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Basic setup

G semisimple Lie group over C, g corresponding Lie algebra.

Type An−1: G = SLn, g = sln = {n × n matrices of trace 0}.

R root system, R+ positive roots, simple roots αi (i ∈ I ),
reflections sα.

Type An−1: roots αij = α∨
ij = εi − εj = (i , j) ∈ Rn, αi = εi − εi+1.

P weight lattice, ωi fundamental weights, P+ dominant weights.

Type An−1: P
+ = {(λ1 ≥ . . . ≥ λn−1 ≥ 0)} − partitions,

ωi = (1i ).

W finite Weyl group (generated by the simple reflections).

Type An−1: W = Sn, sαij = (i , j).
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Irreducible representations of semisimple Lie algebras g

For λ ∈ P+, let V (λ) be the (finite-dimensional) irreducible
representation of g with highest weight λ.

For µ ∈ P, consider the µ-weight multiplicity (Kostka number in
type A):

Kλ,µ := dimV (λ)µ .

Character: chV (λ) :=
∑

µ Kλ,µ x
µ .
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Crystal graphs

Kashiwara’s crystal B(λ) is a colored directed graph encoding
V (λ), as a representation of the corresponding quantum algebra
(in the limit q → 0).

The vertices of B(λ) correspond to the (crystal) basis elements of
V (λ), and the edges (labeled αi , i ∈ I ) to the action of crystal
operators (modified versions of the Chevalley generators of the
quantum algebra).
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Tableau models: type A

The vertices of B(λ)µ (corresponding to the µ-weight space
V (λ)µ) can be labeled by semistandard Young tableaux of shape λ
and content µ (denoted SSYT(λ, µ)):

λ = (4, 2, 2, 1) , µ = (3, 2, 2, 1, 1) b =

1 1 1 2
2 3
3 4
5

.
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Tableau models: types B − D

▶ Kashiwara-Nakashima tableaux (KN), having negative entries
too;

▶ King tableaux (King), having negative entries too;

▶ semistandard oscillating tableaux (SSOT), defined as
sequences of shapes which differ by adding/deleting row strips.

Fact. In type C there are bijections between KN↔King [Sheats,
1999] and King↔SSOT [Lee, 2025].
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Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations of affine
Lie algebras gaf , so their edges are labeled α0, α1, . . ..

Labeled by p × q rectangles: Bp,q. Here only column shapes Bp,1.

Given a composition p = (p1, p2, . . .), consider the tensor product:

B⊗p = Bp1,1 ⊗ Bp2,1 ⊗ . . . .

Fact. The crystal B := B⊗p is connected, and it has a grading by
the energy function, which is constant on the classical components
Bcl (0-edges removed).

Its definition is involved: it is a sum of local energies, computed
based on the combinatorial R-matrix. So we need a simpler
computation.
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KR crystals (cont.)

Type An−1. We have Bk,1 ≃ B(ωk) = B(1k), so the vertices of
B⊗p are represented as column-strict fillings (with integers
1, . . . , n) of the diagram with columns of heights p1, p2, . . ..

Types B − D. B⊗p is represented as a sequence of
Kashiwara-Nakashima columns.
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Lusztig’s q-weight multiplicities

Lusztig’s q-analogue of weight multiplicities Kλ,µ(q) of
Kλ,µ = Kλ,µ(1) is obtained via a q-analogue of the Weyl character
formula:

chq V (λ) =

∑
w∈W (−1)ℓ(w)xw(λ+ρ)−ρ∏

α∈R+(1− qx−α)
=

∑
µ

Kλ,µ(q)x
µ ,

where ρ = 1/2
∑

α∈R+ α .

For µ ∈ P+ (assumed throughout), we have Kλ,µ(q) ∈ Z≥0[q]
(Kostka-Foulkes polynomial in type A).
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Lusztig’s q-weight multiplicities (cont.)

The polynomials Kλ,µ(q) have remarkable properties:

▶ they are affine Kazhdan-Lusztig polynomials;

▶ they record the Brylinski-Kostant filtration of weight spaces;

▶ they are related to the Hall-Littlewood polynomials;

▶ they are related to the energy function on Kirillov-Reshetikhin
(KR) crystals (next).
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Computing Lusztig’s q-weight multiplicities

“Gold standard:”

In type A, Kλ,µ(q) is calculated by the Lascoux-Schützenberger
charge statistic on SSYT of shape λ and content µ:

Kλ,µ(q) =
∑

T∈SSYT(λ,µ)

qcharge(T ) .



