

On a curious variant of Lie_n

Sheila Sundaram

University of Minnesota and ICERM

2025 Nov 11

Computation in Representation Theory Workshop
ICERM

- The multilinear component of the free Lie algebra on n generators
- The representation Lie_n of the symmetric group \mathfrak{S}_n
- Properties of Lie_n (classical)
- A different \mathfrak{S}_n -module: The variant $\text{Lie}_n^{(2)}$
- Properties of $\text{Lie}_n^{(2)}$

Ground field is always the field of complex numbers.

The free Lie algebra

$V :=$ a vector space of dimension n , with basis $\{a_1, \dots, a_n\}$ (the “alphabet”).

$T(V) :=$ the tensor algebra over V (“words of finite length in the alphabet A ”).

The free Lie algebra $\mathcal{L}(V)$ over V is the smallest subalgebra of $T(V)$ containing V and closed under the bracket operation

$$[u, v] = uv - vu$$

(concatenate words and extend linearly). This is a *Lie bracket*: it satisfies *antisymmetry*:

$$[u, v] = -[v, u]$$

and the *Jacobi identity*:

$$[[u, v], w] + [[v, w], u] + [[w, u], v] = 0.$$

$\mathcal{L}(V)$ has a multigrading indexed by n -tuples (m_1, \dots, m_n) consisting of all possible bracketings with m_i occurrences of a_i . The multilinear component is the graded piece corresponding to $(1, 1, \dots, 1)$.

It can be viewed as the subspace of $\mathcal{L}(V)$ spanned by all possible bracketings of n distinct letters, say $\{1, \dots, n\}$.

It carries an action of \mathfrak{S}_n , the representation Lie_n .

Theorem: A basis for Lie_n is the set of left-normed bracketings (Garsia's *left combs*) consisting of brackets of permutations $\sigma \in \mathfrak{S}_n$ of the form

$$[\dots [[\sigma(1), \sigma(2)], \sigma(3)], \dots], \sigma(n)]$$

such that $\sigma(1) = 1$.

Hence Lie_n has dimension $(n - 1)!$

\mathfrak{S}_n acts by replacement of letters.

Ex 1: $n = 2$, $\text{Lie}_2 = \text{span}\{[1, 2]\} = \text{span}\{12 - 21\}$.

$(1, 2) \cdot [1, 2] = [2, 1] = -[1, 2]$, so \mathfrak{S}_2 acts like the sign representation.

Ex 2: $n = 3$, $\text{Lie}_3 = \text{span}\{[[1, 2], 3], [[1, 3], 2]\}$

$= \text{span}\{123 - 213 - 312 + 321, 132 - 312 - 213 + 231\}$.

$(1, 2) \cdot [[1, 2], 3] = [[2, 1], 3] = -[[1, 2], 3]$

$(1, 2) \cdot [[1, 3], 2] = [[2, 3], 1] = -[[1, 2], 3] + [[1, 3], 2]$

so trace $(1, 2) = 0$.

Similarly one checks that trace $(1, 2, 3) = -1$, so \mathfrak{S}_3 acts like the 2-dimensional irreducible indexed by the partition $(2, 1)$.

$GL(V)$ is the group of invertible linear transformations of a finite-dimensional complex vector space V .

Symmetric functions in m variables are characters $\text{ch } \phi$ of polynomial representations ϕ of GL_m , $\phi : GL_m \rightarrow GL(V)$, where GL_m is the general linear group of m by m invertible matrices over \mathbb{C} .

Symmetric functions of degree n , via the Frobenius characteristic map ch , are in correspondence with the representation ring of the symmetric group \mathfrak{S}_n .

Plethysm of symmetric functions $f[g]$ corresponds to composition of $GL(V)$ representations :

If $GL_n \xrightarrow{\phi} GL_m \xrightarrow{\psi} GL_k$, and ϕ, ψ have characters $\text{ch } \phi$, $\text{ch } \psi$ respectively, then the character of the (composite) GL_n -representation $\text{ch } (\psi \circ \phi)$ is $\text{ch } \psi[\text{ch } \phi]$.

Partitions of n and symmetric functions

- $\lambda = (\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1)$ such that $\sum_i \lambda_i = n$ is an integer partition of n ;
 $\ell(\lambda)$ is the number of parts k of λ .
- If $n = 0$ then $\lambda = \emptyset$ and $\ell(\lambda) = 0$.
- $p_r = \sum_i x_i^r$ is the r th power sum symmetric function.
- $p_\lambda = p_{\lambda_1} p_{\lambda_2} \dots$ is the power sum symmetric function indexed by the partition λ .
- s_λ denotes the Schur function indexed by λ ;
 $s_\lambda(x_1, \dots, x_m)$ is the character of the GL_m -irreducible **Weyl module** indexed by λ ,
for λ of length at most m ;
 $s_\emptyset = 1$ is the trivial representation of GL_m .
- s_λ is the Frobenius characteristic of the \mathfrak{S}_n -irreducible **Specht module** \mathbb{S}^λ
indexed by the partition λ of n .

