

Saturated Newton polytope of the Kronecker product

Chenchen Zhao
UC Davis

Joint work with Greta Panova

ICERM workshop: Computation in Representation Theory
November 11, 2025

Kronecker coefficients

Symmetric group S_n : permutations $\pi : [1 \dots n] \rightarrow [1 \dots n]$ under composition.

The irreducible modules (up to isomorphisms) of S_n are **Specht modules** \mathbb{S}_λ , indexed by

integer partitions $\lambda \vdash n$: $\lambda = (\lambda_1, \dots, \lambda_\ell)$, $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_\ell > 0$, $\sum_{i=1}^\ell \lambda_i = n$

Kronecker coefficients $g(\lambda, \mu, \nu)$: the multiplicity of \mathbb{S}_ν in the tensor product decomposition of $\mathbb{S}_\lambda \otimes \mathbb{S}_\mu$

$$\mathbb{S}_\lambda \otimes \mathbb{S}_\mu = \bigoplus_{\nu \vdash n} \mathbb{S}_\nu^{\oplus g(\lambda, \mu, \nu)}.$$

The Kronecker coefficients generalize the Littlewood-Richardson coefficients.

The **Kronecker product** $*$ of symmetric functions is defined on the Schur basis as

$$s_\lambda * s_\mu := \sum_{\nu} g(\lambda, \mu, \nu) s_\nu.$$

Combinatorial Interpretations

Problem (Murnaghan 1938, Lascoux, Garsia-Remmel 1980s, Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$.

- μ and ν are both hooks, and when μ is a two-row partition and ν is a hook partition [Remmel, 1989]
- μ and ν are both two-row partitions, i.e. $\nu = (n - k, k)$, $\lambda = (n - r, r)$ [Remmel-Whitehead, 1994; Rosas, 2001; Blasiak-Mulmuley-Sohoni, 2013]
- A combinatorial interpretation is found when one of the three partitions is a two-row partition $\lambda = (n - k, k)$ with $\lambda_1 \geq 2k - 1$. [Ballantine-Orellana, 2006]
- A combinatorial interpretation is found when one partition is a hook, and the other partitions are arbitrary. [Blasiak, 2012; Blasiak-Liu, 2014]
- Other special cases [Bessenrodt-Bowman, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, etc]

Computational Complexity

Problem

What is the computational complexity of computing Kronecker coefficients?

- Bürgisser–Ikenmeyer (2008): Computing $g(\lambda, \mu, \nu)$ is $\#P$ -hard.

Problem

What is the complexity of deciding whether $g(\lambda, \mu, \nu) > 0$?

- Ikenmeyer–Mulmuley–Walter (2015): Deciding positivity is NP-hard.

Newton Polytope

In 2017, Monical-Tokcan-Yong initiated the study of the Newton polytopes of important polynomials in Algebraic Combinatorics.

- Let $f(x_1, \dots, x_k) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a polynomial with nonnegative coefficients.
- Let $M_k(f) := \{\alpha \in \mathbb{Z}_{\geq 0}^k : c_{\alpha} > 0\}$.
- The **Newton polytope** of a polynomial $f(x_1, \dots, x_k)$ is the convex hull of $M_k(f)$ in \mathbb{Z}^k , denoted by $N_k(f) := \text{Conv}(M_k(f))$.

Newton Polytope

In 2017, Monical-Tokcan-Yong initiated the study of the Newton polytopes of important polynomials in Algebraic Combinatorics.

- Let $f(x_1, \dots, x_k) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a polynomial with nonnegative coefficients.
- Let $M_k(f) := \{\alpha \in \mathbb{Z}_{\geq 0}^k : c_{\alpha} > 0\}$.
- The **Newton polytope** of a polynomial $f(x_1, \dots, x_k)$ is the convex hull of $M_k(f)$ in \mathbb{Z}^k , denoted by $N_k(f) := \text{Conv}(M_k(f))$.