Other classical types: important long-standing problem

There are only partial results:

▶ Kλ,0(q) of type Cn computed via crystal graphs [Lecouvey-L.,
2020], extending a type A formula of Lascoux-Leclerc-Thibon;

▶ extension of the above formula to types Bn and Dn

[Jang-Kwon, 2021];

▶ Kλ,µ(q) of type Cn for λ a row [Dolega-Gerber-Torres, 2020],
via a charge statistic conjectured by Lecouvey;

▶ Kλ,µ(q) of type C2 [Patimo-Torres, 2025], via the atomic
decomposition of the respective crystals [Lecouvey-L., 2021].
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Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur,
Nakayashiki-Yamada] between q-weight multiplicities (charge on
SSYT) and tensor product multiplicities (energy function on tensor
products of column-shape KR crystals of affine type A).

(2) This was recently extended to q-weight multiplicities of type
Cn (all weights) and Bn (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for
computing the energy function on tensor products of column-shape
KR crystals, based on the quantum alcove model
[L.-Naito-Sagaki-Schilling-Shimozono, 2017].

Goal. Combine (2) and (3), compute the q-weight multiplicities of
type Cn (all weights) and Bn (spin weights) via a charge statistic.

Need the correspondence between the quantum alcove model and
the respective tableaux models [L.-Schultze].
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The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root
system, of type An−1 –G2.

Main ingredient: the quantum Bruhat graph on W , denoted
QBG(W ).

This is the directed graph with labeled edges

w
α−→ wsα , where

ℓ(wsα) = ℓ(w) + 1 (covers of Bruhat order) , or

ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)



The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root
system, of type An−1 –G2.

Main ingredient: the quantum Bruhat graph on W , denoted
QBG(W ).

This is the directed graph with labeled edges

w
α−→ wsα , where

ℓ(wsα) = ℓ(w) + 1 (covers of Bruhat order) , or

ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)



The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root
system, of type An−1 –G2.

Main ingredient: the quantum Bruhat graph on W , denoted
QBG(W ).

This is the directed graph with labeled edges

w
α−→ wsα , where

ℓ(wsα) = ℓ(w) + 1 (covers of Bruhat order) , or

ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)



The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root
system, of type An−1 –G2.

Main ingredient: the quantum Bruhat graph on W , denoted
QBG(W ).

This is the directed graph with labeled edges

w
α−→ wsα , where

ℓ(wsα) = ℓ(w) + 1 (covers of Bruhat order) , or

ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)



Hasse diagram of the Bruhat order for S3:
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Quantum Bruhat graph for S3:
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The realization of KR crystals of arbitrary type (cont.)

Definition. Given µ ∈ P+, we start by fixing any corresponding
sequence of positive roots called a µ-chain

Γ = (β1, . . . , βm) .

(Remark. Explicit constructions are available, and the model is
independent of this choice.)

Let ri := sβi
, and consider the set A(Γ) of admissible subsets:

J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m} ,

such that the following is a path in QBG(W ):

Id
βj1−→ rj1

βj2−→ . . .
βjs−→ rj1 . . . rjs .
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The realization of KR crystals of arbitrary type (cont.)

Definition. Given µ ∈ P+, we start by fixing any corresponding
sequence of positive roots called a µ-chain

Γ = (β1, . . . , βm) .

(Remark. Explicit constructions are available, and the model is
independent of this choice.)

Let ri := sβi
, and consider the set A(Γ) of admissible subsets:

J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m} ,

such that the following is a path in QBG(W ):
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βj2−→ . . .
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Main results

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono] Given a
composition p = (p1, p2, . . .) and an arbitrary Lie type, consider a
µ-chain Γ, where

µ := ωp1 + ωp2 + . . . .

The crystal structure of the tensor product of KR crystals B⊗p is
realized on the set A(Γ).

Theorem. [L.-Schultze] In all classical types there is a forgetful
bijection from A(Γ) to the tableau model (sequence of
Kashiwara-Nakashima columns). The inverse map is explicitly
constructed via a greedy algorithm.
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Example in type A
(1)
2

p = (1, 2, 2, 1) = ; µ = ω1 + ω2 + ω2 + ω1 = (4, 2, 0).

A µ-chain as a concatenation of ω1-, ω2-, ω2-, and ω1-chains:

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) .
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Example in type A
(1)
2 (cont.)

Let J = {1, 2, 3, 6, 7, 8}.
( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) .