Symmetric and Exterior Powers

- The homogeneous symmetric function h_n of degree n is the Frobenius characteristic of the **trivial representation** of \mathfrak{S}_n , indexed by the partition (n) .
It is also **the character of $GL(V)$** acting on the n th symmetric power $Sym^n(V)$.
- The elementary symmetric function e_n of degree n is the Frobenius characteristic of the **sign representation** of \mathfrak{S}_n , indexed by the partition (1^n) .
It is also **the character of $GL(V)$** acting on the n th exterior power $\Lambda^n(V)$.
- h_1^n is the Frobenius characteristic of the **regular representation** of \mathfrak{S}_n .
It is also **the character of $GL(V)$** acting on the n th tensor power $V^{\otimes n}$.
- The involution ω in the ring of symmetric functions, **corresponding to tensoring with the sign representation for \mathfrak{S}_n** , is defined by

$$\omega(h_n) = e_n.$$

Suppose g is a nonnegative sum of monomials.

If the multiset of monomials occurring in g is $\{\{\mathbf{x}^{\alpha_1}, \mathbf{x}^{\alpha_2}, \dots\}\}$, then

$$f[g] := f(\mathbf{x}^{\alpha_1}, \mathbf{x}^{\alpha_2}, \dots)$$

Symmetric functions f and g are plethystic inverses if

$$f[g] = g[f] = h_1.$$

Associativity of plethysm implies that $f[g] = h_1 \iff g[f] = h_1$.

Proposition

If f is a symmetric function with no constant term, and nonzero coefficient for the degree one term, then f has a plethystic inverse.

Plethysm and Schur-Weyl duality – notation

Define $H := \sum_{n \geq 0} h_n = 1 + h_1 + h_2 + \cdots$ and $E := \sum_{n \geq 0} e_n = 1 + e_1 + e_2 + \cdots$.

If $F = \sum_{i \geq 1} f_i = f_1 + f_2 + \cdots$ is the $GL(V)$ -character on $W = \bigoplus_i W_i$, then:

$H[F]$ is the $GL(V)$ -character of the symmetric algebra $Sym(W)$.

$E[F]$ is the $GL(V)$ -character of the exterior algebra $\bigwedge W$.

If λ is the partition with m_i parts equal to i , then define

$H_\lambda[F] :=$ the character of the piece $\otimes_i Sym^{m_i}(W_i)$ of the symmetric algebra $Sym(W)$

$E_\lambda[F] :=$ the character of the piece $\otimes_i \bigwedge^{m_i}(W_i)$ of the exterior algebra $\bigwedge W$.

Also

$(1 - h_1)^{-1} = \sum_{n \geq 0} h_1^n$ is the $GL(V)$ -character on the full tensor algebra $T(V)$.

The regular representation of a finite group G

$$Reg_G := 1 \uparrow_e^G = \bigoplus_{\chi \text{ irreducible repn of } G} (\dim \chi) \chi.$$

For the symmetric group \mathfrak{S}_n :

Theorem (Reg0)

$$Reg_{\mathfrak{S}_n} = \bigoplus_{\lambda \vdash n} f^\lambda \chi^\lambda,$$

with Frobenius characteristic

$$h_1^n = \text{ch } Reg_{\mathfrak{S}_n} = \sum_{\lambda \vdash n} f^\lambda s_\lambda.$$

Here

λ is an integer partition of n ,

$f^\lambda = |\{\text{standard Young tableaux of shape } \lambda\}|$, and

s_λ is the Schur function indexed by λ , so $s_\lambda = \text{ch } \chi^\lambda$.

The regular representation of \mathfrak{S}_n — (I)

$C_n :=$ the cyclic subgroup of \mathfrak{S}_n generated by the long cycle $\sigma = (1 2 \dots n)$.

$\omega_n :=$ a primitive n th root of unity.

For $1 \leq k \leq n$, $\sigma \mapsto \omega_n^k$ yields a one-dimensional representation of C_n , and these are all the distinct irreducibles, so

$$Reg_{C_n} = \bigoplus_{k=1}^n (\omega_n^k).$$

This in turn gives a decomposition of the regular representation of \mathfrak{S}_n :

Theorem (Reg1)

$$Reg_{\mathfrak{S}_n} = \bigoplus_{k=1}^n (\omega_n^k) \uparrow_{C_n}^{\mathfrak{S}_n}$$

The Lie module

$C_n :=$ cyclic subgroup of \mathfrak{S}_n generated by $\sigma = (1\ 2\ \dots\ n)$, $\omega_n := \exp \frac{2i\pi}{n}$.

Theorem (Klyachko, 1974)

The induced representation $\omega_n \uparrow_{C_n}^{\mathfrak{S}_n}$ is isomorphic to the representation Lie_n of \mathfrak{S}_n on the *multilinear component of the free Lie algebra on n generators*.

