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Standard Young tableau:

numbers 1, 2, . . . into the boxes, each number once

increase left to right, and increase top to bottom

fλ = number of standard Young tableaux of shape λ.

f (2,1) = 2 1 2
3

, 1 3
2

Semistandard Young tableau:

numbers 1, 2, . . . into the boxes

increase left to right, and non-decrease top to bottom

Def. Kostka number

Given λ ⊢ d and µ ⊨ d.

Kλ,µ = the number of semistandard Young tableaux of shape λ and content µ

Example: λ = (4, 3), µ = (2, 2, 3)

1 1 2 2

3 3 3

1 1 2 3

2 3 3

fλ = Kλ,(1|λ|)

Partial order of special cases: StdTab ≤ Kostka
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Def. Littlewood–Richardson coefficient

Given partitions |α| = |β|+ |γ|. The Littlewood–Richardson coefficient cαβ,γ is the number of

semistandard skew Young tableaux of shape α/β

and content γ

such that the rowwise top-to-bottom right-to-left reading word w satisfies:
For all prefixes w′, for all i, the number of i in w′ is at least the number of i+ 1 in w′.

Example: α = (4, 3, 2), β = (2, 1), γ = (3, 2, 1)

· · 1 1

· 1 2

2 3

· · 1 1

· 2 2

1 3
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Def. Kostka number

Given λ ⊢ d and µ ⊨ d. Kλ,µ = the number of semistandard Young tableaux of shape λ and content µ

Def. Littlewood–Richardson coefficient

Given partitions |α| = |β|+ |γ|. The LRC cαβ,γ is the number of semistandard skew Young tableaux of shape α/β and

content γ such that the rowwise right-to-left reading word w satisfies: For all prefixes w′, for all i, the number of i in w′ is
at least the number of i+ 1 in w′.

n = ℓ(µ). ∆ = (n, n−1, n−2, . . . , 1).
Kλ,µ = c

(dn)+d∆+λ
(dn), d∆+µ

Example: λ = (7, 3), µ = (3, 2, 2, 3), d = 10, n = 4, d∆ = (40, 30, 20, 10)

1 1 1 2 3 4 4

2 3 4

· · · · · · · · · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
· · · · · · · · · · 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
· · · · · · · · · · 4 4 4 4 4 4 4 4 4 4
1 1 1 2 3 4 4
2 3 4

StdTab ≤ Kostka ≤ Littlewood–Richardson
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For λ ⊢ n, let [λ] be the irreducible Sn-representation of type λ in characteristic zero.

Def. Kronecker coefficient

Given λ, µ ⊢ n.

[λ]⊗ [µ] ≃
⊕
ν⊢n

[ν]⊕k(λ,µ,ν)

The multiplicity k(λ, µ, ν) is called the Kronecker coefficient.

Richard Stanley’s “Positivity problems and conjectures in algebraic combinatorics” (2000):

Problem 10: Give a nonnegative combinatorial interpretation for the Kronecker coefficient.

(Everything in this talk also applies to problem 9, the plethysm coefficient.)
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Def. reduced Kronecker coefficient

k(α, β, γ) = lim
n→∞

k( (n− |α|, α), (n− |β|, β), (n− |γ|, γ) )

Murnaghan 1938:
for |α| = |β|+ |γ| we have cαβ,γ = k(α, β, γ)

Kirillov’ problem (2004): Find a nonnegative combinatorial interpretation for k

Partial order of special cases:

StdTab ≤ Kostka ≤ Littlewood–Richardson ≤ reduced Kronecker ≤ Kronecker

With Greta Panova 2023:

k(λ, µ, ν) = k
(
ν
ℓ(λ)
1 +λ, ν

ℓ(µ)
1 +µ, (ν

ℓ(λ)+ℓ(µ)
1 , ν)

)

StdTab ≤ Kostka ≤ Littlewood–Richardson ≤ reduced Kronecker
!
= Kronecker

Stanley’s problem 10 is equivalent to Kirillov’s problem!
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Circuits

Circuit: Directed acyclic graph labeled by and,
or, not

Define #CircuitSat(C) = number of inputs w ∈ {0, 1}n such that C(w) = 1
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#CircuitSat(C) = number of inputs w ∈ {0, 1}n such that C(w) = 1

If #CircuitSat is a special case of X, then X is NP-hard to compute.

Define GapCircuitSat(C,D) = #CircuitSat(C)−#CircuitSat(D) ∈ Z
If GapCircuitSat(C,D)2 has a nonnegative combinatorial interpretation, then each of those objects proves that
#CircuitSat(C) ̸= #CircuitSat(D). The existence of such proofs would imply PH = Σp

2.

If (GapCircuitSat)2 is a special case of X, then X does not have a not have a nonnegative combinatorial
interpretation, provided PH ̸= Σp

2.
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#CircuitSat can be replaced by many other problems!