Claim: J is admissible. Indeed, the corresponding QBG path is:

1

2
3

<
→

2

1
3

<
→

3

1
2

|
3
1

2

<
→

3
2

1

|
3
2

1

>
→

1
2

3

|
1

2
3

<
→

2

1
3

<
→

3

1
2

.

The corresponding element b ∈ B⊗p = B1,1 ⊗ B2,1 ⊗ B2,1 ⊗ B1,1:

J
fill−→ 3 ⊗ 3

2
⊗ 1

2
⊗ 3

sort−−→ 3 ⊗ 2
3

⊗ 1
2

⊗ 3 = b .

Inverse map: invert “sort”, needed for rederiving the type A
charge; then relate all pairs of consecutive columns in sort−1(b)
(for b ∈ B⊗p) by QBG paths, constructed via a greedy algorithm.
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The energy function in arbitrary type

Definition. For J ∈ A(Γ), define the statistic

height(J) :=
∑
j∈J−

hj ,

where
J− := {ji : rj1 . . . rji−1

> rj1 . . . rji−1
rji} .

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono] Given J in A(Γ),
which is identified with B⊗p, the energy function at the vertex J is
given by height(J).
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Recall:

Main goal. Rederive the type A charge (for q-weight multiplicities)
via the connection to the energy function on KR crystals (tensor
product multiplicities computed via the quantum alcove model).

Then generalize to types C and B.
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Rederiving the type A charge

B(λ)µ
of type An−1

ooNakayashiki-

Yamada
//

OO

classical

��

HW (B⊗µ, λ′) of type

A
(1)
n−1 (energy)

OO

classical

��

ee

LNSSS

%%

SSYT(λ, µ)
(LS charge)

companion

tableau
//
columns of
heights µi

(charge)

inverse map

L.
//

quantum
alcove model

(height)

Consider B⊗µ
cl (remove the edges labeled by α0), and its connected

components which are isomorphic to B(λ′). Let HW (B⊗µ, λ′) be
the set of highest weight vertices of these components.

LS=Lascoux-Schützenberger
LNSSS=L.-Naito-Sagaki-Schilling-Shimozono



Rederiving the type A charge (cont.)
Recall: the bijection from the quantum alcove model to the
tableau model is

A(Γ)
fill−→ fill(A(Γ))

sort−→ B⊗µ .

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort−1:

a1 b1

. . . . . .

ai bi

ai+1

. . .

,
bi = min {bi , bi+1, . . .}

in the circular order starting at ai :
ai , ai + 1, . . . , n, 1, . . . , ai − 1 .

Example.

sort−1

 3 2 1 2
5 3 2
6 4 4

 =
3
5
6

.
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Rederiving the type A charge (cont.)
Recall: the bijection from the quantum alcove model to the
tableau model is

A(Γ)
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sort−→ B⊗µ .

Fact. The following rule (based on the quantum Bruhat graph) is
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5
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Rederiving the type A charge (cont.)
Recall: the bijection from the quantum alcove model to the
tableau model is

A(Γ)
fill−→ fill(A(Γ))

sort−→ B⊗µ .

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort−1:

a1 b1

. . . . . .

ai bi

ai+1

. . .

,
bi = min {bi , bi+1, . . .}

in the circular order starting at ai :
ai , ai + 1, . . . , n, 1, . . . , ai − 1 .

Example.

sort−1

 3 2 1 2
5 3 2
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 =
3 3
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6

.



Rederiving the type A charge (cont.)
Recall: the bijection from the quantum alcove model to the
tableau model is

A(Γ)
fill−→ fill(A(Γ))

sort−→ B⊗µ .

Fact. The following rule (based on the quantum Bruhat graph) is
used to construct the map sort−1:

a1 b1

. . . . . .

ai bi

ai+1

. . .

,
bi = min {bi , bi+1, . . .}

in the circular order starting at ai :
ai , ai + 1, . . . , n, 1, . . . , ai − 1 .

Example.

sort−1

 3 2 1 2
5 3 2
6 4 4

 =
3 3 4 2
5 2 2
6 4 1

.



Rederiving the type A charge (cont.)

Given an admissible subset J in A(Γ), with associated
column-strict filling b ∈ B⊗µ, we can read off the statistic
height(J) (expressing the energy) from sort−1(b):

height(J) =
∑

u∈Des(sort−1(b))

arm(u) = 1 + 2 + (2 + 1) = 6 .

sort−1(b) =
3 3 4 2
5 2 2
6 4 1

.