Angeline Brandt (1944): (Recall $p_d = x_1^d + x_2^d + \dots$)

$$\text{ch } \text{Lie}_n = \frac{1}{n} \sum_{d|n} \mu(d) p_d^{\frac{n}{d}}$$

If $\lambda \vdash n$ has m_i parts equal to i , then the *higher Lie module* is

$$H_\lambda[\text{Lie}] := h_{m_1}[\text{Lie}_1] h_{m_2}[\text{Lie}_2] \dots$$

For $\lambda = (4, 3, 3, 2)$: $H_{(4^1, 3^2, 2^1)}[\text{Lie}] = h_1[\text{Lie}_4] \cdot h_2[\text{Lie}_3] \cdot h_1[\text{Lie}_2]$

In particular: $H_{(n)}[\text{Lie}] = \text{Lie}_n$, $H_{(1^n)}[\text{Lie}] = h_n$.

Thrall's theorem

Let $\text{Lie} := \sum_{n \geq 1} \text{Lie}_n = \text{Lie}_1 + \text{Lie}_2 + \dots$.

Recall $H := \sum_{n \geq 0} h_n = 1 + h_1 + h_2 + \dots$ and $E := \sum_{n \geq 0} e_n = 1 + e_1 + e_2 + \dots$.

Theorem (Robert Thrall 1942)

$$H[\text{Lie}] = (1 - h_1)^{-1}.$$

$$\text{Sym}(L(V)) \xrightarrow{PBW} U(L(V)) \simeq T(V)$$

Equivalently, $h_1^n = \sum_{\lambda \vdash n} H_\lambda[\text{Lie}] = \sum_{\lambda \vdash n} h_{m_1}[\text{Lie}_1] h_{m_2}[\text{Lie}_2] \dots,$

where λ has m_i parts equal to i .

The **dimension** of the higher Lie module $H_\lambda[\text{Lie}]$ is the number of permutations in \mathfrak{S}_n with cycle-type λ .

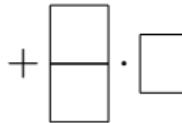
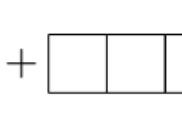
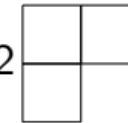
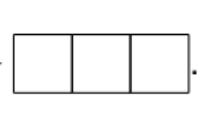
The regular representation of \mathfrak{S}_n – (II)

$$h_1^n = \operatorname{ch} \operatorname{Reg}_{\mathfrak{S}_n} = \sum_{\lambda \vdash n} H_\lambda[\operatorname{Lie}] = \sum_{\lambda \vdash n} h_{\mathbf{m}_1}[\operatorname{Lie}_1] h_{\mathbf{m}_2}[\operatorname{Lie}_2] \dots,$$

where λ has \mathbf{m}_i parts equal to i .

Example:

$$\begin{aligned} h_1^3 &= \operatorname{ch} \operatorname{Reg}_{\mathfrak{S}_3} = H_{(3)}[\operatorname{Lie}] + H_{(2,1)}[\operatorname{Lie}] + H_{(1^3)}[\operatorname{Lie}] \\ &= \operatorname{Lie}_3 + \operatorname{Lie}_2 \operatorname{Lie}_1 + h_3. \end{aligned}$$

So $\operatorname{Reg}_{\mathfrak{S}_3} =$ +  · +  = 2  +  + .

The variant $\text{Lie}_n^{(2)}$

Fix $n \geq 1$. Let k_n be the highest power of 2 dividing n . Define $\text{Lie}_n^{(2)}$ to be the induced module

$$\text{Lie}_n^{(2)} := \left(\omega_n^{2^{k_n}} \right) \uparrow_{C_n}^{\mathfrak{S}_n}$$

Ex: $\text{Lie}_2^{(2)} = \mathbb{1}_{\mathfrak{S}_2}$, $\text{Lie}_3^{(2)} = \text{Lie}_3$, $\text{Lie}_4^{(2)} = \mathbb{1} \uparrow_{C_4}^{\mathfrak{S}_4}$.

Properties shared with Lie_n :

- $\text{Lie}_n^{(2)}$ has dimension $(n - 1)!$
- it is a submodule of the regular representation of \mathfrak{S}_n
- its restriction to \mathfrak{S}_{n-1} is the regular representation
- its character on σ is nonzero $\Rightarrow \sigma$ has all cycles of the same length.

Proposition (S, 2020)

$\text{Lie}_n^{(2)}$ is isomorphic to

- Lie_n , if n is odd;
- the conjugacy action on the class of n -cycles, if n is a power of 2;
- $\text{Lie}_n \otimes \text{sgn}_n$, if n is twice an odd number.

Write Lie_n (resp. $\text{Lie}_n^{(2)}$) for both the module and its Frobenius characteristic.

