

2

1 1

2

1 2

3

1 1

3

1 2

t− inv(T ) 1 t−1 t−1 t−1 t−1 t−2∏
qarm+1t leg 1 1 qt qt qt qt

tn(β+) t t t t t t

total q, t statistic t 1 qt qt qt q

nsH21|∅(x1, x2, x3; q, t) =

t x31 + x21 x2 + qt x21 x2 + qt x1x
2
2 + qt x21 x3 + q x1x2x3



Key polynomials

Def. The Demazure operator πi acts on f ∈ Q(q, t)[x±1
1 , . . . , x±1

N ] by

πi (f ) =
xi f − xi+1si (f )

xi − xi+1
.

Def. The key polynomials or Demazure characters are constructed from

• Dλ = xλ := xλ1
1 · · · xλN

N for partition λ.

• Dsi (α) = πiDα for αi > αi+1, for any α ∈ NN .

Example.

D520 = x51x
2
2

D250 = π1D520 = π1(x
5
1x

2
2 ) = x51x

2
2 + x41x

3
2 + x31x

4
2 + x21x

5
2

D205 = π2D250 = π2
(
x51x

2
2 + x41x

3
2 + x31x

4
2 + x21x

5
2

)



Key polynomials and crystals

• B(λ) = highest weight glN crystal of highest weight λ.

• For S ⊂ B(λ) and i ∈ [N − 1], FiS :=
{
f̃ mi b : b ∈ S , m ≥ 0

}
⊂ B(λ).

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

B(2, 1, 0)

f̃1

f̃1f̃1

f̃1

f̃2f̃2

f̃2
f̃2

1 1
2

1 2
2

1 1
31 3

2

1 3
3

1 2
32 2

3

2 3
3

character s21(x1, x2, x3)
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2
1x2) = x21x2 + x21x3 + x1x

2
2 + x1x2x3 + x1x

2
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Demazure atoms

• Demazure atoms are defined the same as keys but with π̂i := πi − 1
in place of πi .

• Demazure atoms are related to key polynomials by Bruhat order
inclusion-exclusion.

D210 = A210

D120 = A210 + A120

D201 = A210 + A201

D102 = A210 + A120 + A201 + A102

D021 = A210 + A120 + A201 + A021

D012 = A210 + A120 + A201 + A102 + A021 + A012
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1 1
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1 3
2

1 3
3

1 1
2

1 2
2

1 1
31 3

2

1 3
3

A102

A120 A210

A201

D102 = A210 + A120 + A201 + A102



Weyl symmetrization

• For w = si1si2 · · · sim ∈ SN reduced, πw := πi1πi2 · · ·πim .

• πw0 is the Weyl symmetrization operator.

• “Non-partition Schur function” sα := πw0 x
α is ± an ordinary Schur

function or 0, for any α ∈ NN .

• πw0Aα =

{
sα(x1, . . . , xN) if α is a partition

0 otherwise.



Atom positivity

Macdonald positivity: the modified Macdonald polynomials Hµ(x; q, t) are
Schur positive.

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The modified r-nonsymmetric Macdonald polynomials Weyl symmetrize to
modified Macdonald polynomials:

πw0 nsHη|λ(x1, . . . , xN ; q, t) = H(η;λ)+(x1, . . . , xN ; q, t),

where (η;λ)+ is the partition rearrangement of the concatenation (η;λ).

Conjecture (B.-Haiman-Morse-Pun-Seelinger)

The nsHη|λ are Demazure atom positive.

This gives a conjectural strengthening of Macdonald positivity.



Atom positivity

• πw0nsHη|λ = H(η;λ)+ .

• Conj: nsHη|λ are Demazure atom positive.

t0

t1

q0 q1

s3 s21

s21 s111

symmetric Macdonald H21(x1, x2, x3; q, t) in Schurs
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Atom positivity

• πw0nsHη|λ = H(η;λ)+ .
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nsH12|∅(x1, x2, x3; q, t) in Demazure atoms



t-adic limit

• P(r) = Q(q, t)[x1, . . . , xr ]⊗ ΛQ(q,t)(xr+1, . . . ).

• x = x1, x2, . . . .

Def. The sequence g1, g2, . . . , with gN ∈ Q(q, t)[x1, . . . , xN ], converges
t-adically to f (x) ∈ P(r) if for all e ≥ 0,

gN(x1, . . . , xN)− f (x1, . . . , xN , 0, 0, . . . )

has coefficients whose order of vanishing in t is at least e, for sufficiently
large N.