Definition (SNP)

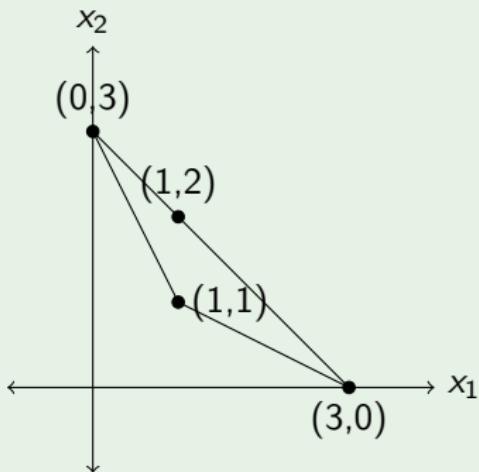
- A polynomial $f(x_1, \dots, x_k)$ has a *saturated Newton polytope* (SNP) if $M_k(f) = N_k(f)$.
- A symmetric function f has a saturated Newton polytope if its specialization $f(x_1, \dots, x_k)$ has a SNP for all $k \geq 1$.

Example

$f(x_1, x_2) = x_1 x_2 + x_1$ has SNP as the segment $\{(1, 1), (1, 0)\}$ contains no interior lattice points.

Example

$$f(x_1, x_2) = x_1^3 + 3x_1x_2 + x_2^3$$



$$f(x_1, x_2) = x_1^3 + 3x_1x_2 + x_2^3 \text{ does not have SNP.}$$

Newton polytope of polynomials in Algebraic Combinatorics

- Schur and skew Schur functions, the Stanley symmetric functions and Macdonald polynomials have SNP. [Monical–Tokcan–Yong 2017]
- Schubert polynomials and key polynomials have SNP. [Fink–Mészáros–St Dizier 2018]
- Double Schubert polynomials has SNP.
[Castillo–Cid–Ruiz–Mohammadi–Montaño 2023]
- Grothendieck case was resolved for Grassmannian permutations but remains open in general [Escobar–Yong 2017, Mészáros–St Dizier 2020]
- in chromatic case, it is known in the case of claw-free incomparability graphs and false in other cases [Monical, Matherne–Morales–Selove 2024]
- non-symmetric Macdonald polynomials has SNP [Black–Weising 2025]

Newton polytope of Kronecker product

Conjecture (Monical–Tokcan–Yong 2017)

The Kronecker product $s_\lambda * s_\mu = \sum_\nu g(\lambda, \mu, \nu) s_\nu$ has a saturated Newton polytope.

$$s_\lambda = \sum_\mu K_{\lambda,\mu} m_\mu$$

$$s_\lambda s_\mu = \sum_\nu c_{\lambda,\mu}^\nu s_\nu$$

$$s_\lambda * s_\mu = \sum_\nu g(\lambda, \mu, \nu) s_\nu$$

- Kostka numbers (positivity governed by dominance order \Rightarrow ensures SNP of s_λ)
- Littlewood–Richardson coefficients (LR rule for $s_\lambda s_\mu \Rightarrow$ positivity and SNP of the product)
- Kronecker coefficients

Newton polytope of the Kronecker product

Theorem (Panova–Z)

Let $\lambda, \mu \vdash n$ with $\ell(\lambda), \ell(\mu) \leq 2$. Then $s_\lambda * s_\mu(x_1, \dots, x_k)$ has a saturated Newton polytope for every k .

Theorem (Panova–Z)

Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2$ and $\ell(\mu) \leq 3$. If $\mu_1 \geq \lambda_1$, then the Kronecker product $s_\mu * s_\lambda(x_1, \dots, x_k)$ has a saturated Newton polytope for every k .