Recall: If $\lambda \vdash n$ has m_i parts equal to i , then one can define *higher Lie modules*

$$H_\lambda[\text{Lie}] = h_{m_1}[\text{Lie}_1]h_{m_2}[\text{Lie}_2] \cdots,$$

$$E_\lambda[\text{Lie}] = e_{m_1}[\text{Lie}_1]e_{m_2}[\text{Lie}_2] \cdots$$

Can replace Lie with $\text{Lie}^{(2)} := \text{Lie}_1^{(2)} + \text{Lie}_2^{(2)} + \cdots$, giving *higher Lie⁽²⁾ modules*

Properties: Lie_n versus $\text{Lie}_n^{(2)}$

Theorem (S, 2020)

The symmetric function $\text{Lie}_n^{(2)}$ satisfies plethystic identities analogous to Lie_n .

$$\sum_{\lambda \vdash n} H_\lambda[\text{Lie}] = h_1^n$$

$$\sum_{\lambda \vdash n} E_\lambda[\text{Lie}^{(2)}] = h_1^n \quad (1)$$

$$H \left[\sum_{n \geq 1} (-1)^{n-1} \omega(\text{Lie}_n) \right] = 1 + h_1$$

$$E \left[\sum_{n \geq 1} (-1)^{n-1} \omega(\text{Lie}_n^{(2)}) \right] = 1 + h_1 \quad (2)$$

$$\text{If } n \geq 2, \sum_{\lambda \vdash n} (-1)^{n-\ell(\lambda)} E_\lambda[\text{Lie}] = 0$$

$$\sum_{\lambda \vdash n} (-1)^{n-\ell(\lambda)} H_\lambda[\text{Lie}^{(2)}] = 0 \quad (3)$$

$$\text{If } n \geq 2, \sum_{\lambda \vdash n} E_\lambda[\text{Lie}] = 2e_2 h_1^{n-2}$$

$$\sum_{\lambda \vdash n} H_\lambda[\text{Lie}^{(2)}] = \sum_{\lambda \vdash n, \lambda_i = 2^{a_i}} p_\lambda \quad (4)$$

$$H_\lambda[\text{Lie}] = h_{m_1}[\text{Lie}_1] h_{m_2}[\text{Lie}_2] \cdots, \quad E_\lambda[\text{Lie}] = e_{m_1}[\text{Lie}_1] e_{m_2}[\text{Lie}_2] \cdots$$

Dissecting the properties (1)

$$(1) \quad \sum_{\lambda \vdash n} H_\lambda[\text{Lie}] = h_1^n; \quad \sum_{\lambda \vdash n} E_\lambda[\text{Lie}^{(2)}] = h_1^n$$

By Thrall, the higher **Lie** modules decompose the regular representation of \mathfrak{S}_n . For GL_n , this says that the full tensor algebra decomposes as a **symmetric algebra** over the **free Lie algebra**.

The variant **Lie**⁽²⁾ apparently gives a GL_n -decomposition of the full tensor algebra as an **exterior algebra** over some **other** (?) object.

Dimensions:

$$\dim H_\lambda[\text{Lie}] = \dim E_\lambda[\text{Lie}^{(2)}] = |\{\sigma \in \mathfrak{S}_n : \text{cycle type of } \sigma \text{ is } \lambda\}|$$

Dissecting the properties (2)

$$(2) \quad H \left[\sum_{n \geq 1} (-1)^{n-1} \omega(\text{Lie}_n) \right] = 1 + h_1; \quad E \left[\sum_{n \geq 1} (-1)^{n-1} \omega(\text{Lie}_n^{(2)}) \right] = 1 + h_1;$$

$\omega(\text{Lie}_n)$ gives the plethystic inverse of $\sum_{n \geq 1} h_n$, a result Cadogan (1971) obtained via cycle index computations on graphs.

Similarly, $\omega(\text{Lie}_n^{(2)})$ gives the plethystic inverse of $\sum_{n \geq 1} e_n$.

Equivalently, these are plethystic inverses:

Theorem (S, 2020)

$$\sum_{n \geq 1} \text{Lie}_n \text{ and } \sum_{n \geq 1} (-1)^{n-1} e_n.$$

$$\sum_{n \geq 1} \text{Lie}_n^{(2)} \text{ and } \sum_{n \geq 1} (-1)^{n-1} h_n.$$

Dissecting the properties (3)

Let Π_n denote the lattice of *set partitions* of an n -element set. Let $\text{Whit}_r(\Pi_n)$ denote the r th Whitney homology of Π_n , $0 \leq r \leq n-1$. Then $\text{Whit}_r(\Pi_n)$ coincides with the r th graded piece of the *Orlik-Solomon algebra* of the braid matroid of type A_{n-1} .

Theorem (Lehrer and Solomon 1986)

As an \mathfrak{S}_n -module, $\omega(\text{Whit}_r(\Pi_n))$ has Frobenius characteristic $\sum_{\lambda \vdash n, \ell(\lambda)=n-r} E_\lambda[\text{Lie}]$.

$\dim \text{Whit}_r(\Pi_n) = c(n, n-r)$, the signless Stirling number of the first kind.

$$(3) \sum_{\lambda \vdash n} (-1)^{n-\ell(\lambda)} E_\lambda[\text{Lie}] = 0 \quad (n \geq 2) \quad \sum_{\lambda \vdash n} (-1)^{n-\ell(\lambda)} H_\lambda[\text{Lie}^{(2)}] = 0.$$

Lie : Asserts, up to sign, the \mathfrak{S}_n -equivariant **acyclicity** of the Whitney homology complex for the partition lattice, i.e. of the Orlik-Solomon algebra of type A_{n-1} .