#HamiltonianCycle: Given a graph, determine the number of cycles that use each vertex exactly once.

#HamiltonianCycle is a special case of #CircuitSat (via a polytime algorithm converted into a circuit).

#CircuitSat is a special case of #HamiltonianCycle (via a combinatorial construction).

Such a relationship holds for many counting versions of NP-complete problems.
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Recall: GapCircuitSat(C,D) = #CircuitSat(C)−#CircuitSat(D) ∈ Z

With Mulmuley and Walter 2017:

#CircuitSat is a special case of Kronecker.

Kronecker coefficients for extremal weights: Combinatorial interpretation as 3-dim contingency tables

Gardner–Gritzmann–Prangenberg “On the computational complexity of reconstructing lattice sets from their X-rays”,
Discrete Mathematics, 1999

Kronecker is a special case of GapCircuitSat.

Big open question

Is Kronecker a special case of #CircuitSat?

This would give a nonnegative combinatorial interpretation of Kronecker.
This is equivalent to Kronecker ∈ #P.
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The verifier V inspecting the (x,w)

V
([

, (3, 2, 2)

]
,
1 1 1 2
2 3 3

)
= 1

V
([

, (3, 2, 2)

]
,
1 1 1 3
2 2 3

)
= 1

V
([

, (3, 2, 2)

]
,
1 2 1 2
2 3 3

)
= 0

V
([

, (3, 2, 2)

]
,⋄)

= 0

V
([

, (3, 2, 2)

]
,
2 3
1 1 1 2 3

)
= 0

Def. #P

f : {0, 1}∗ → N is in #P if

there exists a polynomial time algorithm V : {0, 1}∗ × {0, 1}∗ → {0, 1}
and a polynomial p

such that for all x ∈ {0, 1}∗ we have: f(x) =
∑

w∈{0,1}p(len(w))

V (x,w)
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Def. #P

f : {0, 1}∗ → N is in #P if

there exists a polynomial time algorithm V : {0, 1}∗ × {0, 1}∗ → {0, 1}
and a polynomial p

such that for all w ∈ {0, 1}∗ we have: f(x) =
∑

w∈{0,1}p(len(w))

V (x,w)

Remarks:

The witnesses w are of polynomially bounded length, otherwise they could contain the whole computation transcript
of the Kronecker coefficient

V has limited time, otherwise V could compute the Kronecker coefficient directly

In some situations, V should get more/less power, for example to distinguish non-isomorphic knots. The definition can
be adjusted, but this gives a different class.
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The history of #P w.r.t. algebraic combinatorics

#P was defined by Leslie Valiant in 1979, for complexity theoretic reasons.

“Nonnegative combinatorial interpretation” = #P for Kronecker/plethysm coefficients was initiated by Ketan Mulmuley.

Mulmuley arXiv:0709.0749, Sept 2007:

Find an explicit positive (#P-) formula in the spirit of the Littlewood–Richardson rule for the plethysm constant

Mulmuley cites Stanley’s open problem and formalizes it.

This was the usual viewpoint in geometric complexity theory at the time, see my MSc thesis, supervised by Peter Bürgisser
(Diplomarbeit, 2008, similar to FPSAC 2008):

Note that we do not know whether KronCoeff is contained in the class #P. In fact, the latter would just express
that k(λ, µ, ν) counts a number of appropriate combinatorial objects (and it can be decided in polynomial time
whether a given object is appropriate), which in fact is a combinatorial description of the Kronecker coefficient.

With Igor Pak 2022: First systematic study of which problems could be outside of #P
Very fruitful! Numerous papers by different authors by now.
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Definition #HCE: with Igor Pak

Input: An undirected graph G in which every vertex has degree 3, and an edge e of G.

Output: The number of Hamiltonian cycles in G that use e.

Clearly, #HCE ∈ #P

Smith’s theorem

#HCE(G, e) is always even.

Open problem:

Is
#HCE

2

?
∈ #P

Thomason’s lollipop algorithm gives a pairing, but it requires exponential time.
A polytime algorithm would imply #HCE/2 ∈ #P, by only counting the lex-smaller Hamiltonian cycle.
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Def.: A graph F is an induced subgraph of G if F is obtained from G by deleting vertices.

An induced copy of H in G is an induced subgraph F of G that is isomorphic to H.

#H : Graphs → N, #H(G) = the number of induced copies of H in G.

f = # −# +# + 2# + 4# ≥ 0

Theorem (with Bläser, Curticapean, Dörfler 2025)

A linear combination of #H is in #P if and only if all its coefficents are in N.

This uses a Ramsey argument.
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BipartiteUnbalance

Given a bipartite graph G with V = U ∪W such that

For every edge {u,w} we have deg(u) ≥ deg(w).

