

Modified nonsymmetric Macdonald polynomials

Jonah Blasiak

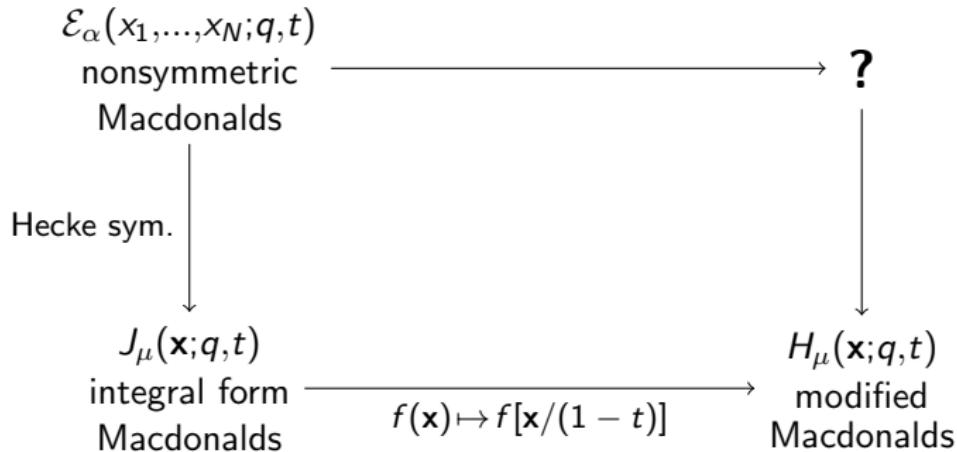
Drexel University

Joint work with Mark Haiman, Jennifer Morse,
Anna Pun, and George Seelinger

ICERM 2025

The missing corner

Can the theory of plethystically modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$ be lifted to the nonsymmetric setting?



Macdonald polynomials

- Macdonald polynomials $P_\mu(\mathbf{x}; q, t)$ form a basis for $\Lambda_{\mathbb{Q}(q,t)}(\mathbf{x})$.
- Integral form Macdonald polynomials $J_\mu(\mathbf{x}; q, t) = c_\mu P_\mu(\mathbf{x}; q, t)$ have coefficients in $\mathbb{Z}[q, t]$.
- Plethystically modified Macdonald polynomials

$$H_\mu(\mathbf{x}; q, t) = J_\mu[\mathbf{x}/(1-t); q, t].$$

- Macdonald positivity: the H_μ are Schur positive.
- $H_\mu(\mathbf{x}; 1, 1) = (s_1)^n = h_{(1^n)}$.
- $t^{n(\mu)} H_\mu(\mathbf{x}; q, t^{-1})$ = Frobenius series of the Garsia-Haiman module M_μ , a $\mathbb{Q}\mathcal{S}_n$ -submodule of $\mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$ of dimension $n!$.

$$H_{31} = ts_4 + (1 + qt + q^2t)s_{31} + (q + tq^2)s_{22} + (q + q^2 + q^3t)s_{211} + q^3 s_{1111}$$

t^1	s_4	s_{31}	$s_{31} + s_{22}$	s_{211}
t^0	s_{31}	$s_{22} + s_{211}$	s_{211}	s_{1111}
	q^0	q^1	q^2	q^3

Macdonald polynomials

- Macdonald polynomials $P_\mu(\mathbf{x}; q, t)$ form a basis for $\Lambda_{\mathbb{Q}(q,t)}(\mathbf{x})$.
- Integral form Macdonald polynomials $J_\mu(\mathbf{x}; q, t) = c_\mu P_\mu(\mathbf{x}; q, t)$ have coefficients in $\mathbb{Z}[q, t]$.
- Plethystically modified Macdonald polynomials

$$H_\mu(\mathbf{x}; q, t) = J_\mu[\mathbf{x}/(1-t); q, t].$$

- Macdonald positivity: the H_μ are Schur positive.
- $H_\mu(\mathbf{x}; 1, 1) = (s_1)^n = h_{(1^n)}$.
- $t^{n(\mu)} H_\mu(\mathbf{x}; q, t^{-1})$ = Frobenius series of the Garsia-Haiman module M_μ , a $\mathbb{Q}\mathcal{S}_n$ -submodule of $\mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$ of dimension $n!$.

$$H_{31} = t s_4 + (1 + qt + q^2 t) s_{31} + (q + tq^2) s_{22} + (q + q^2 + q^3 t) s_{211} + q^3 s_{1111}$$

t^1	s_4	s_{31}	$s_{31} + s_{22}$	s_{211}
t^0	s_{31}	$s_{22} + s_{211}$	s_{211}	s_{1111}
	q^0	q^1	q^2	q^3

Nonsymmetric Macdonald polynomials

The Cherednik operators Y_1, \dots, Y_N act on $\mathbb{Q}(q, t)[x_1^{\pm 1}, \dots, x_N^{\pm 1}]$.

$$T_i f = s_i f + (1 - t) x_i \frac{f - s_i f}{x_i - x_{i+1}}, \quad (\text{Demazure-Lusztig operators})$$

$$\Phi f = f(x_2, \dots, x_N, q x_1),$$

$$Y_i = t^{-i+1} T_{i-1} \cdots T_1 x_1 \Phi T_{N-1}^{-1} \cdots T_i^{-1}.$$

Def. The *nonsymmetric Macdonald polynomials* $E_\alpha(x_1, \dots, x_N; q, t)$ are the joint eigenfunctions of the commuting operators Y_1, \dots, Y_N .

- $\{E_\alpha\}_{\alpha \in \mathbb{Z}^N}$ forms a basis for $\mathbb{Q}(q, t)[x_1^{\pm 1}, \dots, x_N^{\pm 1}]$.
- Knop introduced *integral form nonsymmetric Macdonald polynomials* $\mathcal{E}_\alpha = c_\alpha E_\alpha$ which lie in $\mathbb{Z}[q, t][x_1^{\pm 1}, \dots, x_N^{\pm 1}]$.

The missing corner

Can the theory of plethystically modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$ be lifted to the nonsymmetric setting?

$$\begin{array}{ccc} \mathcal{E}_\alpha(x_1, \dots, x_N; q, t) & \xrightarrow{\hspace{10em}} & ? \\ \text{Hecke sym.} \downarrow & & \downarrow \\ J_\mu(\mathbf{x}; q, t) & \xrightarrow{f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]} & H_\mu(\mathbf{x}; q, t) \end{array}$$

Features of the plethystically modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$:

- Macdonald positivity: the H_μ are Schur positive.
- Frobenius series of the Garsia-Haiman modules.
- ∇ operator and shuffle theorems.
- H_μ is a positive sum of ribbon LLT polynomials.

The missing corner

Can the theory of plethystically modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$ be lifted to the nonsymmetric setting?

$$\begin{array}{ccc} \mathcal{E}_\alpha(x_1, \dots, x_N; q, t) & \xrightarrow{\hspace{10em}} & ? \\ \text{Hecke sym.} \downarrow & & \downarrow \\ J_\mu(\mathbf{x}; q, t) & \xrightarrow{f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]} & H_\mu(\mathbf{x}; q, t) \end{array}$$

Features of the plethystically modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$:

- Macdonald positivity: the H_μ are Schur positive.
- Frobenius series of the Garsia-Haiman modules.
- ∇ operator and shuffle theorems.
- H_μ is a positive sum of ribbon LLT polynomials.

Related work

$$\begin{array}{ccc} \mathcal{E}_\alpha(x_1, \dots, x_N; q, t) & \xrightarrow{\hspace{10em}} & ? \\ \text{Hecke sym.} \downarrow & & \downarrow \\ J_\mu(\mathbf{x}; q, t) & \xrightarrow[f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]]{\hspace{10em}} & H_\mu(\mathbf{x}; q, t) \end{array}$$

- Sanderson (2000) showed the $\mathcal{E}_\alpha|_{t=0}$ are affine Demazure characters.
- Assaf-Gonzalez (2019) showed the $\mathcal{E}_\alpha|_{t=0}$ are key positive.
- Knop (2007) formulated a positivity conjecture for a stable version of \mathcal{E}_α involving Kazhdan-Lusztig theory.
- Lapointe (2022) formulated another positivity conjecture for a stable version of \mathcal{E}_α .
- Related work by Goodberry and Orr, and Bechtloff Weising and Orr.