Example.

• 1, 1 + t, 1 + t + t2, . . . −→ 1
1−t .

• x1, tx1+ x2, t
2x1+ x2+ x3, t

3x1+ x2+ x3+ x4 −→ x2+ x3+ · · · ∈ P(1).



Stable nonsymmetric Macdonald polynomials

Recall Eα(x; q, t) = integral form nonsymmetric Macdonald polynomials.

Def. For (η|λ) ∈ Nr × Par, the integral form stable r -nonsymmetric
Macdonald polynomial stableEη|λ(x; q, t) ∈ P(r) is given by

stableEη|λ(x; q, t) = lim
n→∞

E(η;0n;λ)(x1, . . . , xr+n, 0
ℓ(λ); q, t).

Remark. The stableEη|λ(x; q, t) are integral forms of stable versions
introduced by Bechtloff Weising.



Combinatorial and algebraic descriptions agree

• Define pol : Q(q, t)[x±1
1 , · · · , x±1

r ] → Q(q, t)[x1, . . . , xr ] by

pol(Dα) =

{
Dα for α ∈ Nr

0 for α ∈ Zr \ Nr .

Def. The r -nonsymmetric plethysm map Πr : P(r) → P(r) is given on
f (x1, . . . , xr )g(x), where g is symmetric in x = x1, x2, . . . , by

Πr (f (x1, . . . , xr )g(x)) = g
[ x

(1− t)

]
pol

( f (x1, . . . , xr )∏
1≤i<j≤r (1− t xi/xj)

)
.

Theorem (B.-Haiman-Morse-Pun-Seelinger)

Let (η|λ) ∈ Nr × Par and set β = (η;λ). Then

Πr (stableEη|λ(x; q, t)) = nsHη|λ(x; q, t)

= tn(β+)
∑

r -flagged fillings T
of cdg(β)

( ∏
b∈Des(T )

qarm(b)+1t leg(b)
)
t− inv(T )xT .
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Filling in the missing corner

stableEη|λ(x; q, t) nsHη|λ(x; q, t)

J(η;λ)+(x; q, t) H(η;λ)+(x; q, t)

Πr

f (x) 7→ f [x/(1− t)]

Hecke sym. Weyl sym.

• η ∈ Nr , λ is a partition.

• (η;λ)+ is the partition rearrangement of the concatenation (η;λ).

• stableEη|λ(x; q, t) is the integral form stable r -nonsymmetric
Macdonald polynomial.

• nsHη|λ(x; q, t) is the modified r -nonsymmetric Macdonald polynomial.

• J(η;λ)+(x; q, t) is the integral form Macdonald polynomial.

• H(η;λ)+(x; q, t) is the modified Macdonald polynomial.



LLT polynomials

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew shapes.

• The content of a box in row y , column x is x − y .

• Reading order: label boxes b1, . . . , bℓ by scanning each diagonal from
southwest to northeast, in order of increasing content.

• A pair (a, b) ∈ ν is attacking if a precedes b in reading order and

content(a) = content(b) and a ∈ ν(i), b ∈ ν(j) with i < j , or
content(a) + 1 = content(b) and a ∈ ν(i), b ∈ ν(j) with i > j .

Example.

ν =

(
,

)

Attacking pairs: (b2, b3), (b3, b4), (b4, b5), (b4, b6), (b5, b7), (b6, b7), (b7, b8)
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LLT polynomials

• A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

• An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

Def. The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x; t) =
∑

T∈SSYT(ν)

t inv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
2 4

3 5

5 6

1 1

inv(T ) = 4, xT = x21x2x3x4x
2
5x6
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Flagged LLT polynomials

• Let e1, . . . , ed be the row ends of ν, ordered in reverse reading order.

• Fix a nonnegative integer r ≤ d .

• T ∈ SSYT(ν) is flagged if T (ei ) ≤ i for i = 1, 2, . . . , r .

• FTr (ν) = set of flagged semistandard tableaux on ν.

Def. The flagged LLT polynomial indexed by r and ν is

Gr ,ν(x; t) =
∑

T∈FTr (ν)

t inv(T )xT ,

Example.