It is known that |U | ≤ |W |.

Define #BipartiteUnbalance(G) = |W | − |U |.

Theorem (with Pak 2023)

#BipartiteUnbalance /∈ #P

This uses a more sophisticated circuit problem as a special case, and a Ramsey argument.
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fλ = number of standard tableaux of shape λ

n! =
∑
λ⊢n

(fλ)2 via an explicit bijection: Robinson-Schensted correspondence

(
1 2 3 , 1 2 3

)
,

( 1 2
3

, 1 2
3

)
,

( 1 2
3

, 1 3
2

)
,

( 1 3
2

, 1 2
3

)
,

( 1 3
2

, 1 3
2

)
,

( 1
2
3

,
1
2
3

)
χλ(α) (1,1,1)(×1) (3)(×2) (2,1)(×3)

(3) 1 1 1
(1,1,1) 1 1 −1
(2,1) 2 −1 0

Restatement of decomposition (1st column):
n! =

∑
λ⊢n (χλ(1, 1, . . . , 1))2

Another Decomposition (rows in char. table):

∀λ ⊢ n : n! =
∑

π∈Sn
(χλ(π))2

Does (χλ(π))2 have a nonnegative combinatorial interpretation?

Theorem (with Pak and Panova 2023)

Let χ2 : (λ, π) 7→ (χλ(π))2.
(GapCircuitSat)2 is a special case of χ2.
More precisely, if χ2 ∈ #P, then PH = Σp

2.
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P (α, µ) := # ordered set partitions,
item sizes α, bin sizes µ.
Example: P

(
(2, 1, 1), (3, 1)

)
= 2

3 1 3 1

χλ(α) :=
∑

σ∈Sℓ(λ)

sgn(σ)P (α, λ+ (σ(1), σ(2), σ(3), . . .)− (1, 2, 3, . . .)). i.e., bin sizes vary

Here P (α, µ) := 0 if any entry is negative.
Example: χ(2,1)(1, 1, 1) = P ((1, 1, 1), (2, 1) + (1, 2)− (1, 2))− P ((1, 1, 1), (2, 1) + (2, 1)− (1, 2))

= P ((1, 1, 1), (2, 1))− P ((1, 1, 1), (3, 0)) = 3−1 = 2.
(similar to Murnaghan–Nakayama)

Hepler 1994:
For large n: χnλ(nα) = P (nα, nλ) = P (α, λ)

This shows #SetPartition is a special case of χ

We know #CircuitSat is a special case of #SetPartition
(Thm 4.4 in Garey–Johnson, 1979, “Computers and Intractability: A Guide to the Theory of NP-completeness”)

Hence: #CircuitSat is a special case of χ.

We need much more: We need χλ(α) = P (β, µ)− P (γ, ν)
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Controlling the signed sum
Recall: P (α, µ) := # ordered set partitions, item sizes α, bin sizes µ. For large n: χnλ(nα) = P (nα, nλ)

To allow a second summand:

First item very large, ≡ 1 mod n. First bin very large, 0 mod n.

second item ≡ −1 mod n.

χλ(α) = P (α, λ)− P (α, λ+ (1,−1)).

That looks good, but both terms should be independent!
The bin sizes can be dependent. In fact, we could have all bin sizes to be the same.
Solution idea:

Two independent sets A and B of items, both of total size s.

Four additional small items: 1, 2, 5, 6

Very large first bin and new first item: λ1 = α1 + 5

Large second bin: λ2 = s+ 2

A can only go in the other bins together with 1 and 6

B can only go in the other bins together with 2 and 5

For bin sizes λ all solutions of the form:

First item +5 in bin 1

B + 2 in bin 2

A+ 1 + 6 in the other bins

For bin sizes λ+ (1,−1) all solutions of the form:

First item +6 in bin 1

A+ 1 in bin 2

B + 2 + 5 in the other bins
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Theorem (with Pak and Panova 2023)

Let χ2 : (λ, π) 7→ (χλ(π))2.
(GapCircuitSat)2 is a special case of χ2.
More precisely, if χ2 ∈ #P, then PH = Σp

2.

Bravyi, Chowdhury, Gosset, Havĺıček, Zhu 2023:

Deciding Kronecker positivity is in QMA.

(using their construction, I with Subramanian: Kronecker is in #BQP)

If the character proof method also worked for Kronecker coefficients, then NQP ⊆ QMA.
This applies to all methods based on the vanishing of Kronecker coefficients.
But there is no such implication for the BipartiteUnbalance approach, and similar approaches.
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Summary

Quantities form a “partial order of special cases”

Sometimes one can find a special case of high computational complexity: Hardness of computing

Even better: Sometimes one can find a special case that has no nonnegative combinatorial interpretation!

These rely on a priori unrelated conjectures in computer science

Thank you for your attention!
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