Filling in the missing corner

We fill in the missing corner with a *nonsymmetric plethysm map* Π_r and *modified r-nonsymmetric Macdonald polynomials* $\text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t)$.

$$\begin{array}{ccc} \text{stable} \mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) & \xrightarrow{\Pi_r} & \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) \\ \text{Hecke sym.} \downarrow & & \downarrow \text{Weyl sym.} \\ J_{(\eta;\lambda)_+}(\mathbf{x}; q, t) & \xrightarrow[f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]]{} & H_{(\eta;\lambda)_+}(\mathbf{x}; q, t) \end{array}$$

- $\mathcal{P}(r) = \mathbb{Q}(q, t)[x_1, \dots, x_r] \otimes \Lambda_{\mathbb{Q}(q, t)}(x_{r+1}, \dots)$.
- $\mathbf{x} = x_1, x_2, \dots$
- The $\text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t)$, for $(\eta|\lambda) \in \mathbb{N}^r \times \text{Par}$, form a basis for $\mathcal{P}(r)$.
- $(\eta; \lambda)_+$ is the partition rearrangement of the concatenation $(\eta; \lambda)$.

Filling in the missing corner

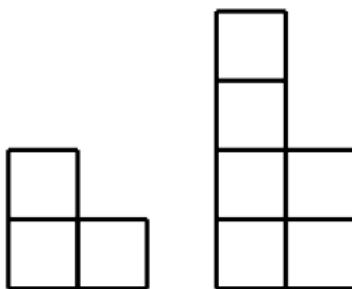
We fill in the missing corner with a *nonsymmetric plethysm map* Π_r and *modified r-nonsymmetric Macdonald polynomials* $\text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t)$.

$$\begin{array}{ccc} \text{stable} \mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) & \xrightarrow{\Pi_r} & \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) \\ \text{Hecke sym.} \downarrow & & \downarrow \text{Weyl sym.} \\ J_{(\eta;\lambda)_+}(\mathbf{x}; q, t) & \xrightarrow[f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]]{} & H_{(\eta;\lambda)_+}(\mathbf{x}; q, t) \end{array}$$

- $\mathcal{P}(r) = \mathbb{Q}(q, t)[x_1, \dots, x_r] \otimes \Lambda_{\mathbb{Q}(q,t)}(x_{r+1}, \dots)$.
- $\mathbf{x} = x_1, x_2, \dots$
- The $\text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t)$, for $(\eta|\lambda) \in \mathbb{N}^r \times \text{Par}$, form a basis for $\mathcal{P}(r)$.
- $(\eta; \lambda)_+$ is the partition rearrangement of the concatenation $(\eta; \lambda)$.

Flagged fillings

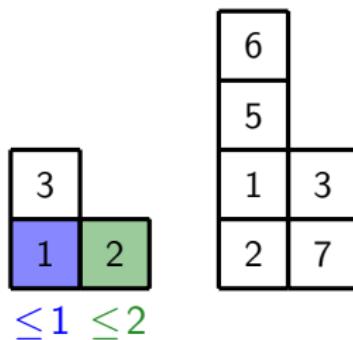
- For $\beta \in \mathbb{N}^d$, the *column diagram* of β , $\text{cdg}(\beta)$, consists of d bottom-justified columns of heights β_1, \dots, β_d .
- An *r -flagged filling* of $\text{cdg}(\beta)$ is a map $T: \text{cdg}(\beta) \rightarrow \mathbb{Z}_+$ such that the box in the bottom of column i (if it exists) is $\leq i$, for $i = 1, \dots, r$.



$$\text{cdg}((2, 1, 0, 4, 2))$$

Flagged fillings

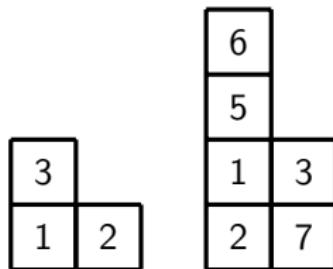
- For $\beta \in \mathbb{N}^d$, the *column diagram* of β , $\text{cdg}(\beta)$, consists of d bottom-justified columns of heights β_1, \dots, β_d .
- An *r -flagged filling* of $\text{cdg}(\beta)$ is a map $T: \text{cdg}(\beta) \rightarrow \mathbb{Z}_+$ such that the box in the bottom of column i (if it exists) is $\leq i$, for $i = 1, \dots, r$.



An r -flagged filling T , for $r = 2$

Inversions

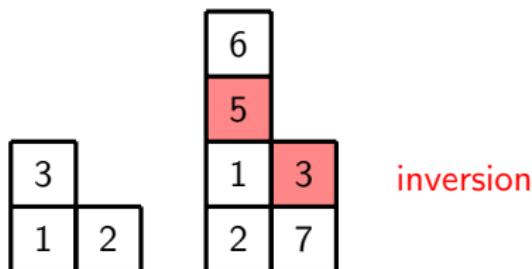
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

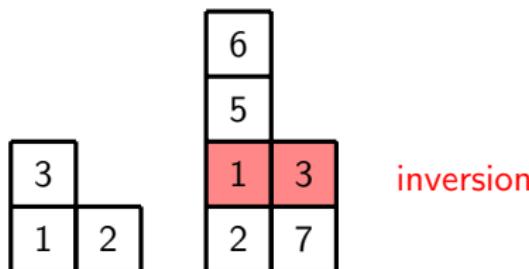
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

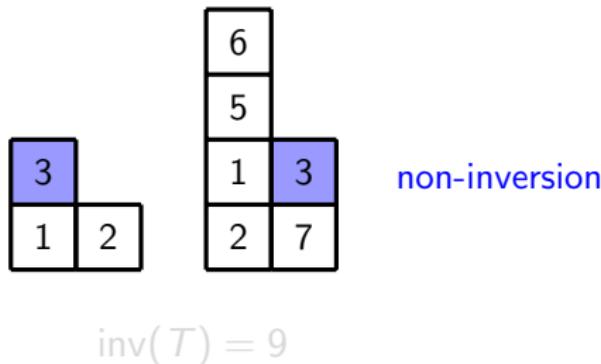
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

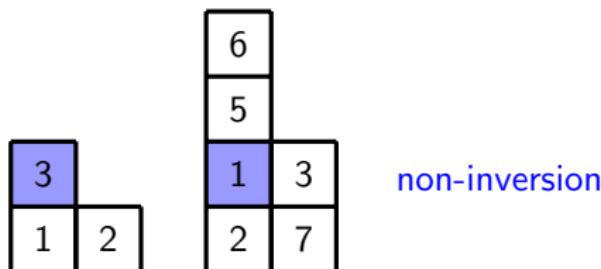
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



Inversions

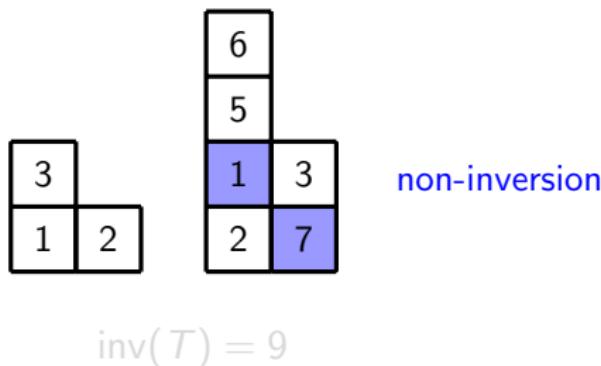
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

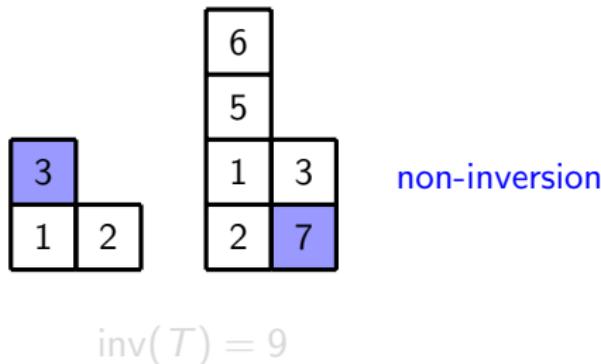
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



