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Basic setup

G semisimple Lie group over C, g corresponding Lie algebra.
Type A,—1: G = SL,, g = sl, = {n x n matrices of trace 0}.

R root system, RT positive roots, simple roots «; (i € 1),
reflections s,,.

Type A,_1: roots ajj = a}l/- =¢ci—¢gj=(i,j) €ER", aj =¢;—¢it1.

P weight lattice, w; fundamental weights, P™ dominant weights.

Type A, 1: Pt ={(\ >...>X\,_1 > 0)} — partitions,
Wi = (li).

W finite Weyl group (generated by the simple reflections).
Type Ay1: W =5y, s = (1,))-
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Irreducible representations of semisimple Lie algebras g

For A € P, let V() be the (finite-dimensional) irreducible
representation of g with highest weight .

For 1 € P, consider the p-weight multiplicity (Kostka number in

type A):
Ky = dim V(\), .

Character: ch V(A) :=3_, Ky, x"".
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Crystal graphs

Kashiwara's crystal B(\) is a colored directed graph encoding
V(A), as a representation of the corresponding quantum algebra
(in the limit ¢ — 0).

The vertices of B(\) correspond to the (crystal) basis elements of
V(X), and the edges (labeled «;, i € I) to the action of crystal
operators (modified versions of the Chevalley generators of the
quantum algebra).
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The vertices of B(\), (corresponding to the p-weight space
V(X)) can be labeled by semistandard Young tableaux of shape A
and content p (denoted SSYT (A, u)):

1[1]2]
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A=(4,2,21), p=(3,2,2,1,1) b=
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Tableau models: types B — D

» Kashiwara-Nakashima tableaux (KN), having negative entries
too;

» King tableaux (King), having negative entries too;

» semistandard oscillating tableaux (SSOT), defined as
sequences of shapes which differ by adding/deleting row strips.

Fact. In type C there are bijections between KN<+King [Sheats,
1999] and King«»SSOT [Lee, 2025].
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Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations of affine
Lie algebras g.¢, so their edges are labeled ag, ag, .. ..

Labeled by p x g rectangles: BP9. Here only column shapes BP:!.

Given a composition p = (p1, p2, . ..), consider the tensor product:
B®P = BPrlg Pl .

Fact. The crystal B := B®P is connected, and it has a grading by
the energy function, which is constant on the classical components
B.1 (0-edges removed).

Its definition is involved: it is a sum of local energies, computed
based on the combinatorial R-matrix. So we need a simpler
computation.
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KR crystals (cont.)

Type A, 1. We have B! ~ B(wy) = B(1%), so the vertices of
B®P are represented as column-strict fillings (with integers
1,...,n) of the diagram with columns of heights p1, p2,. . ..

Types B — D. B®P is represented as a sequence of
Kashiwara-Nakashima columns.
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Lusztig's g-weight multiplicities

Lusztig's g-analogue of weight multiplicities K ,(q) of

Kx,. = Ky,u(1) is obtained via a g-analogue of the Weyl character

formula:

ZWGW(_l)f(W)XW(Aer)fp
[loer+(1—gx79)

chy V()) = = Kaulg)x",

m
where p =1/2%" _pi .

For u € P (assumed throughout), we have K} ,(q) € Z>¢|q]
(Kostka-Foulkes polynomial in type A).
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Lusztig's g-weight multiplicities (cont.)

The polynomials K} ,,(q) have remarkable properties:

» they are affine Kazhdan-Lusztig polynomials;
» they record the Brylinski-Kostant filtration of weight spaces;
> they are related to the Hall-Littlewood polynomials;

P they are related to the energy function on Kirillov-Reshetikhin
(KR) crystals (next).