$\text{Lie}^{(2)}$: Similar interpretation? Why are the symmetric powers of $\text{Lie}_n^{(2)}$ acyclic?

$$(4) \sum_{\lambda \vdash n} E_\lambda[\text{Lie}] = 2e_2 h_1^{n-2} \quad (n \geq 2) \quad \sum_{\lambda \vdash n} H_\lambda[\text{Lie}^{(2)}] = \sum_{\lambda \vdash n, \lambda_i = 2^{a_i}} p_\lambda.$$

Lie : Up to sign, the \mathfrak{S}_n -action on the full [Orlik-Solomon algebra](#)/total Whitney homology of Π_n is twice a [permutation module](#) (Lehrer 1987).

$\text{Lie}^{(2)}$: Interesting consequence of (4) is that the multiplicity-free

sum of power sums p_λ , where every part of λ is a power of 2,

is Schur positive (in fact, twice a Schur positive function).

(Original Motivation)

An equivariant Whitney homology result

Let $\mathbf{Whit}_r(P)$ denote the r th Whitney homology of the poset P .

Theorem (S 1994)

If P is a Cohen-Macaulay poset of rank r , with a group of automorphisms G , then for each $i \leq r$ (over a field of characteristic zero), this alternating sum is a true G -module:

$$\mathbf{Whit}_i(P) - \mathbf{Whit}_{i-1}(P) + \cdots + (-1)^i \mathbf{Whit}_0(P)$$

Recall $\omega(\mathbf{Whit}_r(\Pi_n)) = \sum_{\lambda \vdash n, \ell(\lambda)=n-r} E_\lambda[\mathbf{Lie}]$.

Hence we know that for each $i \leq n-1$, the truncated alternating sum

$$\sum_{r=0}^i (-1)^{i-r} \sum_{\substack{\lambda \vdash n \\ \ell(\lambda)=n-r}} E_\lambda[\mathbf{Lie}]$$

is a true \mathfrak{S}_n -module, of dimension $c(n, n-i) - c(n, n-i+1) + \cdots + (-1)^i c(n, n)$.
(Can describe the module precisely.)

A counterpart for $\text{Lie}_n^{(2)}$

In analogy with $\omega(\text{Whit}_r(\Pi_n)) = \sum_{\lambda \vdash n, \ell(\lambda)=n-r} E_\lambda[\text{Lie}] :$

Define a new module $\text{Vh}_r(n) := \sum_{\lambda \vdash n, \ell(\lambda)=n-r} H_\lambda[\text{Lie}^{(2)}]$. Then

$$(\text{Lie}) : \text{Whit}_{n-1}(\Pi_n) - \text{Whit}_{n-2}(\Pi_n) + \cdots + (-1)^{n-1} \text{Whit}_0(\Pi_n) = 0$$

$$(\text{Lie}^{(2)}) : \text{Vh}_{n-1}(n) - \text{Vh}_{n-2}(n) + \text{Vh}_{n-3}(n) - \cdots + (-1)^{n-1} \text{Vh}_0(n) = 0, \quad n \geq 2$$

In analogy with Lie_n :

Conjecture (S, 2020 – checked with Maple for $n \leq 9$)

For each $i \leq n-1$, the truncated alternating sum of modules

$U_i(n) := \text{Vh}_i(n) - \text{Vh}_{i-1}(n) + \cdots + (-1)^{n-1} \text{Vh}_0(n)$ is a true \mathfrak{S}_n -module.

Again, $\dim U_i(n) = \sum_{r=0}^i (-1)^{i-r} c(n, n-r)$.

True for $i \leq 3$ and all n

$$U_0(n) = \text{Vh}_0(n) = s_{(n)};$$

$$U_1(n) = \text{Vh}_1(n) - \text{Vh}_0(n) = s_{(n-1,1)} + s_{(n-2,2)};$$

$$\begin{aligned} U_2(n) &= \text{Vh}_2(n) - U_1(n) \\ &= h_{n-3}s_{(2,1)} + h_{n-4}(h_4 + s_{(2,2)}) - s_{(n-1,1)} - s_{(n-2,2)}; \end{aligned}$$

$$\begin{aligned} U_3(n) &= \text{Vh}_3(n) - U_2(n) \\ &= h_{n-4}s_{(2,1^2)} + s_{(2,1)}(h_{n-5}h_2 - h_{n-3}) \\ &\quad + h_{n-6}(h_6 + s_{(4,2)} + s_{(2^3)}) + s_{(n-1,1)} + s_{(n-2,2)}. \end{aligned}$$

Data for $n = 6$

Table: Alternating sums $U_k(n)$ of $h_k[\text{Lie}^{(2)}]$ for $n = 6$

k	$U_k(6)$
0	(6)
1	(5, 1) + (4, 2)
2	(6) + (5, 1) + 2(4, 2) + (4, 1 ²) + 2(3, 2, 1) + (2 ³)
3	(6) + (5, 1) + 3(4, 2) + 2(4, 1 ²) + (3 ²) + 3(3, 2, 1) + 2(3, 1 ³) + 2(2 ² , 1 ²)
4	$\text{Lie}_6^{(2)} = (5, 1) + 2(4, 2) + (4, 1^2) + 3(3, 2, 1) + 2(3, 1^3) + (2^3) + (2^2, 1^2) + (2, 1^4)$