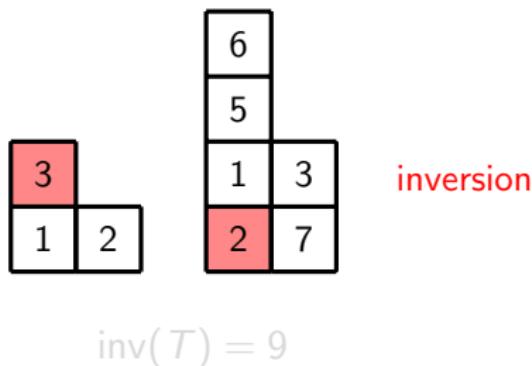
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



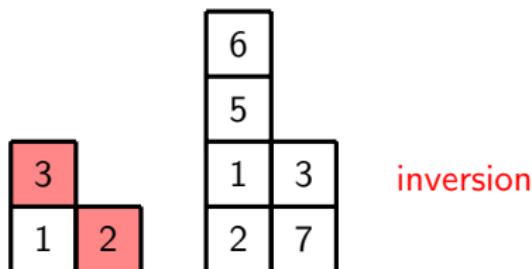
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



Inversions

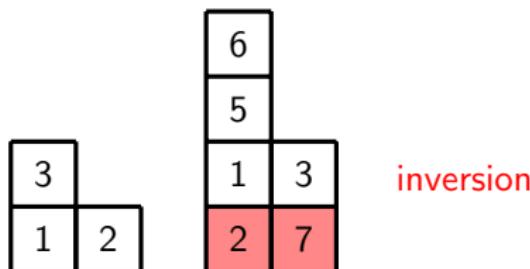
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

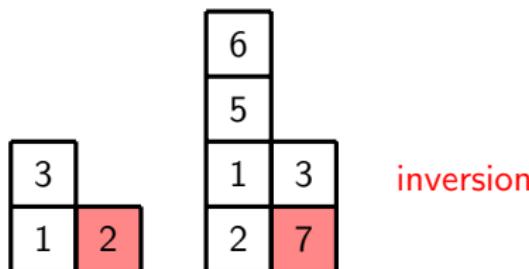
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

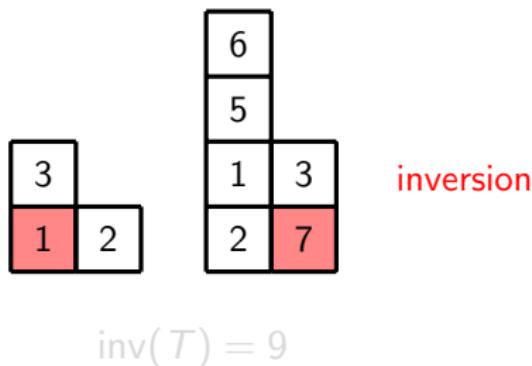
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

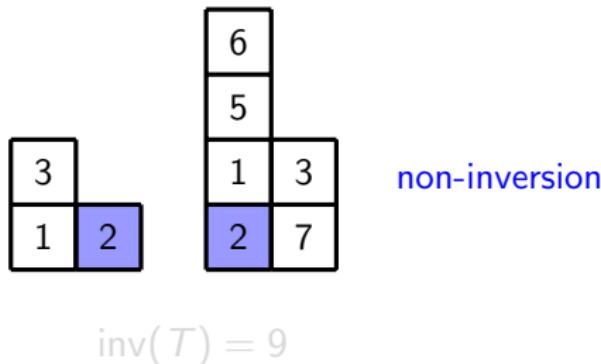
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



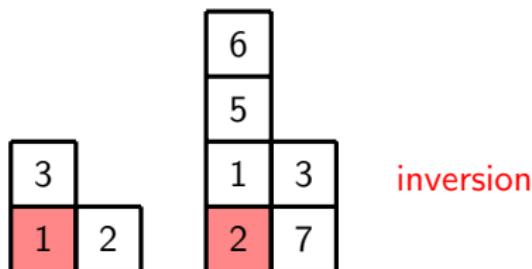
Inversions

- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



Inversions

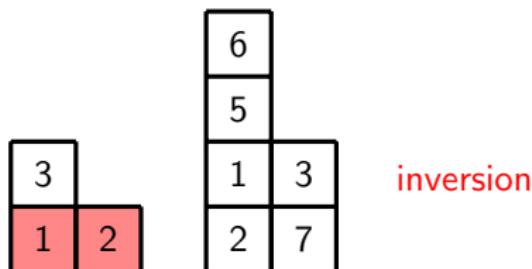
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

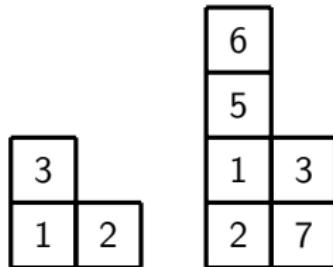
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Inversions

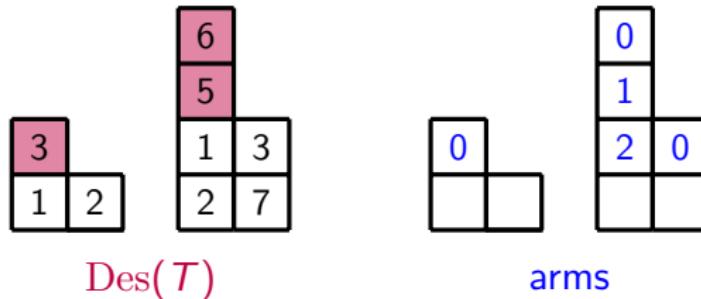
- An *attacking pair* is a pair $a, b \in \text{cdg}(\beta)$ such that
 - b is strictly to the left of and in the same row as a , or
 - b is one row below and strictly to the right of a .
- An *attacking inversion* is an attacking pair (a, b) with $T(a) > T(b)$.
- $\text{inv}(T) = \# \text{ of attacking inversions of } T$.



$$\text{inv}(T) = 9$$

Modified r -nonsymmetric Macdonald polynomials ${}_{\text{ns}}\mathsf{H}_{\eta|\lambda}$

- $\text{Des}(T) = \text{set of boxes } b \in \text{cdg}(\beta) \text{ such that } T(b) > T(\text{south}(b))$.
- $\text{arm}(b) = \# \text{ of boxes above and in the same column as } b$.



Def. [B.-Haiman-Morse-Pun-Seelinger] The *modified r -nonsymmetric Macdonald polynomial* indexed by $\eta \in \mathbb{N}^r$ and partition λ is

$${}_{\text{ns}}\mathsf{H}_{\eta|\lambda}(\mathbf{x}; q, t) = t^{n(\beta_+)} \sum_{\substack{\text{r-flagged fillings T} \\ \text{of $\text{cdg}(\beta)$}}} \left(\prod_{b \in \text{Des}(T)} q^{\text{arm}(b)+1} t^{\text{leg}(b)} \right) t^{-\text{inv}(T)} \mathbf{x}^T,$$

where $\beta = (\eta; \lambda)$.