Computing Lusztig's g-weight multiplicities

“Gold standard:”

In type A, K ,(q) is calculated by the Lascoux-Schiitzenberger
charge statistic on SSYT of shape A and content u:

Kaulg)= > gD,
TESSYT (A1)
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Other classical types: important long-standing problem

There are only partial results:

> Kyo(q) of type C, computed via crystal graphs [Lecouvey-L.,
2020], extending a type A formula of Lascoux-Leclerc-Thibon;

P extension of the above formula to types B, and D,
[Jang-Kwon, 2021];

> Ky .(q) of type C, for A a row [Dolega-Gerber-Torres, 2020],
via a charge statistic conjectured by Lecouvey;

> K u(q) of type C; [Patimo-Torres, 2025], via the atomic
decomposition of the respective crystals [Lecouvey-L., 2021].
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Nakayashiki-Yamada] between g-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).



Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur,
Nakayashiki-Yamada] between g-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).

(2) This was recently extended to g-weight multiplicities of type
Cn (all weights) and B, (spin weights) [Choi-Kim-Lee, 2025].



Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur,
Nakayashiki-Yamada] between g-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).

(2) This was recently extended to g-weight multiplicities of type
Cn (all weights) and B, (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for
computing the energy function on tensor products of column-shape
KR crystals, based on the quantum alcove model
[L.-Naito-Sagaki-Schilling-Shimozono, 2017].



Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur,
Nakayashiki-Yamada] between g-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).

(2) This was recently extended to g-weight multiplicities of type
Cn (all weights) and B, (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for
computing the energy function on tensor products of column-shape
KR crystals, based on the quantum alcove model
[L.-Naito-Sagaki-Schilling-Shimozono, 2017].

Goal. Combine (2) and (3), compute the g-weight multiplicities of
type C, (all weights) and B, (spin weights) via a charge statistic.



Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur,
Nakayashiki-Yamada] between g-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).

(2) This was recently extended to g-weight multiplicities of type
Cn (all weights) and B, (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for
computing the energy function on tensor products of column-shape
KR crystals, based on the quantum alcove model
[L.-Naito-Sagaki-Schilling-Shimozono, 2017].

Goal. Combine (2) and (3), compute the g-weight multiplicities of
type C, (all weights) and B, (spin weights) via a charge statistic.

Need the correspondence between the quantum alcove model and
the respective tableaux models [L.-Schultze].
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The quantum alcove model for KR crystals
Is uniform for all Lie types, and only depends on the finite root
system, of type A,_1—Gy.

Main ingredient: the quantum Bruhat graph on W, denoted
QBG(W).

This is the directed graph with labeled edges

(0%
W — ws,, Wwhere

l(ws,) =€(w)+1 (covers of Bruhat order), or
l(wsy) = £(w) — 2ht(a¥) + 1.

(If ¥ =3, cia}, then ht(a¥) :=>". ¢i.)



Hasse diagram of the Bruhat order for Ss:

321

231 312

213 132

123



Quantum Bruhat graph for Ss3:

321

231

213
a12
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The realization of KR crystals of arbitrary type (cont.)

Definition. Given u € PT, we start by fixing any corresponding
sequence of positive roots called a p-chain

N=(P1,---,0m)-

(Remark. Explicit constructions are available, and the model is

independent of this choice.)

Let r; := sg,, and consider the set A(I') of admissible subsets:
J={<p<..<j}pc{l,...,m},

such that the following is a path in QBG(W):

B B B;
ld 2y =2 .. .,
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Main results

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono| Given a
composition p = (p1, p2,...) and an arbitrary Lie type, consider a
p-chain T, where

W= wWp Fwp,

The crystal structure of the tensor product of KR crystals BSP s
realized on the set A(T).

Theorem. [L.-Schultze] In all classical types there is a forgetful
bijection from A(I') to the tableau model (sequence of
Kashiwara-Nakashima columns). The inverse map is explicitly
constructed via a greedy algorithm.
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Example in type Agl)

p:(1,2,2,1):’ ‘; U= wi+ws +wr +wi = (4,2,0).

A p-chain as a concatenation of wi-, wo-, wy-, and wi-chains:

F=(0®2), (1,3)[(23), (1,3) [ (23), (1,3) | (1,2), (1,3) ).
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Let J = {1,2,3,6,7,8}.
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Example in type Agl) (cont.)