Remark. This computation is the same as the one for the classical
charge (Lascoux-Schützenberger), so we have
charge(b) = height(J).

Main idea (for the new approach to charge, to be generalized).
The classical charge ⇔ sort−1 ⇔ quantum Bruhat graph.
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Rederiving the type A charge (cont.)

Given an admissible subset J in A(Γ), with associated
column-strict filling b ∈ B⊗µ, we can read off the statistic
height(J) (expressing the energy) from sort−1(b):
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∑
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A new type Cn charge

B(λ)µ of
type Cn

oo new
duality

//

OO

King Lee

��

HW (B⊗µ̂, (λ∨)′)

of type B
(1)
N ,

N large (energy)
OO

KN

��

cc

LNSSS

##
King(λ, µ) ↔
SSOT(λ∨, µ̂)
(new charge?)

Choi-Kim-Lee //
KN columns
of type BN

(new charge)

inverse map

L.-Schultze
//

quantum
alcove model

(height)

λ∨ := (g − λn, . . . , g − λ1), µ̂ := (g − µ1, . . . , g − µn), for g ≥ λ1

SSOT=semistandard oscillating tableaux
KN=Kashiwara-Nakashima
LNSSS=L.-Naito-Sagaki-Schilling-Shimozono
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!!King(λ, µ) ↔
SSOT(λ∨, µ̂)
(new charge?)

machine
learning?

Choi-Kim-Lee //
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of type BN

(new charge)

inverse map

L.-Schultze
//

quantum
alcove model

(height)

λ∨ := (g − λn, . . . , g − λ1), µ̂ := (g − µ1, . . . , g − µn), for g ≥ λ1

SSOT=semistandard oscillating tableaux
KN=Kashiwara-Nakashima
LNSSS=L.-Naito-Sagaki-Schilling-Shimozono



KR crystals of type B
(1)
N : complications for the inverse map

Complication 1. Unlike in types A,C , where Bk,1 ≃ B(ωk), now

(Bk,1)cl ≃ B(ωk)⊕ B(ωk−2)⊕ . . . .

Complication 2. Unlike in type A, KN columns of type B − D
(realizing B(ωk)) need to be “split” into two columns of height k
(this is needed to check an “admissibility” condition):

2
3
2

7→
1 2
3 3
2 1

, where 1 < 2 < 3 < 3 < 2 < 1 .

Before applying the greedy algorithm for constructing the QBG
path in the quantum alcove model (relating consecutive columns),
we need to split, extend, and reorder (sort−1) the columns.

Complication 3. Unlike in types A,C , at every intermediate step in
the construction of the QBG path, we need to avoid certain
configurations of two consecutive columns (“blocked-off”).
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the construction of the QBG path, we need to avoid certain
configurations of two consecutive columns (“blocked-off”).



KR crystals of type B
(1)
N : complications for the inverse map

Complication 1. Unlike in types A,C , where Bk,1 ≃ B(ωk), now

(Bk,1)cl ≃ B(ωk)⊕ B(ωk−2)⊕ . . . .

Complication 2. Unlike in type A, KN columns of type B − D
(realizing B(ωk)) need to be “split” into two columns of height k
(this is needed to check an “admissibility” condition):

2
3
2

7→
1 2
3 3
2 1

, where 1 < 2 < 3 < 3 < 2 < 1 .

Before applying the greedy algorithm for constructing the QBG
path in the quantum alcove model (relating consecutive columns),
we need to split, extend, and reorder (sort−1) the columns.

Complication 3. Unlike in types A,C , at every intermediate step in
the construction of the QBG path, we need to avoid certain
configurations of two consecutive columns (“blocked-off”).



A charge-type formula for the energy function in type B
(1)
N

Theorem. [L.-Schultze] Given an admissible subset J in A(Γ), with
associated column-strict filling b ∈ B⊗µ, we can read off the
statistic height(J) (expressing the energy) from

sort−1 ◦ extend ◦ split(b) .



Other results. Further work

▶ q-weight multiplicities of type Bn for spin (half-integer)
weights are related to the energy function on KR crystals of

type D
(2)
N for large N [Choi-Kim-Lee, 2025];

▶ there is a version of the quantum alcove model for the twisted
affine types, but the correspondence with the tableau model is
still to be worked out;

▶ not yet understood: q-weight multiplicities of type Bn for
non-spin (integer) weights, and of type Dn.
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