Modified r -nonsymmetric Macdonald polynomials ${}_{\text{ns}}\mathsf{H}_{\eta|\lambda}$

$${}_{\text{ns}}\mathsf{H}_{\eta|\lambda}(\mathbf{x}; q, t) = t^{n(\beta_+)} \sum_{\substack{\text{r-flagged fillings T} \\ \text{of $\text{cdg}(\beta)$}}} \left(\prod_{b \in \text{Des}(T)} q^{\text{arm}(b)+1} t^{\text{leg}(b)} \right) t^{-\text{inv}(T)} \mathbf{x}^T$$

Example. $r = 2$, $(\eta|\lambda) = (21|\emptyset)$

T	$\begin{array}{ c c } \hline 1 & \\ \hline 1 & 1 \\ \hline \end{array}$	$\begin{array}{ c c c } \hline 1 & & \\ \hline 1 & 1 & 2 \\ \hline \end{array}$	$\begin{array}{ c c } \hline 2 & \\ \hline 1 & 1 \\ \hline \end{array}$	$\begin{array}{ c c c } \hline 2 & & \\ \hline 1 & 1 & 2 \\ \hline \end{array}$	$\begin{array}{ c c } \hline 3 & \\ \hline 1 & 1 \\ \hline \end{array}$	$\begin{array}{ c c c } \hline 3 & & \\ \hline 1 & 1 & 2 \\ \hline \end{array}$
$t^{-\text{inv}(T)}$	1	t^{-1}	t^{-1}	t^{-1}	t^{-1}	t^{-2}
$\prod q^{\text{arm}+1} t^{\text{leg}}$	1	1	qt	qt	qt	qt
$t^{n(\beta_+)}$	t	t	t	t	t	t
total q, t statistic	t	1	qt	qt	qt	q

$${}_{\text{ns}}\mathsf{H}_{21|\emptyset}(x_1, x_2, x_3; q, t) =$$

$$t x_1^3 + x_1^2 x_2 + qt x_1^2 x_2 + qt x_1 x_2^2 + qt x_1^2 x_3 + q x_1 x_2 x_3$$

Key polynomials

Def. The *Demazure operator* π_i acts on $f \in \mathbb{Q}(q, t)[x_1^{\pm 1}, \dots, x_N^{\pm 1}]$ by

$$\pi_i(f) = \frac{x_i f - x_{i+1} s_i(f)}{x_i - x_{i+1}}.$$

Def. The *key polynomials* or *Demazure characters* are constructed from

- $\mathcal{D}_\lambda = \mathbf{x}^\lambda := x_1^{\lambda_1} \cdots x_N^{\lambda_N}$ for partition λ .
- $\mathcal{D}_{s_i(\alpha)} = \pi_i \mathcal{D}_\alpha$ for $\alpha_i > \alpha_{i+1}$, for any $\alpha \in \mathbb{N}^N$.

Example.

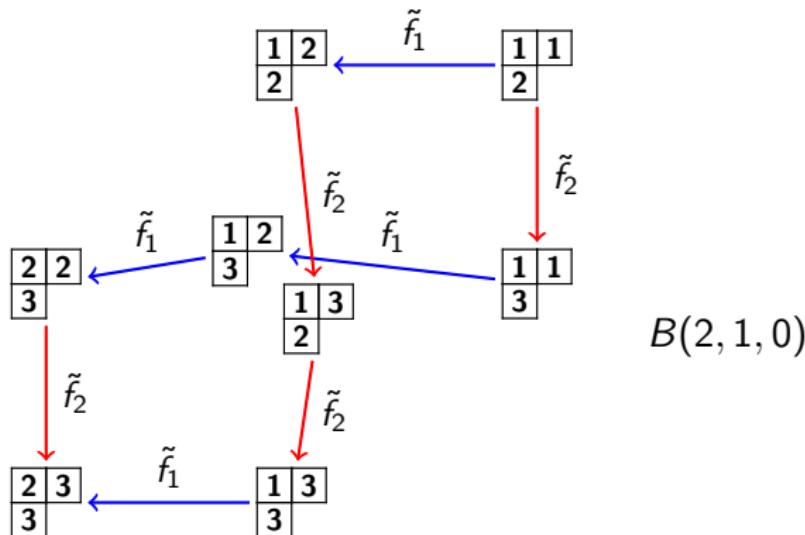
$$\mathcal{D}_{520} = x_1^5 x_2^2$$

$$\mathcal{D}_{250} = \pi_1 \mathcal{D}_{520} = \pi_1(x_1^5 x_2^2) = x_1^5 x_2^2 + x_1^4 x_2^3 + x_1^3 x_2^4 + x_1^2 x_2^5$$

$$\mathcal{D}_{205} = \pi_2 \mathcal{D}_{250} = \pi_2(x_1^5 x_2^2 + x_1^4 x_2^3 + x_1^3 x_2^4 + x_1^2 x_2^5)$$

Key polynomials and crystals

- $B(\lambda)$ = highest weight \mathfrak{gl}_N crystal of highest weight λ .
- For $S \subset B(\lambda)$ and $i \in [N-1]$, $F_i S := \{\tilde{f}_i^m b : b \in S, m \geq 0\} \subset B(\lambda)$.

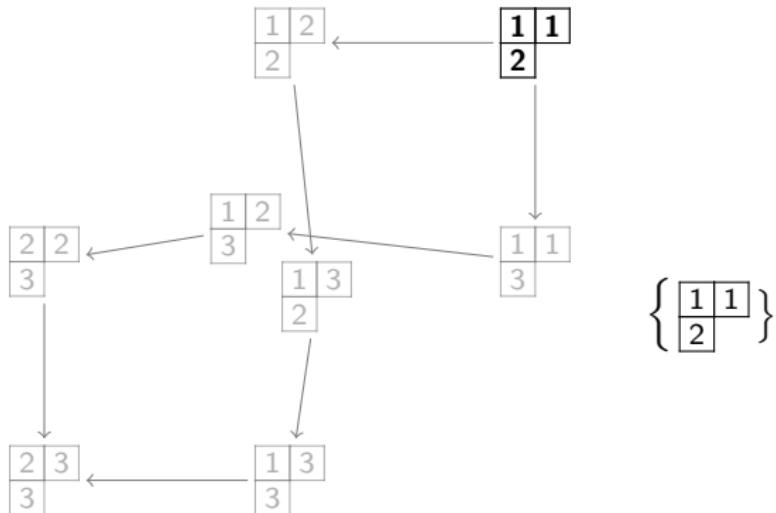


$B(2,1,0)$

character $s_{21}(x_1, x_2, x_3)$

Key polynomials and crystals

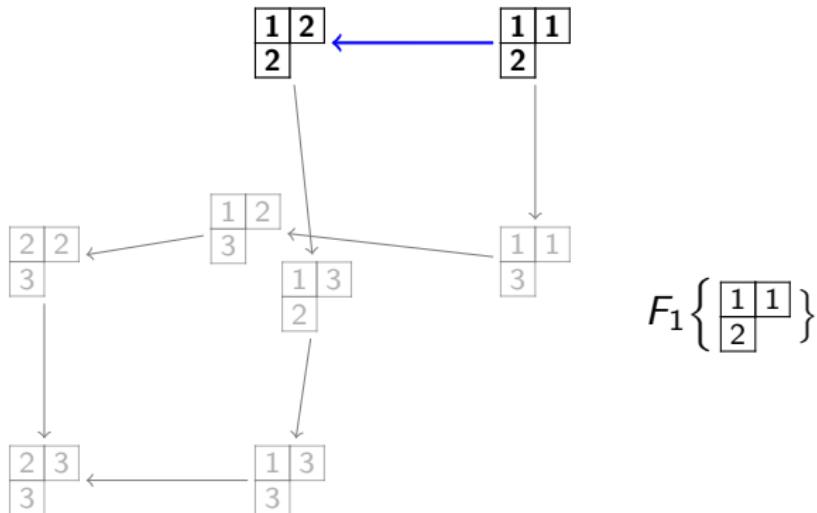
- $B(\lambda)$ = highest weight \mathfrak{gl}_N crystal of highest weight λ .
- For $S \subset B(\lambda)$ and $i \in [N-1]$, $F_i S := \{\tilde{f}_i^m b : b \in S, m \geq 0\} \subset B(\lambda)$.



$$\mathcal{D}_{210} = x_1^2 x_2$$

Key polynomials and crystals

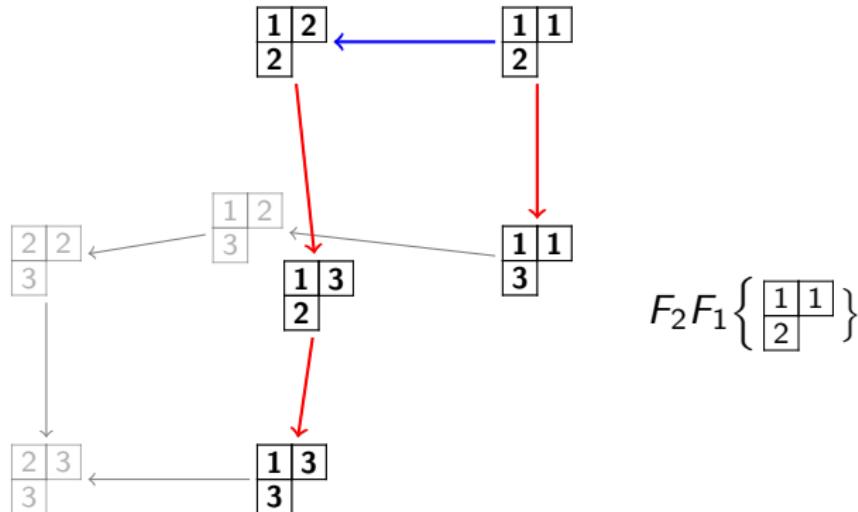
- $B(\lambda)$ = highest weight \mathfrak{gl}_N crystal of highest weight λ .
- For $S \subset B(\lambda)$ and $i \in [N-1]$, $F_i S := \{\tilde{f}_i^m b : b \in S, m \geq 0\} \subset B(\lambda)$.