Lemma (Monical–Tokcan–Yong)

Suppose that $\lambda \vdash n$ and $\mu \vdash n$ are such that there is a partition λ with $g(\lambda, \mu, \nu) > 0$ and for every τ , such that $g(\lambda, \mu, \tau) > 0$ we have $\tau \prec \nu$ in the dominance order. Then $M_k(s_\lambda * s_\mu) = M_k(s_\nu) = N_k(s_\nu)$ for all k and $s_\lambda * s_\mu$ has a saturated Newton polytope.

Proof idea: showing that among all partitions $\nu \vdash n$ such that $g(\lambda, \mu, \nu) > 0$, there is a unique maximal term in dominance order.

Theorem (Rosas 2001)

Let β, γ , and α be partitions of n , where $\beta = (\beta_1, \beta_2)$ and $\gamma = (\gamma_1, \gamma_2)$ are two two-row partitions and let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ be a partition of length less than or equal to 4. Assume that $\gamma_2 \leq \beta_2$. Then

$$g(\beta, \gamma, \alpha) = (\phi(a, b, a + b + 1, c) - \phi(a, b, a + b + c + d + 2, c))(\gamma_2, \beta_2 + 1),$$

where $a = \alpha_3 + \alpha_4$, $b = \alpha_2 - \alpha_3$, $c = \min(\alpha_1 - \alpha_2, \alpha_3 - \alpha_4)$ and $d = |\alpha_1 + \alpha_4 - \alpha_2 - \alpha_3|$.

Conjecture (Monical–Tokcan–Yong 2017)

The Kronecker product $s_\lambda * s_\mu = \sum_\nu g(\lambda, \mu, \nu) s_\nu$ has a saturated Newton polytope.

Question

Does Kronecker product $s_\lambda * s_\mu$ have a saturated Newton polytope when there is no unique maximal term?

Let λ and μ be partitions of n , where $\mu = (\mu_1, \mu_2, \mu_3)$ and $\lambda = (\lambda_1, \lambda_2)$. If $\mu_1 < \lambda_1$, does the Kronecker product $s_\lambda * s_\mu$ have SNP?

Example

$$\begin{aligned} s_{(4,4,4)} * s_{(6,6)} = & \\ s_{(2,2,2,2,2,2)} + s_{(3,3,2,2,1,1)} + s_{(3,3,3,3)} + s_{(4,2,2,2,2)} + s_{(4,3,2,2,1)} + s_{(4,3,3,1,1)} + & \\ s_{(4,4,1,1,1,1)} + s_{(4,4,2,2)} + s_{(4,4,4)} + s_{(5,2,2,1,1,1)} + s_{(5,3,2,1,1)} + s_{(5,3,3,1)} + s_{(5,4,2,1)} + & \\ s_{(5,5,1,1)} + s_{(6,2,2,2)} + s_{(6,3,1,1,1)} + s_{(6,3,2,1)} + s_{(6,4,2)} + \textcolor{red}{s_{(6,6)}} + s_{(7,3,1,1)} + s_{(7,4,1)} + \textcolor{red}{s_{(8,2,2)}} & \end{aligned}$$

Two and three-row families

Theorem (Panova–Z)

Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 2$ and $\ell(\mu) \leq 3$. Then $s_\lambda * s_\mu(x_1, x_2, x_3)$ has a saturated Newton polytope.

Symmetric function techniques

The Kronecker coefficients can be equivalently defined using

$$s_\nu[x \cdot y] = \sum_{\lambda, \mu} g(\lambda, \mu, \nu) s_\lambda(x) s_\mu(y)$$

where $[x \cdot y] := (x_1 y_1, x_1 y_2, \dots, x_2 y_1, \dots)$.