Let J = {1,2,3,6,7,8}.
( (1,2), (1,3) [ (2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3) ).

Claim: J is admissible. Indeed, the corresponding QBG path is:

The corresponding element b € BP = Blv1 ® 82’1 ® 8271 ® 31,1:

Inverse map: invert “sort”, needed for rederiving the type A
charge;




Example in type Agl) (cont.)
Let J = {1,2,3,6,7,8).
( (12), (1,3) | (23), (1,3) | (2,3), (1,3) | (1,2), (1,3) ).

Claim: J is admissible. Indeed, the corresponding QBG path is:

The corresponding element b € BP = Blv1 ® 82’1 ® 8271 ® 8171:

Inverse map: invert “sort”, needed for rederiving the type A
charge; then relate all pairs of consecutive columns in sort~1(b)
(for b € B®P) by QBG paths, constructed via a greedy algorithm.
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The energy function in arbitrary type

Definition. For J € A(T), define the statistic

height(J) := > hj,
jed—
where
J={i: - iy > Ty "‘,:/'ifllil'i}'

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono| Given J in A(T),
which is identified with B®P, the energy function at the vertex J is
given by height(J).
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Recall:

Main goal. Rederive the type A charge (for g-weight multiplicities)
via the connection to the energy function on KR crystals (tensor
product multiplicities computed via the quantum alcove model).

Then generalize to types C and B.



Rederiving the type A charge

B(\),  Nakayashiki- HW(B®*,X') of type

of type Ap,—1  Yamada Af,l_)l (energy)
classical classical LNSSS
SSYT(A, p) companion coI.umns of inverse map quantum
(LS charge) ableas heights p; ] alcove model
(charge) ' (height)

Consider BS?“ (remove the edges labeled by «p), and its connected
components which are isomorphic to B()\'). Let HW(B®H X') be
the set of highest weight vertices of these components.

LS=Lascoux-Schiitzenberger
LNSSS=L.-Naito-Sagaki-Schilling-Shimozono



Rederiving the type A charge (cont.)
Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2 fnn(A(r)) 28 gen



Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2L R(A(n) 28 gee,

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort—!:

ai | by

b,' = min {b,’, b,'+1, . }
aj | b; |, in the circular order starting at a; :
aj,ai+1,...,n1 ..., 3 —1.

di4+1




Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2L R(A(n) 28 gee,

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort—!:

ai | by
b,' = min {b,’, b,'+1, . }
aj | b; |, in the circular order starting at a; :
a1 aj,ai+1,...,n1 ..., 3 —1.
Example. 3]2[1]2] 3
sort™* [ [5]3]2 =15
644 6




Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2L R(A(n) 28 gee,

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort—!:

ai | by
b,' = min {b,’, b,'+1, .. }
aj | b; |, in the circular order starting at a; :
i1 ai,ai+1,...,n1 ..., 3 —1.
Example. 3]2[1]2] 313 |
sort ™ [ [5]3]2 =5
6|44 6




Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2L R(A(n) 28 gee,

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort—!:

ai | by
b,' = min {b,’, b,'+1, . }
aj | b; |, in the circular order starting at a; :
a1 ai,ai+1,...,n1 ..., 3 —1.
Example. 3]2[1]2] 313 |
sort ™ [ [5]3]2 =15|2
644 6




Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the
tableau model is

A(M) 2L R(A(n) 28 gee,

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort—!:

ai | by
b,' = min {b,’, b,'+1, . }
aj | b; |, in the circular order starting at a; :
a1 ai,ai+1,...,n1 ..., 3 —1.
Example. 3[2[1]2] 3[3]4][2]
sort™* | [5]3]2 =[5[2]2] .
644 6|41




Rederiving the type A charge (cont.)

Given an admissible subset J in A(I"), with associated
column-strict filling b € B®#, we can read off the statistic
height(J) (expressing the energy) from sort=1(b):



Rederiving the type A charge (cont.)