$$\mathcal{D}_{120} = \pi_1(x_1^2 x_2) = x_1^2 x_2 + x_1 x_2^2$$

Key polynomials and crystals

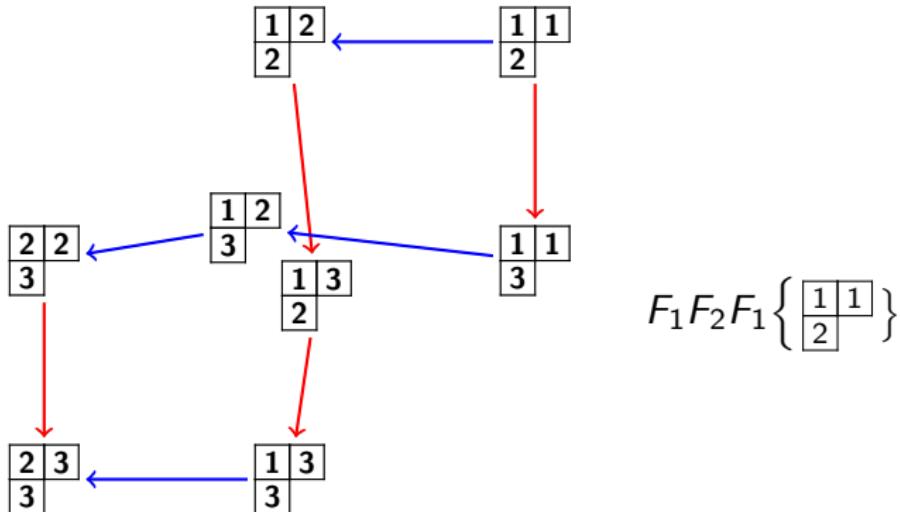
- $B(\lambda)$ = highest weight \mathfrak{gl}_N crystal of highest weight λ .
- For $S \subset B(\lambda)$ and $i \in [N-1]$, $F_i S := \{\tilde{f}_i^m b : b \in S, m \geq 0\} \subset B(\lambda)$.



$$\mathcal{D}_{102} = \pi_2 \pi_1 (x_1^2 x_2) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_3^2$$

Key polynomials and crystals

- $B(\lambda)$ = highest weight \mathfrak{gl}_N crystal of highest weight λ .
- For $S \subset B(\lambda)$ and $i \in [N-1]$, $F_i S := \{\tilde{f}_i^m b : b \in S, m \geq 0\} \subset B(\lambda)$.



$$\mathcal{D}_{012} = \pi_1 \pi_2 \pi_1 (x_1^2 x_2) = s_{21}(x_1, x_2, x_3)$$

Demazure atoms

- *Demazure atoms* are defined the same as keys but with $\hat{\pi}_i := \pi_i - 1$ in place of π_i .
- Demazure atoms are related to key polynomials by Bruhat order inclusion-exclusion.

$$\mathcal{D}_{210} = \mathcal{A}_{210}$$

$$\mathcal{D}_{120} = \mathcal{A}_{210} + \mathcal{A}_{120}$$

$$\mathcal{D}_{201} = \mathcal{A}_{210} + \mathcal{A}_{201}$$

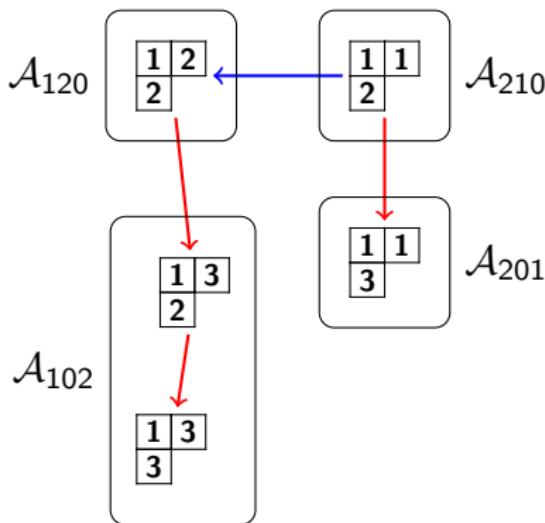
$$\mathcal{D}_{102} = \mathcal{A}_{210} + \mathcal{A}_{120} + \mathcal{A}_{201} + \mathcal{A}_{102}$$

$$\mathcal{D}_{021} = \mathcal{A}_{210} + \mathcal{A}_{120} + \mathcal{A}_{201} + \mathcal{A}_{021}$$

$$\mathcal{D}_{012} = \mathcal{A}_{210} + \mathcal{A}_{120} + \mathcal{A}_{201} + \mathcal{A}_{102} + \mathcal{A}_{021} + \mathcal{A}_{012}$$

Demazure atoms

- *Demazure atoms* are defined the same as keys but with $\hat{\pi}_i := \pi_i - 1$ in place of π_i .
- Demazure atoms are related to key polynomials by Bruhat order inclusion-exclusion.



$$\mathcal{D}_{102} = \mathcal{A}_{210} + \mathcal{A}_{120} + \mathcal{A}_{201} + \mathcal{A}_{102}$$

Weyl symmetrization

- For $w = s_{i_1} s_{i_2} \cdots s_{i_m} \in S_N$ reduced, $\pi_w := \pi_{i_1} \pi_{i_2} \cdots \pi_{i_m}$.
- π_{w_0} is the *Weyl symmetrization operator*.
- “Non-partition Schur function” $s_\alpha := \pi_{w_0} \mathbf{x}^\alpha$ is \pm an ordinary Schur function or 0, for any $\alpha \in \mathbb{N}^N$.
- $\pi_{w_0} \mathcal{A}_\alpha = \begin{cases} s_\alpha(x_1, \dots, x_N) & \text{if } \alpha \text{ is a partition} \\ 0 & \text{otherwise.} \end{cases}$

Atom positivity

Macdonald positivity: the modified Macdonald polynomials $H_\mu(\mathbf{x}; q, t)$ are Schur positive.

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The modified r -nonsymmetric Macdonald polynomials Weyl symmetrize to modified Macdonald polynomials:

$$\pi_{w_0} \mathsf{nsH}_{\eta|\lambda}(x_1, \dots, x_N; q, t) = H_{(\eta;\lambda)_+}(x_1, \dots, x_N; q, t),$$

where $(\eta; \lambda)_+$ is the partition rearrangement of the concatenation $(\eta; \lambda)$.

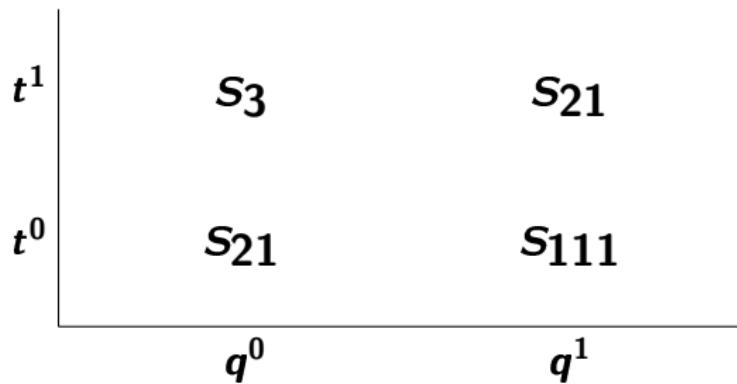
Conjecture (B.-Haiman-Morse-Pun-Seelinger)

The $\mathsf{nsH}_{\eta|\lambda}$ are Demazure atom positive.