ν =

(
,

)
e4

e2

e3

e1
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Flagged LLT polynomials
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• Fix a nonnegative integer r ≤ d .

• T ∈ SSYT(ν) is flagged if T (ei ) ≤ i for i = 1, 2, . . . , r .
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Gr ,ν(x; t) =
∑

T∈FTr (ν)
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Example.

ν =

(
,

)
2 4

1 2

2 3

1 1

≤ 3

≤ 1

≤ 4

≤ 2

T ∈ FTr (ν) for r = 4



Flagged LLT polynomials

Example. r = 2 ν =
(

,
)

T
1 1

1 1

1 2

1 1

2 2

1 1

t inv(T ) 1 t t2

Gr ,ν(x; t) = x41 + t x31x2 + t2x21x
2
2

Example. r = 1 ν =
(

,
)

T
1

1 1

2

1 1

3

1 1

· · ·

t inv(T ) 1 t t

Gr ,ν(x; t) = x31 + t x21 (x2 + x3 + · · · )
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Signed flagged LLT polynomials

• Signed alphabet A = 1 < 1 < 2 < 2 · · ·
• FT±

r (ν) = fillings of ν from A satisfying

unbarred letters weakly increase in rows, strictly increase in columns.
barred letters strictly increase in rows, weakly increase in columns.
T (ei ) ≤ i for i = 1, . . . , r .

Def. The signed flagged LLT polynomial indexed by r and ν is

G±
r ,ν(x; t) =

∑
T∈FT±

r (ν)

t inv(T )(−t)−#bar(T )x|T |,

where |T | is the result of removing all bars from T .



Signed flagged LLT polynomials

• Signed alphabet A = 1 < 1 < 2 < 2 · · ·

G±
r ,ν(x; t) =

∑
T∈FT±

r (ν)

t inv(T )(−t)−#bar(T )x|T |.

Example. r = 2 ν =
(

,
)

T
1 1

1 1

1 2

1 1

2 2

1 1

1 1

1 1

1 2

1 1

t inv(T ) 1 t t2 t t2

(−t)−#bar(T ) 1 1 1 −t−1 −t−1

G±
r ,ν(x; t) = x41 + t x31x2 + t2x21x

2
2 − x41 − t x31x2

= t2x21x
2
2



Πr takes signed LLTs to unsigned LLTs

Well-known fact: in the r = 0 (fully symmetric) case,

G±
0,ν(x; t

−1) = G0,ν [x(1− t); t−1].

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The r-nonsymmetric plethysm map Πr takes signed LLTs to unsigned
LLTs: Πr

(
G±
r ,ν(x; t

−1)
)
= Gr ,ν(x; t

−1).
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The r-nonsymmetric plethysm map Πr takes signed LLTs to unsigned
LLTs: Πr

(
G±
r ,ν(x; t

−1)
)
= Gr ,ν(x; t

−1).

Example. r = 2 ν =
(

,
)

G±
r ,ν(x; t

−1) = t−2x21x
2
2

Gr ,ν(x; t
−1) = t−2x21x

2
2 + t−1x31x2 + x41

Πr (G±
r ,ν(x; t

−1)) = Πr

(
t−2x21x

2
2

)
= pol

(
t−2x21x

2
2

1− t x1/x2

)
= t−2 pol

(
x21x

2
2 + t x31x

1
2 + t2x41x

0
2 + t3x51x

−1
2 + · · ·

)
= t−2x21x

2
2 + t−1x31x2 + x41 = Gr ,ν(x; t

−1)



LLT and Macdonald polynomials

• We show how to convert the nonsymmetric Haglund-Haiman-Loehr
formula for Eα to a signed flagged LLTs formula for Eα.

• Signed flagged LLT formula for their stable limits stableEη|λ(x; q, t).

• Πr turns this into a flagged LLT formula for Hη|λ(x; q, t).

• Πr takes Hecke symmetrization to Weyl symmetrization.



LLT and Macdonald polynomials

Eα(x1,...,xN ;q,t)=∑
signed flagged LLTs

stableEη|λ(x;q,t)=∑
signed flagged LLTs

nsHη|λ(x;q,t)=∑
flagged LLTs

J(η;λ)+(x;q,t)=∑
signed LLTs

H(η;λ)+
(x;q,t)=∑
LLTs

stabilize

Πr

f (x) 7→ f [x/(1− t)]

Hecke sym. Weyl sym.