triple Cauchy identity:

$$\sum_{\lambda, \mu, \nu} g(\lambda, \mu, \nu) s_\lambda(x) s_\mu(y) s_\nu(z) = \prod_{i, j, k} \frac{1}{1 - x_i y_j z_k}$$

$$\prod_{i, j, k} \frac{1}{1 - x_i y_j z_k} = \sum_{\alpha} h_{\alpha}(xy) m_{\alpha}(z)$$

$$\begin{aligned} \langle s_\lambda(x) * s_\mu(y), h_a[x \cdot y] \rangle &= \langle s_\lambda(x) * s_\mu(y), \prod_i \sum_{\alpha^i \vdash a_i} s_{\alpha^i}(x) s_{\alpha^i}(y) \rangle \\ &= \sum_{\alpha^i \vdash a_i, i=1, \dots} c_{\alpha^1 \alpha^2 \dots}^{\lambda} c_{\alpha^1 \alpha^2 \dots}^{\mu} \end{aligned}$$

Monomial expansion via multi-LR coefficients

The coefficient of $x_1^{a_1} x_2^{a_2} \dots$ in $s_\lambda * s_\mu(x)$ is

$$\sum_{\alpha^i \vdash a_i, i=1, \dots} c_{\alpha^1 \alpha^2 \dots}^{\lambda} c_{\alpha^1 \alpha^2 \dots}^{\mu}$$

Let

$$P(\mu; \mathbf{a}) := \{(\alpha^1, \alpha^2, \dots, \alpha^k) \in \mathbb{Z}_{\geq 0}^{\ell(\mu)k} : c_{\alpha^1 \alpha^2 \dots}^{\mu} > 0, |\alpha^i| = a_i \text{ for all } i = 1, \dots, k\}.$$

The set of monomial degrees $\mathbf{a} = (a_1, \dots, a_k)$ appearing in $s_\lambda * s_\mu$ is given as

$$M_k(s_\lambda * s_\mu) = \{\mathbf{a} \in \mathbb{Z}_{\geq 0}^k : P(\lambda; \mathbf{a}) \cap P(\mu; \mathbf{a}) \neq \emptyset\}.$$

We want to understand the set of points: $M_k(s_\lambda * s_\mu)$.

Horn Inequalities

Theorem (Klyachko 1998, Knutson-Tao 1999)

Let $\lambda, \mu, \nu \in \mathbb{N}^r$ with weakly decreasing component. Then $c_{\mu, \nu}^{\lambda} > 0$ if and only if $|\lambda| = |\mu| + |\nu|$ and

$$\sum_{i \in I} \lambda_i \leq \sum_{j \in J} \mu_j + \sum_{k \in K} \nu_k$$

for all LR-consistent triples $I, J, K \subset [r]$.

$$c_{\alpha^1, \alpha^2, \alpha^3}^{\nu} c_{\alpha^1, \alpha^2, \alpha^3}^{\mu} > 0 \iff$$

$$\max\{\alpha_1^1, \alpha_1^2, \alpha_1^3, \alpha_2^1 + \alpha_2^2, \alpha_2^1 + \alpha_2^3, \alpha_2^2 + \alpha_2^3\} \leq \nu_1,$$

$$\max\{\alpha_2^1, \alpha_2^2, \alpha_2^3\} \leq \nu_2,$$

$$\alpha_2^1 + \alpha_2^2 + \alpha_2^3 \leq \mu_2,$$

$$\max\{\alpha_1^1 + \alpha_2^2 + \alpha_2^3, \alpha_2^1 + \alpha_1^2 + \alpha_2^3, \alpha_2^1 + \alpha_2^2 + \alpha_1^3\} \leq \min\{\nu_1 + \nu_3, \mu_1\},$$

$$\max\{\alpha_1^1 + \alpha_1^2 + \alpha_2^3, \alpha_2^1 + \alpha_1^2 + \alpha_1^3, \alpha_1^1 + \alpha_2^2 + \alpha_1^3\} \leq \nu_1 + \nu_2,$$

$$\max\{\alpha_1^1 + \alpha_2^1 + \alpha_2^2 + \alpha_2^3, \alpha_2^1 + \alpha_1^2 + \alpha_2^2 + \alpha_2^3, \alpha_2^1 + \alpha_2^2 + \alpha_1^3 + \alpha_2^3\} \leq \nu_1 + \nu_2.$$