This gives a conjectural strengthening of Macdonald positivity.

Atom positivity

- $\pi_{w_0} \mathsf{nsH}_{\eta|\lambda} = H_{(\eta;\lambda)_+}$.
- Conj: $\mathsf{nsH}_{\eta|\lambda}$ are Demazure atom positive.



symmetric Macdonald $H_{21}(x_1, x_2, x_3; q, t)$ in Schurs

Atom positivity

- $\pi_{w_0} \text{nsH}_{\eta|\lambda} = H_{(\eta;\lambda)_+}$.
- Conj: $\text{nsH}_{\eta|\lambda}$ are Demazure atom positive.

t^1	\mathcal{A}_{300}	\mathcal{A}_{030}	\mathcal{A}_{003}	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}
				\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}
t^0	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}			\mathcal{A}_{111}
	\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}			
				q^0	q^1	

symmetric Macdonald $H_{21}(x_1, x_2, x_3; q, t)$ in Demazure atoms

Atom positivity

- $\pi_{w_0} \text{nsH}_{\eta|\lambda} = H_{(\eta;\lambda)_+}$.
- Conj: $\text{nsH}_{\eta|\lambda}$ are Demazure atom positive.

t^1	\mathcal{A}_{300}	\mathcal{A}_{030}	\mathcal{A}_{003}	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}
				\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}
t^0	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}			
	\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}			\mathcal{A}_{111}

$\text{nsH}_{21|\emptyset}(x_1, x_2, x_3; q, t)$ in Demazure atoms

$$\begin{aligned} \mathsf{nsH}_{21|\emptyset} &= t x_1^3 + x_1^2 x_2 + qt x_1^2 x_2 + qt x_1 x_2^2 + qt x_1^2 x_3 + q x_1 x_2 x_3 \\ &= t \mathcal{A}_{300} + \mathcal{A}_{210} + qt \mathcal{A}_{210} + qt \mathcal{A}_{120} + qt \mathcal{A}_{201} + q \mathcal{A}_{111} \end{aligned}$$

Atom positivity

- $\pi_{w_0} \text{nsH}_{\eta|\lambda} = H_{(\eta;\lambda)_+}$.
- Conj: $\text{nsH}_{\eta|\lambda}$ are Demazure atom positive.

t^1	\mathcal{A}_{300}	\mathcal{A}_{030}	\mathcal{A}_{003}	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}
				\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}
t^0	\mathcal{A}_{210}	\mathcal{A}_{120}	\mathcal{A}_{201}			\mathcal{A}_{111}
	\mathcal{A}_{102}	\mathcal{A}_{021}	\mathcal{A}_{012}			
				q^0	q^1	

$\text{nsH}_{12|\emptyset}(x_1, x_2, x_3; q, t)$ in Demazure atoms

t -adic limit

- $\mathcal{P}(r) = \mathbb{Q}(q, t)[x_1, \dots, x_r] \otimes \Lambda_{\mathbb{Q}(q, t)}(x_{r+1}, \dots)$.
- $\mathbf{x} = x_1, x_2, \dots$

Def. The sequence g_1, g_2, \dots , with $g_N \in \mathbb{Q}(q, t)[x_1, \dots, x_N]$, *converges t -adically* to $f(\mathbf{x}) \in \mathcal{P}(r)$ if for all $e \geq 0$,

$$g_N(x_1, \dots, x_N) - f(x_1, \dots, x_N, 0, 0, \dots)$$

has coefficients whose order of vanishing in t is at least e , for sufficiently large N .

Example.

- $1, 1+t, 1+t+t^2, \dots \rightarrow \frac{1}{1-t}$.
- $x_1, tx_1+x_2, t^2x_1+x_2+x_3, t^3x_1+x_2+x_3+x_4 \rightarrow x_2+x_3+\dots \in \mathcal{P}(1)$.

Stable nonsymmetric Macdonald polynomials

Recall $\mathcal{E}_\alpha(\mathbf{x}; q, t)$ = integral form nonsymmetric Macdonald polynomials.

Def. For $(\eta|\lambda) \in \mathbb{N}^r \times \text{Par}$, the *integral form stable r-nonsymmetric Macdonald polynomial* $\text{stable}\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) \in \mathcal{P}(r)$ is given by

$$\text{stable}\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) = \lim_{n \rightarrow \infty} \mathcal{E}_{(\eta; 0^n; \lambda)}(x_1, \dots, x_{r+n}, 0^{\ell(\lambda)}; q, t).$$

Remark. The $\text{stable}\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t)$ are integral forms of stable versions introduced by Bechtloff Weising.

Combinatorial and algebraic descriptions agree

- Define $\text{pol}: \mathbb{Q}(q, t)[x_1^{\pm 1}, \dots, x_r^{\pm 1}] \rightarrow \mathbb{Q}(q, t)[x_1, \dots, x_r]$ by

$$\text{pol}(\mathcal{D}_\alpha) = \begin{cases} \mathcal{D}_\alpha & \text{for } \alpha \in \mathbb{N}^r \\ 0 & \text{for } \alpha \in \mathbb{Z}^r \setminus \mathbb{N}^r. \end{cases}$$

Def. The *r-nonsymmetric plethysm map* $\Pi_r: \mathcal{P}(r) \rightarrow \mathcal{P}(r)$ is given on $f(x_1, \dots, x_r)g(\mathbf{x})$, where g is symmetric in $\mathbf{x} = x_1, x_2, \dots$, by

$$\Pi_r(f(x_1, \dots, x_r)g(\mathbf{x})) = g\left[\frac{\mathbf{x}}{(1-t)}\right] \text{pol}\left(\frac{f(x_1, \dots, x_r)}{\prod_{1 \leq i < j \leq r} (1 - tx_i/x_j)}\right).$$

Theorem (B.-Haiman-Morse-Pun-Seelinger)

Let $(\eta|\lambda) \in \mathbb{N}^r \times \text{Par}$ and set $\beta = (\eta; \lambda)$. Then

$$\begin{aligned} \Pi_r(\text{stable}\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t)) &= \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) \\ &= t^{n(\beta_+)} \sum_{\substack{\text{r-flagged fillings } T \\ \text{of } \text{cdg}(\beta)}} \left(\prod_{b \in \text{Des}(T)} q^{\text{arm}(b)+1} t^{\text{leg}(b)} \right) t^{-\text{inv}(T)} \mathbf{x}^T. \end{aligned}$$

Combinatorial and algebraic descriptions agree

- Define $\text{pol}: \mathbb{Q}(q, t)[x_1^{\pm 1}, \dots, x_r^{\pm 1}] \rightarrow \mathbb{Q}(q, t)[x_1, \dots, x_r]$ by

$$\text{pol}(\mathcal{D}_\alpha) = \begin{cases} \mathcal{D}_\alpha & \text{for } \alpha \in \mathbb{N}^r \\ 0 & \text{for } \alpha \in \mathbb{Z}^r \setminus \mathbb{N}^r. \end{cases}$$

Def. The *r-nonsymmetric plethysm map* $\Pi_r: \mathcal{P}(r) \rightarrow \mathcal{P}(r)$ is given on $f(x_1, \dots, x_r)g(\mathbf{x})$, where g is symmetric in $\mathbf{x} = x_1, x_2, \dots$, by

$$\Pi_r(f(x_1, \dots, x_r)g(\mathbf{x})) = g\left[\frac{\mathbf{x}}{(1-t)}\right] \text{pol}\left(\frac{f(x_1, \dots, x_r)}{\prod_{1 \leq i < j \leq r} (1 - tx_i/x_j)}\right).$$

Theorem (B.-Haiman-Morse-Pun-Seelinger)

Let $(\eta|\lambda) \in \mathbb{N}^r \times \text{Par}$ and set $\beta = (\eta; \lambda)$. Then

$$\begin{aligned} \Pi_r(\text{stable}\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t)) &= \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) \\ &= t^{n(\beta_+)} \sum_{\substack{\text{r-flagged fillings } T \\ \text{of } \text{cdg}(\beta)}} \left(\prod_{b \in \text{Des}(T)} q^{\text{arm}(b)+1} t^{\text{leg}(b)} \right) t^{-\text{inv}(T)} \mathbf{x}^T. \end{aligned}$$

Filling in the missing corner

$$\begin{array}{ccc} \text{stable} \mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) & \xrightarrow{\Pi_r} & \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) \\ \text{Hecke sym.} \downarrow & & \downarrow \text{Weyl sym.} \\ J_{(\eta;\lambda)_+}(\mathbf{x}; q, t) & \xrightarrow[f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]]{} & H_{(\eta;\lambda)_+}(\mathbf{x}; q, t) \end{array}$$

- $\eta \in \mathbb{N}^r$, λ is a partition.
- $(\eta; \lambda)_+$ is the partition rearrangement of the concatenation $(\eta; \lambda)$.
- $\text{stable} \mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t)$ is the integral form stable r -nonsymmetric Macdonald polynomial.
- $\text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t)$ is the modified r -nonsymmetric Macdonald polynomial.
- $J_{(\eta;\lambda)_+}(\mathbf{x}; q, t)$ is the integral form Macdonald polynomial.
- $H_{(\eta;\lambda)_+}(\mathbf{x}; q, t)$ is the modified Macdonald polynomial.