Data for $n = 7$

Table: Alternating sums $U_k(n)$ of $h_k[\text{Lie}^{(2)}]$ for $n = 7$

k	$U_k(7)$
0	(7)
1	$(6, 1) + (5, 2)$
2	$(7) + (6, 1) + 2(5, 2) + (5, 1^2) + (4, 3) + 2(4, 2, 1) + (3, 2^2)$
3	$(7) + 2(6, 1) + 3(5, 2) + 2(5, 1^2) + 3(4, 3) + 5(4, 2, 1) + 2(4, 1^3) + 2(3^2, 1) + 3(3, 2^2) + 3(3, 2, 1^2) + 2(2^3, 1)$
4	$2(6, 1) + 4(5, 2) + 3(5, 1^2) + 3(4, 3) + 8(4, 2, 1) + 3(4, 1^3) + 4(3^2, 1) + 5(3, 2^2) + 7(3, 2, 1^2) + 3(3, 1^4) + 3(2^3, 1) + 2(2^2, 1^3)$
5	$\text{Lie}_7^{(2)} = \text{Lie}_7 = (6, 1) + 2(5, 2) + 2(5, 1^2) + 2(4, 3) + 5(4, 2, 1) + 3(4, 1^3) + 3(3^2, 1) + 3(3, 2^2) + 5(3, 2, 1^2) + 2(3, 1^4) + 2(2^2, 1) + 2(2^2, 1^3) + (2, 1^5)$

The derived series

The $(\mathfrak{S}_n$ -equivariant) derived series of the free Lie algebra:

Let $\kappa = \sum_{n \geq 2} s_{(n-1,1)} = s_{(1,1)} + s_{(2,1)} + \dots$

Let $\text{Lie}_{\geq 2} = \text{Lie}_2 + \text{Lie}_3 + \dots$

FACT:

$$\text{Lie}_{\geq 2} = \kappa + \kappa[\kappa] + \kappa[\kappa[\kappa]] + \dots$$

Derived series of any Lie algebra L is $L \supset [L, L] \supset [[L, L], [L, L]] \supset \dots$

Comparing derived series

Theorem (S, 2020: Analogue of the derived series filtration of the free Lie algebra)

$$\text{Lie}_{\geq 2} = \kappa + \kappa[\kappa] + \kappa[\kappa[\kappa]] + \dots$$

$$\text{Lie}_{\geq 2}^{(2)} = \omega(\kappa) + \omega(\kappa)[\omega(\kappa)] + \omega(\kappa)[\omega(\kappa)[\omega(\kappa)]] + \dots$$

$$\text{Lie}_{\geq 2} = \text{Lie}[\kappa]$$

$$\text{Lie}_{\geq 2}^{(2)} = \text{Lie}^{(2)}[\omega(\kappa)]$$

The degree n term in

$$\sum_{r \geq 0} (-1)^{n-r} e_{n-r}[\text{Lie}_{\geq 2}]$$

$$\text{is } (-1)^{n-1} s_{(n-1,1)}$$

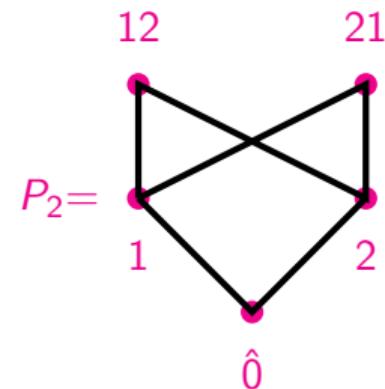
The degree n term in

$$\sum_{r \geq 0} (-1)^{n-r} h_{n-r}[\text{Lie}_{\geq 2}^{(2)}]$$

$$\text{is } (-1)^{n-1} s_{(2,1^{n-2})}$$

The complex of injective words

Injective words in the alphabet $\{1, 2, \dots, n\}$ form a poset P_n under subword order: u is a subword of v if u can be obtained by erasing letters in v .



Frank Farmer (1979) showed: the order complex of $P_n \cup \{\hat{1}\}$ has the homotopy type of a wedge of spheres in the top dimension.

Vic Reiner and Peter Webb (2004) computed the \mathfrak{S}_n -action on the top homology of the order complex of $P_n \cup \{\hat{1}\}$.

Theorem (Reiner-Webb, 2004)

The \mathfrak{S}_n -homology module $\tilde{H}(P_n)$ satisfies the recurrence

$$\tilde{H}(P_n) = \tilde{H}(P_{n-1}) \uparrow_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} + (-1)^n \mathbb{1}_n.$$

$\dim \tilde{H}(P_n)$ is the number of *derangements* (permutations without fixed points) in \mathfrak{S}_n .

Theorem (S, 2020)

Let $n \geq 2$. For $k \geq 1$ let Δ_n^k denote the degree n term in $e_k[\text{Lie}_{\geq 2}^{(2)}]$. Define

$\Delta_n = \sum_{k \geq 1} \Delta_n^k$ for $n \geq 2$, and $\Delta_1 = 0, \Delta_0 = 1$. Then

- ① $\Delta_n = \sum_{k=0}^n (-1)^k h_1^{n-k} h_k = h_1 \Delta_{n-1} + (-1)^n h_n$;
- ② For $n \geq 2$, Δ_n coincides with the homology representation $\tilde{H}(P_n)$ on the complex of injective words in the alphabet $\{1, 2, \dots, n\}$.