Given an admissible subset J in A(I"), with associated
column-strict filling b € B®#, we can read off the statistic
height(J) (expressing the energy) from sort=1(b):

height(J) = Z

arm(u) =1+2+(2+1)=6.
u€Des(sort~1(b))

4]2]

(6]
N
N

sort ~1(b) =




Rederiving the type A charge (cont.)

Given an admissible subset J in A(I"), with associated
column-strict filling b € B®#, we can read off the statistic
height(J) (expressing the energy) from sort=1(b):

height(J) = Z

arm(u) =1+2+(2+1)=6.
u€Des(sort~1(b))

3[3[4]2]
sort~1(b) =[5[2]2

6]4]1

Remark. This computation is the same as the one for the classical
charge (Lascoux-Schiitzenberger), so we have
charge(b) = height(J).



Rederiving the type A charge (cont.)

Given an admissible subset J in A(I"), with associated
column-strict filling b € B®#, we can read off the statistic

height(J) (expressing the energy) from sort=1(b):

height(J) = Z arm(u) =1+2+(2+1)=6.
u€Des(sort~1(b))
3[3[4]2]
sort~1(b) =[5[2]2
6]4]1

Remark. This computation is the same as the one for the classical
charge (Lascoux-Schiitzenberger), so we have
charge(b) = height(J).

Main idea (for the new approach to charge, to be generalized).
The classical charge < sort™! < quantum Bruhat graph.
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A new type C, charge
HW (B®E, (AV)
B(\), of e (B, ( (1)))
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King| Lee KN LNSSS
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SSOT(\Y, 1) Choi-Kim-Lee KN columns . map quantum
(new charge?) =——————  of type By | Schaltze” alcove model
machine (new charge) — > tze (height)

learning?

ANi=(g— - sg—N), i:=(g—p1,---,8 — pn), for g > A1
SSOT=semistandard oscillating tableaux
KN=Kashiwara-Nakashima

LNSSS=L .-Naito-Sagaki-Schilling-Shimozono
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(realizing B(w)) need to be “split” into two columns of height k
(this is needed to check an “admissibility” condition):
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Before applying the greedy algorithm for constructing the QBG
path in the quantum alcove model (relating consecutive columns),
we need to split, extend, and reorder (sort_l) the columns.



KR crystals of type B,(Vl): complications for the inverse map

Complication 1. Unlike in types A, C, where Bkl ~ B(wg), now
(Bk’l)cl = B(wk) S B(wk_z) D....

Complication 2. Unlike in type A, KN columns of type B — D
(realizing B(w)) need to be “split” into two columns of height k
(this is needed to check an “admissibility” condition):

—
Before applying the greedy algorithm for constructing the QBG
path in the quantum alcove model (relating consecutive columns),
we need to split, extend, and reorder (sort™!) the columns.

, wherel<2<3<3<2<1.

N[ =
—[|WIIN

Complication 3. Unlike in types A, C, at every intermediate step in
the construction of the QBG path, we need to avoid certain
configurations of two consecutive columns (“blocked-off").



A charge-type formula for the energy function in type B,(Vl)

Theorem. [L.-Schultze] Given an admissible subset J in A(T), with
associated column-strict filling b € B®*, we can read off the
statistic height(J) (expressing the energy) from

sort ! o extend o split(b).



Other results. Further work

> g-weight multiplicities of type B, for spin (half-integer)
weights are related to the energy function on KR crystals of
type D\ for large N [Choi-Kim-Lee, 2025];
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» there is a version of the quantum alcove model for the twisted
affine types, but the correspondence with the tableau model is
still to be worked out;



Other results. Further work

> g-weight multiplicities of type B, for spin (half-integer)
weights are related to the energy function on KR crystals of
type D\ for large N [Choi-Kim-Lee, 2025];

» there is a version of the quantum alcove model for the twisted
affine types, but the correspondence with the tableau model is
still to be worked out;

P> not yet understood: g-weight multiplicities of type B, for
non-spin (integer) weights, and of type D,,.