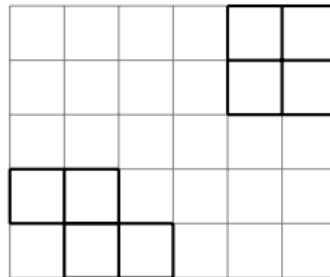
LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{ccc} \square & \square & \square \\ \square & & \square \\ & & \square \end{array}, \begin{array}{ccccc} \square & \square & \square & \square & \square \\ \square & & & & \square \\ & & & & \square \\ & & & & \square \\ & & & & \square \end{array} \right)$$



Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1	2	3	4
0	1	2	3	4	5

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

					b_3	b_6
					b_5	b_8
					b_1	b_2
					b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{ccc} & & \\ & & \\ & & \end{array}, \begin{array}{ccccc} & & & & \\ & & & & \\ & & & & \end{array} \right)$$

								b_3	b_6
								b_5	b_8
								b_1	b_2
								b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

					b_3	b_6
					b_5	b_8
					b_1	b_2
					b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

					b_3	b_6
					b_5	b_8
			b_1	b_2		
				b_4	b_7	

Attacking pairs: (b_2, b_3) , (b_3, b_4) , (b_4, b_5) , (b_4, b_6) , (b_5, b_7) , (b_6, b_7) , (b_7, b_8)

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

							b_3	b_6
							b_5	b_8
							b_1	b_2
							b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

								b_3	b_6
								b_5	b_8
								b_1	b_2
								b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

					b_3	b_6
					b_5	b_8
					b_1	b_2
					b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

								b_3	b_6
								b_5	b_8

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (\mathbf{b_6, b_7}), (b_7, b_8)$

LLT polynomials

Let $\nu = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes.

- The *content* of a box in row y , column x is $x - y$.
- *Reading order*: label boxes b_1, \dots, b_ℓ by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is *attacking* if a precedes b in reading order and
 - $\text{content}(a) = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i < j$, or
 - $\text{content}(a) + 1 = \text{content}(b)$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i > j$.

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

					b_3	b_6
					b_5	b_8
					b_1	b_2
					b_4	b_7

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$T = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & 5 & 6 \\ & & & & & 1 & \\ & & & & & 1 & \\ \hline & & & 2 & 4 & & \\ & & & 3 & 5 & & \\ \hline \end{array}$$

$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$\mathcal{G}_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$T =$		non-inversion
-------	--	---------------

$$\text{inv}(T) = 4, \quad x^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$T = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & 5 & 6 \\ & & & & & 1 & 1 \\ & & & & & & \\ \hline & 2 & 4 & & & & \\ & & 3 & 5 & & & \\ \hline \end{array}$$

inversion

$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

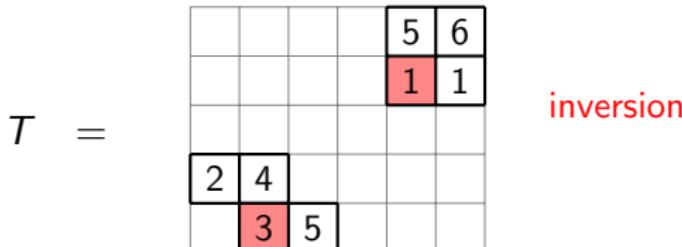
LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.



$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$\mathcal{G}_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$T =$		non-inversion
-------	---	---------------

$$\text{inv}(T) = 4, \quad x^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$T = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & 5 & 6 \\ & & & & & 1 & \\ & & & & & 1 & \\ \hline & 2 & 4 & & & & \\ \hline & 3 & 5 & & & & \\ \hline \end{array}$$

non-inversion

$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$T = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & 5 & 6 \\ \hline & & & & & 1 & 1 \\ \hline & & 2 & 4 & & & \\ \hline & & 3 & 5 & & & \\ \hline \end{array}$$

inversion

$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

LLT polynomials

- A *semistandard tableau* on ν is a map $T: \nu \rightarrow \mathbb{Z}_+$ which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An *attacking inversion* in T is an attacking pair (a, b) such that $T(a) > T(b)$.

Def. The *LLT polynomial* indexed by a tuple of skew shapes ν is

$$G_\nu(\mathbf{x}; t) = \sum_{T \in \text{SSYT}(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

where $\text{inv}(T)$ is the number of attacking inversions in T and $\mathbf{x}^T = \prod_{a \in \nu} x_{T(a)}$.

$$T = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & 5 & 6 \\ & & & & & 1 & 1 \\ \hline & & & & & & \\ \hline & 2 & 4 & & & & \\ \hline & 3 & 5 & & & & \\ \hline \end{array}$$

inversion

$$\text{inv}(T) = 4, \quad \mathbf{x}^T = x_1^2 x_2 x_3 x_4 x_5^2 x_6$$

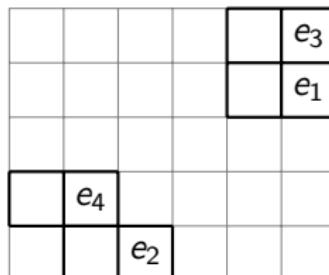
Flagged LLT polynomials

- Let e_1, \dots, e_d be the row ends of ν , ordered in reverse reading order.
- Fix a nonnegative integer $r \leq d$.
- $T \in \text{SSYT}(\nu)$ is *flagged* if $T(e_i) \leq i$ for $i = 1, 2, \dots, r$.
- $\text{FT}_r(\nu) = \text{set of flagged semistandard tableaux on } \nu$.

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = \sum_{T \in \text{FT}_r(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

Example.

$$\nu = \left(\begin{array}{|c|c|} \hline \text{ } & \text{ } \\ \hline \text{ } & \text{ } \\ \hline \end{array}, \begin{array}{|c|c|} \hline \text{ } & \text{ } \\ \hline \text{ } & \text{ } \\ \hline \end{array} \right)$$



Flagged LLT polynomials

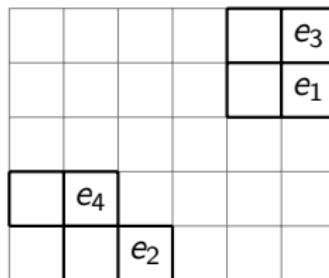
- Let e_1, \dots, e_d be the row ends of ν , ordered in reverse reading order.
- Fix a nonnegative integer $r \leq d$.
- $T \in \text{SSYT}(\nu)$ is *flagged* if $T(e_i) \leq i$ for $i = 1, 2, \dots, r$.
- $\text{FT}_r(\nu) = \text{set of flagged semistandard tableaux on } \nu$.

Def. The *flagged LLT polynomial* indexed by r and ν is

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = \sum_{T \in \text{FT}_r(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

Example.

$$\nu = \left(\begin{array}{|c|c|} \hline \text{ } & \text{ } \\ \hline \text{ } & \text{ } \\ \hline \end{array}, \begin{array}{|c|c|} \hline \text{ } & \text{ } \\ \hline \text{ } & \text{ } \\ \hline \end{array} \right)$$



Flagged LLT polynomials

- Let e_1, \dots, e_d be the row ends of ν , ordered in reverse reading order.
- Fix a nonnegative integer $r \leq d$.
- $T \in \text{SSYT}(\nu)$ is *flagged* if $T(e_i) \leq i$ for $i = 1, 2, \dots, r$.
- $\text{FT}_r(\nu)$ = set of flagged semistandard tableaux on ν .