Hodge decomposition of Hanlon and Hersh

Let D_n^k be the degree n term in $h_k[\text{Lie}_{\geq 2}]$. Then

Theorem (Phil Hanlon-Patricia Hersh 2004: Hodge decomposition)

The \mathfrak{S}_n -equivariant Hodge decomposition of Δ_n is $\Delta_n = \sum_{k \geq 1} \omega(D_n^k)$.

- This is not the same as the decomposition $\Delta_n = \sum_{k \geq 1} \Delta_n^k$ arising from $\text{Lie}_n^{(2)}$. In general, $\Delta_n^k \neq \omega(D_n^k)$, even though

$$\sum_{k \geq 1} \Delta_n^k = \Delta_n = \sum_{k \geq 1} \omega(D_n^k).$$

Ex: $n = 4$.

$$\Delta_4 = h_1^2 h_2 - h_1 h_3 + h_4 = (4) + (3, 1) + (2^2) + (2, 1^2).$$

$$\text{Also } \Delta_4^2 = e_2[h_2] = (3, 1), \Delta_4^1 = \text{Lie}_4^{(2)} = (4) + (2^2) + (2, 1^2).$$

The two Hodge pieces of Hanlon and Hersh, however, are:

$$\omega(h_2[\text{Lie}_2]) = (2^2) + (4) \text{ and } \omega(h_1[\text{Lie}_4]) = (3, 1) + (2, 1^2).$$

Analogue of Whitehouse lifts

FACT: the \mathfrak{S}_{n-1} -module Lie_{n-1} lifts to a true \mathfrak{S}_n -module W_n , the *Whitehouse* module (up to sign), defined by $\text{ch } W_n = h_1 \text{Lie}_{n-1} - \text{Lie}_n$.

Conjecture (S, 2020, checked up to $n = 32$ with Stembridge's SF package)

The symmetric function $h_1 \text{Lie}_{n-1}^{(2)} - \text{Lie}_n^{(2)}$ is Schur positive if and only if n is NOT a power of 2. Equivalently, $\text{Lie}_{n-1}^{(2)} \uparrow^{\mathfrak{S}_n} - \text{Lie}_n^{(2)}$ is a true \mathfrak{S}_n -module which lifts $\text{Lie}_{n-1}^{(2)}$, if and only if n is not a power of 2.

(If n is a power of 2, $\text{Lie}_{n-1}^{(2)} = \text{Lie}_{n-1}$ and $\text{Lie}_n^{(2)} = \mathbb{1} \uparrow_{C_n}^{S_n}$.)

If n is a power of 2, then $\text{Lie}_{n-1}^{(2)} = \text{Lie}_{n-1}$, so it has the Whitehouse lift W_n .

Relating Lie and $\text{Lie}^{(2)}$

$$T = \begin{array}{|c|c|c|c|c|} \hline 1 & 3 & 4 & 9 & 10 \\ \hline 2 & 6 & 7 & & \\ \hline 5 & 8 & & & \\ \hline \end{array}$$

major index of $T = 1 + 4 + 7 = 12$

Work of H.O. Foulkes (1972), Stanley (1999), Kraskiewicz and Weyman (2001) imply:

- $\text{Lie}_n = \frac{1}{n} \sum_{d|n} \mu(d) p_d^{\frac{n}{d}}$ $\text{Lie}_n^{(2)} = \frac{1}{n} \sum_{j=0}^k \sum_{\substack{d=2^j d_1 \\ d_1|\ell}} \phi(2^j) \mu(d_1) p_d^{\frac{n}{d}}$
where $n = 2^k \ell$, ℓ odd.

The multiplicity of s_λ is the number of standard Young tableaux of shape λ with major index congruent to

- 1 modulo n for Lie_n
- 2^k modulo n , where $n = 2^k \ell$, ℓ odd, for $\text{Lie}_n^{(2)}$.

Theorem (S, 2020)

- $\text{Lie}_n^{(2)}$ is the degree n term in the plethysm $\sum_{k \geq 0} \text{Lie}[p_{2^k}]$
- Lie_n is the degree n term in $\text{Lie}^{(2)} - \text{Lie}^{(2)}[p_2]$.

$$\text{Lie}_8^{(2)} = \text{Lie}_8 + \text{Lie}_4[p_2] + \text{Lie}_2[p_4] + \text{Lie}_1[p_8]$$

$$\text{Lie}_{12}^{(2)} = \text{Lie}_{12} + \text{Lie}_6[p_2] + \text{Lie}_3[p_4]$$

Idempotents in the free Lie algebra

Recall Klyachko's theorem: $\text{Lie}_n \simeq \omega_n \uparrow_{C_n}^{\mathfrak{S}_n}$.