Inequalities

$$\begin{aligned}\mathcal{P}(\mu, \nu, (a_1, a_2, a_3)) := \{(x, y, z) \in \mathbb{R}^3 \mid \\ a_1 - \min(\nu_2, \mu_2, \frac{a_1}{2}) \leq x \leq \min(a_1, \nu_1), \\ a_2 - \min(\nu_2, \mu_2, \frac{a_2}{2}) \leq y \leq \min(a_2, \nu_1), \\ a_3 - \min(\nu_2, \mu_2, \frac{a_3}{2}) \leq z \leq \min(a_3, \nu_1), \\ \max(\nu_3, a_1 + a_2 - \nu_1) \leq x + y, \\ \max(\nu_3, a_1 + a_3 - \nu_1) \leq x + z, \\ \max(\nu_3, a_2 + a_3 - \nu_1) \leq y + z, \\ \mu_1 \leq x + y + z, \\ \max(\nu_2, \mu_2) - a_1 \leq -x + y + z \leq \nu_1 + \nu_2 - a_1, \\ \max(\nu_2, \mu_2) - a_2 \leq x - y + z \leq \nu_1 + \nu_2 - a_2, \\ \max(\nu_2, \mu_2) - a_3 \leq x + y - z \leq \nu_1 + \nu_2 - a_3\}.\end{aligned}$$

Inequalities

$$\begin{aligned}\mathcal{P}(\mu, \nu, (a_1, a_2, a_3)) := \{(x, y, z) \in \mathbb{R}^3 \mid \\ a_1 - \min(\nu_2, \mu_2, \frac{a_1}{2}) \leq x \leq \min(a_1, \nu_1), \\ a_2 - \min(\nu_2, \mu_2, \frac{a_2}{2}) \leq y \leq \min(a_2, \nu_1), \\ a_3 - \min(\nu_2, \mu_2, \frac{a_3}{2}) \leq z \leq \min(a_3, \nu_1), \\ \max(\nu_3, a_1 + a_2 - \nu_1) \leq x + y, \\ \max(\nu_3, a_1 + a_3 - \nu_1) \leq x + z, \\ \max(\nu_3, a_2 + a_3 - \nu_1) \leq y + z, \\ \mu_1 \leq x + y + z, \\ \max(\nu_2, \mu_2) - a_1 \leq -x + y + z \leq \nu_1 + \nu_2 - a_1, \\ \max(\nu_2, \mu_2) - a_2 \leq x - y + z \leq \nu_1 + \nu_2 - a_2, \\ \max(\nu_2, \mu_2) - a_3 \leq x + y - z \leq \nu_1 + \nu_2 - a_3\}.\end{aligned}$$

The set of monomial degrees $\mathbf{a} = (a_1, \dots, a_k)$ appearing in $s_\lambda * s_\mu$ is given as

$$M_k(s_\lambda * s_\mu) = \{\mathbf{a} \in \mathbb{Z}_{\geq 0}^k : \mathcal{P}(\mu, \nu, (a_1, a_2, a_3)) \cap \mathbb{Z}^3 \neq \emptyset\}.$$

Proposition

Suppose that $\mathcal{P}(\mu, \nu, \mathbf{a}^i) \neq \emptyset$ for some vectors \mathbf{a}^i , $i = 1, \dots, 4$ and $\mathbf{c} = \sum_i t_i \mathbf{a}^i$ for some $t_i \in [0, 1]$ with $t_1 + t_2 + t_3 + t_4 = 1$. Then $\mathcal{P}(\mu, \nu, \mathbf{c}) \neq \emptyset$.

Theorem (Panova–Z)

If $\mathcal{P}(\mu, \nu, \mathbf{a}) \neq \emptyset$ then it has an integer point, i.e. $\mathcal{P} \cap \mathbb{Z}^3 \neq \emptyset$.