Def. The *flagged LLT polynomial* indexed by r and ν is

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = \sum_{T \in \text{FT}_r(\nu)} t^{\text{inv}(T)} \mathbf{x}^T,$$

Example.

$$\nu = \left(\begin{array}{c} \square \square \\ \square \end{array}, \begin{array}{c} \square \square \square \\ \square \square \end{array} \right)$$

						2	3	≤ 3
						1	1	≤ 1
						2	4	≤ 4
						1	2	≤ 2

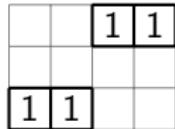
$T \in \text{FT}_r(\nu)$ for $r = 4$

Flagged LLT polynomials

Example.

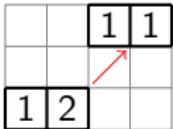
$$r = 2 \quad \nu = (\square\square, \square\square)$$

T

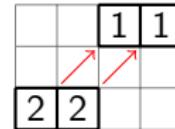


$$t^{\text{inv}(T)}$$

1



t



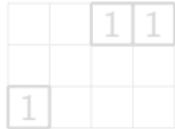
t^2

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = x_1^4 + t x_1^3 x_2 + t^2 x_1^2 x_2^2$$

Example.

$$r = 1 \quad \nu = (\square, \square\square)$$

T



$$t^{\text{inv}(T)}$$

1

t

...

t

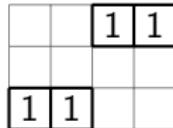
$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = x_1^3 + t x_1^2 (x_2 + x_3 + \dots)$$

Flagged LLT polynomials

Example.

$$r = 2 \quad \nu = (\square\square, \square\square)$$

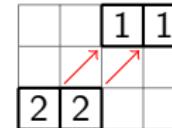
T



$$t^{\text{inv}(T)}$$

1

t



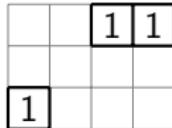
t^2

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = x_1^4 + t x_1^3 x_2 + t^2 x_1^2 x_2^2$$

Example.

$$r = 1 \quad \nu = (\square, \square\square)$$

T



$$t^{\text{inv}(T)}$$

1

t

...

t

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t) = x_1^3 + t x_1^2 (x_2 + x_3 + \dots)$$

Signed flagged LLT polynomials

- Signed alphabet $\mathcal{A} = 1 < \bar{1} < 2 < \bar{2} \dots$
- $\text{FT}_r^\pm(\nu)$ = fillings of ν from \mathcal{A} satisfying
 - unbarred letters weakly increase in rows, strictly increase in columns.
 - barred letters strictly increase in rows, weakly increase in columns.
 - $T(e_i) \leq i$ for $i = 1, \dots, r$.

Def. The *signed flagged LLT polynomial* indexed by r and ν is

$$\mathcal{G}_{r,\nu}^\pm(\mathbf{x}; t) = \sum_{T \in \text{FT}_r^\pm(\nu)} t^{\text{inv}(T)} (-t)^{-\#\text{bar}(T)} \mathbf{x}^{|T|},$$

where $|T|$ is the result of removing all bars from T .

Signed flagged LLT polynomials

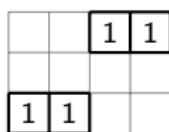
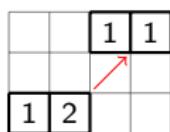
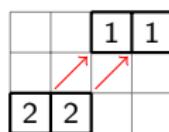
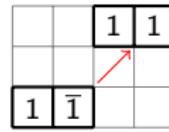
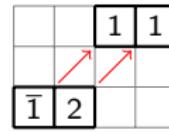
- Signed alphabet $\mathcal{A} = 1 < \bar{1} < 2 < \bar{2} \dots$

$$\mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t) = \sum_{T \in \text{FT}_r^{\pm}(\nu)} t^{\text{inv}(T)} (-t)^{-\#\text{bar}(T)} \mathbf{x}^{|T|}.$$

Example.

$$r = 2 \quad \nu = (\square\square, \square\square)$$

T



$$t^{\text{inv}(T)}$$

$$1$$

$$t$$

$$t^2$$

$$t$$

$$t^2$$

$$(-t)^{-\#\text{bar}(T)}$$

$$1$$

$$1$$

$$1$$

$$-t^{-1}$$

$$-t^{-1}$$

$$\begin{aligned} \mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t) &= x_1^4 + t x_1^3 x_2 + t^2 x_1^2 x_2^2 - x_1^4 - t x_1^3 x_2 \\ &= t^2 x_1^2 x_2^2 \end{aligned}$$

Π_r takes signed LLTs to unsigned LLTs

Well-known fact: in the $r = 0$ (fully symmetric) case,

$$\mathcal{G}_{0,\nu}^{\pm}(\mathbf{x}; t^{-1}) = \mathcal{G}_{0,\nu}[\mathbf{x}(1-t); t^{-1}].$$

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The r -nonsymmetric plethysm map Π_r takes signed LLTs to unsigned LLTs:

$$\Pi_r(\mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t^{-1})) = \mathcal{G}_{r,\nu}(\mathbf{x}; t^{-1}).$$

Π_r takes signed LLTs to unsigned LLTs

Theorem (B.-Haiman-Morse-Pun-Seelinger)

The r -nonsymmetric plethysm map Π_r takes signed LLTs to unsigned LLTs:

$$\Pi_r(\mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t^{-1})) = \mathcal{G}_{r,\nu}(\mathbf{x}; t^{-1}).$$

Example. $r = 2$ $\nu = (\square\square, \square\square)$

$$\mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t^{-1}) = t^{-2}x_1^2x_2^2$$

$$\mathcal{G}_{r,\nu}(\mathbf{x}; t^{-1}) = t^{-2}x_1^2x_2^2 + t^{-1}x_1^3x_2 + x_1^4$$

$$\begin{aligned}\Pi_r(\mathcal{G}_{r,\nu}^{\pm}(\mathbf{x}; t^{-1})) &= \Pi_r(t^{-2}x_1^2x_2^2) \\ &= \text{pol} \left(\frac{t^{-2}x_1^2x_2^2}{1 - tx_1/x_2} \right) \\ &= t^{-2} \text{pol} (x_1^2x_2^2 + tx_1^3x_2^1 + t^2x_1^4x_2^0 + t^3x_1^5x_2^{-1} + \dots) \\ &= t^{-2}x_1^2x_2^2 + t^{-1}x_1^3x_2 + x_1^4 = \mathcal{G}_{r,\nu}(\mathbf{x}; t^{-1})\end{aligned}$$

LLT and Macdonald polynomials

- We show how to convert the nonsymmetric Haglund-Haiman-Loehr formula for \mathcal{E}_α to a signed flagged LLTs formula for \mathcal{E}_α .
- Signed flagged LLT formula for their stable limits stable $\mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t)$.
- Π_r turns this into a flagged LLT formula for $H_{\eta|\lambda}(\mathbf{x}; q, t)$.
- Π_r takes Hecke symmetrization to Weyl symmetrization.

LLT and Macdonald polynomials

$$\mathcal{E}_\alpha(x_1, \dots, x_N; q, t) = \sum \text{signed flagged LLTs}$$

stable
stabilize

$$\text{stable } \mathcal{E}_{\eta|\lambda}(\mathbf{x}; q, t) = \sum \text{signed flagged LLTs} \xrightarrow{\Pi_r} \text{nsH}_{\eta|\lambda}(\mathbf{x}; q, t) = \sum \text{flagged LLTs}$$

Hecke sym.

$$J_{(\eta; \lambda)_+}(\mathbf{x}; q, t) = \sum \text{signed LLTs} \xrightarrow{f(\mathbf{x}) \mapsto f[\mathbf{x}/(1-t)]} H_{(\eta; \lambda)_+}(\mathbf{x}; q, t) = \sum \text{LLTs}$$

Weyl sym.