In the group algebra $\mathbb{C}\mathfrak{S}_n$ of \mathfrak{S}_n , define

- $\zeta_n = \frac{1}{n} \sum_{i=0}^{n-1} \omega_n^{-i} c^i$, where c is the long cycle $(1, 2, \dots, n)$.
- $\theta_n := \frac{1}{n} (1 - \gamma_2)(1 - \gamma_3) \cdots (1 - \gamma_n)$, where γ_i is the i -cycle $(i, i-1, \dots, 1)$.
- $\kappa_n := \frac{1}{n} \sum_{\sigma \in \mathfrak{S}_n} \omega_n^{\text{maj}(\sigma)} \sigma$, where $\text{maj}(\sigma) := \sum_{\sigma(i) > \sigma(i+1)} i$

Theorem (Dynkin 1947, Specht 1948, Wever 1949; Klyachko 1974)

The group algebra elements $\zeta_n, \theta_n, \kappa_n$ are all idempotents, and θ_n, κ_n generate Lie_n as a left ideal:

$$\mathbb{C}\mathfrak{S}_n \zeta_n \simeq \text{Lie}_n \text{ and } \text{Lie}_n = \mathbb{C}\mathfrak{S}_n \theta_n = \mathbb{C}\mathfrak{S}_n \kappa_n$$

Are there idempotents like θ_n, κ_n for $\text{Lie}_n^{(2)}$?

Idempotents for higher Lie modules

Recall Thrall's decomposition of the regular representation of \mathfrak{S}_n :

$$h_1^n = \sum_{\lambda \vdash n} H_\lambda[\text{Lie}]$$

Reutenauer (1986) constructed primitive orthogonal idempotents $\{\mathcal{E}_\lambda\}_{\lambda \vdash n}$ in $\mathbb{C}\mathfrak{S}_n$:

$$\mathbb{C}\mathfrak{S}_n = \bigoplus_{\lambda \vdash n} \mathbb{C}\mathfrak{S}_n \mathcal{E}_\lambda$$

Garsia and Reutenauer (1990) showed that the idempotent \mathcal{E}_λ generates a left ideal isomorphic to the higher Lie module $H_\lambda[\text{Lie}]$.

Since we know

$$h_1^n = \sum_{\lambda \vdash n} E_\lambda[\text{Lie}^{(2)}],$$

are there such idempotents for $\text{Lie}^{(2)}$?

Recap

$$\begin{aligned} h_1^n &= \sum_{k \geq 1} \sum_{\substack{\lambda \vdash n \\ \ell(\lambda)=k}} H_\lambda[\text{Lie}] && \text{(Reutenauer idempotents)} \\ &= \sum_{k \geq 1} \sum_{\substack{\lambda \vdash n \\ \ell(\lambda)=k}} \omega(H_\lambda[\text{Lie}]) && \text{(Eulerian idempotents: Gerstenhaber-Schack, Loday, Hanlon)} \\ &= \sum_{k \geq 1} \sum_{\substack{\lambda \vdash n \\ \ell(\lambda)=k}} E_\lambda[\text{Lie}^{(2)}] && = \sum_{k \geq 1} \sum_{\substack{\lambda \vdash n \\ \ell(\lambda)=k}} \omega(E_\lambda[\text{Lie}^{(2)}]) \\ \text{Lie}_n &= \omega_n \uparrow_{C_n}^{S_n} && \text{versus} && \text{Lie}_n^{(2)} = \omega_n^{2^k} \uparrow_{C_n}^{S_n} \text{ where } n = 2^k \ell, \ell \text{ odd.} \end{aligned}$$

Can replace 2 with an **odd** prime q : $n = q^k \ell$, q not a divisor of ℓ .
But not many results generalise...

What is special about 2?

Summary table Lie versus Lie⁽²⁾ (* = up to sign twist)

Properties	Lie	Lie ⁽²⁾
Symmetric powers	Regular repn: Thrall	powers of 2?
Exterior powers	Orlik-Solomon algebra*	Regular repn
Poset homology/matroid	partition lattice, braid matroid	?
Hyperplane arr./Configuration space?	Type A Coxeter arrangement	?
Repn induced from C_n	Yes	Yes
Irreducible decomposition	Yes	Yes
Interesting idempotents	Eulerian idempotents	?
Plethystic inverse of	$\sum_{n \geq 1} (-1)^{n-1} e_n$	$\sum_{n \geq 1} (-1)^{n-1} h_n$
Lifts from \mathfrak{S}_n to \mathfrak{S}_{n+1}	Whitehouse module	(conjectured)
Filtration	Derived series	Yes
Complex of injective words	Hodge decomposition*	Hodge-like decomposition
Truncated signed sum of exterior/symmetric powers	A true module (Π_n : rank-selected homology)	Conjectured to be a true module

Papers:

S. Sundaram:

On a curious variant of the S_n -module Lie_n , Algebr. Comb. 3 (2020) no. 4

Prime power variations of higher Lie_n modules, J. Comb. Theory Ser. A 184 (2021)

Books:

Ian Macdonald: *Symmetric functions and Hall polynomials*

Christophe Reutenauer: *Free Lie algebras*

Richard Stanley: *EC2, Chapter 7*

THANK YOU!