Theorem (Panova–Z)

Let $\lambda, \mu \vdash n$ with $\ell(\lambda) \leq 3$ and $\ell(\mu) \leq 2$. Then $s_\lambda * s_\mu(x_1, x_2, x_3)$ has a saturated Newton polytope.

Limiting case of the SNP property

Theorem (Panova-Z)

Let λ, μ be partitions of the same size and $k \in \mathbb{N}$. Then the set of points

$$\bigcup_{p=1}^{\infty} \frac{1}{p} M_k(s_{p\lambda} * s_{p\mu})$$

is a convex subset of \mathbb{Q}^k .

Main tool: Semigroup property

Semigroup property

Semigroup Property (Christandl–Harrow–Mitchison 2007)

If $\alpha^1, \beta^1, \gamma^1 \vdash n$ and $\alpha^2, \beta^2, \gamma^2 \vdash m$ satisfy $g(\alpha^i, \beta^i, \gamma^i) > 0$ for $i = 1, 2$, then

$$g(\alpha^1 + \alpha^2, \beta^1 + \beta^2, \gamma^1 + \gamma^2) \geq \max\{g(\alpha^1, \beta^1, \gamma^1), g(\alpha^2, \beta^2, \gamma^2)\}.$$

Example

$$\lambda = (4, 3, 1), \mu = (6, 1, 1, 1), \lambda + \mu = (10, 4, 2, 1)$$

$$\begin{array}{|c|c|c|c|} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} +_H \begin{array}{|c|c|c|c|c|c|} \hline & & & & & \\ \hline \end{array} = \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline \end{array}$$

Given $g((2, 1), (1, 1, 1), (2, 1)) = 1$ and $g((1), (1), (1)) = 1$, by Semigroup property,

$$g((3, 1), (2, 1, 1), (3, 1)) \geq 1.$$

Positivity implications

Theorem (Panova–Z)

Suppose that $g(\lambda, \mu, \nu) > 0$ and let $\ell = \min\{\ell(\mu), \ell(\nu)\}$. Then there exist nonnegative integers $\{\alpha_j^i\}_{i \in [k], j \in [\ell]}$ satisfying

$$\sum_j \alpha_j^i = \lambda_i, \quad \text{for } i \in [k];$$

$$\alpha_j^i \geq \alpha_{j+1}^i, \quad \text{for } j \in [\ell - 1], i \in [k];$$

$$\sum_{(i,j) \in D(I)} \alpha_j^i \leq \min\left\{\sum_{j \in J} \mu_j, \sum_{j \in J} \nu_j\right\}, \quad \text{for every } mLR\text{-consistent } (I, J, K).$$

Positivity implications

Corollary

Suppose that $g(\lambda, \mu, \nu) > 0$ and $\ell(\mu) = 2$, $k = \ell(\lambda)$. Then there exist nonnegative integers $y_i \in [0, \lfloor \lambda_i/2 \rfloor]$ for $i \in [k]$, such that

$$\sum_{i \in A \cup C} \lambda_i + \sum_{i \in B} y_i - \sum_{i \in C} y_i \leq \min\{\sum_{j \in J} \mu_j, \sum_{j \in J} \nu_j\}$$

for all triples of mutually disjoint sets $A \sqcup B \sqcup C \subset [k]$ and $J = \{1, \dots, r, r+2, \dots, r+b+1\}$, where $r = 2|A| + |C|$ and $b = |B|$.

Remarks and further work

We cast doubts on whether the Kronecker product of Schur polynomials has SNP property in general.

Does the plethysm of two Schur functions $s_\lambda[s_\mu]$ have SNP?

Theorem (Paget–Wildon 2019)

Let $m \geq 2$. There is a unique partition λ , maximal in the dominance order on partitions, such that S^λ is a summand of H_μ^ν if and only if either $\nu = (n)$ or μ is rectangular and ν has exactly two parts.

T	h
y	

a	n
o	u

k	
!	