

# Computing Lusztig's $q$ -Weight Multiplicities Beyond Type A

Cristian Lenart

State University of New York at Albany

ICERM, November 10, 2025

Computation in Representation Theory

Joint work with Adam Schultze (Lewis University), contains work with other collaborators.

C. Lenart was supported by the NSF grants DMS-1855592,

DMS-2401755.



## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ),  
reflections  $s_\alpha$ .

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ),  
reflections  $s_\alpha$ .

Type  $A_{n-1}$ : roots  $\alpha_{ij} = \alpha_{ij}^\vee = \varepsilon_i - \varepsilon_j = (i, j) \in \mathbb{R}^n$ ,  $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ .

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ),  
reflections  $s_\alpha$ .

Type  $A_{n-1}$ : roots  $\alpha_{ij} = \alpha_{ij}^\vee = \varepsilon_i - \varepsilon_j = (i, j) \in \mathbb{R}^n$ ,  $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ .

$P$  weight lattice,  $\omega_i$  fundamental weights,  $P^+$  dominant weights.

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ), reflections  $s_\alpha$ .

Type  $A_{n-1}$ : roots  $\alpha_{ij} = \alpha_{ij}^\vee = \varepsilon_i - \varepsilon_j = (i, j) \in \mathbb{R}^n$ ,  $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ .

$P$  weight lattice,  $\omega_i$  fundamental weights,  $P^+$  dominant weights.

Type  $A_{n-1}$ :  $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$  – partitions,  $\omega_i = (1^i)$ .

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ), reflections  $s_\alpha$ .

Type  $A_{n-1}$ : roots  $\alpha_{ij} = \alpha_{ij}^\vee = \varepsilon_i - \varepsilon_j = (i, j) \in \mathbb{R}^n$ ,  $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ .

$P$  weight lattice,  $\omega_i$  fundamental weights,  $P^+$  dominant weights.

Type  $A_{n-1}$ :  $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$  – partitions,  $\omega_i = (1^i)$ .

$W$  finite Weyl group (generated by the simple reflections).

## Basic setup

$G$  semisimple Lie group over  $\mathbb{C}$ ,  $\mathfrak{g}$  corresponding Lie algebra.

Type  $A_{n-1}$ :  $G = SL_n$ ,  $\mathfrak{g} = \mathfrak{sl}_n = \{n \times n \text{ matrices of trace 0}\}$ .

$R$  root system,  $R^+$  positive roots, simple roots  $\alpha_i$  ( $i \in I$ ), reflections  $s_\alpha$ .

Type  $A_{n-1}$ : roots  $\alpha_{ij} = \alpha_{ij}^\vee = \varepsilon_i - \varepsilon_j = (i, j) \in \mathbb{R}^n$ ,  $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ .

$P$  weight lattice,  $\omega_i$  fundamental weights,  $P^+$  dominant weights.

Type  $A_{n-1}$ :  $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$  – partitions,  $\omega_i = (1^i)$ .

$W$  finite Weyl group (generated by the simple reflections).

Type  $A_{n-1}$ :  $W = S_n$ ,  $s_{\alpha_{ij}} = (i, j)$ .

# Irreducible representations of semisimple Lie algebras $\mathfrak{g}$

For  $\lambda \in P^+$ , let  $V(\lambda)$  be the (finite-dimensional) irreducible representation of  $\mathfrak{g}$  with highest weight  $\lambda$ .

# Irreducible representations of semisimple Lie algebras $\mathfrak{g}$

For  $\lambda \in P^+$ , let  $V(\lambda)$  be the (finite-dimensional) irreducible representation of  $\mathfrak{g}$  with highest weight  $\lambda$ .

For  $\mu \in P$ , consider the  $\mu$ -weight multiplicity (Kostka number in type  $A$ ):

$$K_{\lambda,\mu} := \dim V(\lambda)_\mu.$$

# Irreducible representations of semisimple Lie algebras $\mathfrak{g}$

For  $\lambda \in P^+$ , let  $V(\lambda)$  be the (finite-dimensional) irreducible representation of  $\mathfrak{g}$  with highest weight  $\lambda$ .

For  $\mu \in P$ , consider the  $\mu$ -weight multiplicity (Kostka number in type  $A$ ):

$$K_{\lambda,\mu} := \dim V(\lambda)_\mu.$$

**Character:**  $\text{ch } V(\lambda) := \sum_\mu K_{\lambda,\mu} x^\mu.$

# Crystal graphs

Kashiwara's **crystal**  $B(\lambda)$  is a colored directed graph encoding  $V(\lambda)$ , as a representation of the corresponding quantum algebra (in the limit  $q \rightarrow 0$ ).

# Crystal graphs

Kashiwara's **crystal**  $B(\lambda)$  is a colored directed graph encoding  $V(\lambda)$ , as a representation of the corresponding quantum algebra (in the limit  $q \rightarrow 0$ ).

The vertices of  $B(\lambda)$  correspond to the (crystal) basis elements of  $V(\lambda)$ , and the edges (labeled  $\alpha_i$ ,  $i \in I$ ) to the action of **crystal operators** (modified versions of the Chevalley generators of the quantum algebra).

## Tableau models: type A

The vertices of  $B(\lambda)_\mu$  (corresponding to the  $\mu$ -weight space  $V(\lambda)_\mu$ ) can be labeled by **semistandard Young tableaux** of shape  $\lambda$  and content  $\mu$  (denoted  $\text{SSYT}(\lambda, \mu)$ ):

## Tableau models: type A

The vertices of  $B(\lambda)_\mu$  (corresponding to the  $\mu$ -weight space  $V(\lambda)_\mu$ ) can be labeled by **semistandard Young tableaux** of shape  $\lambda$  and content  $\mu$  (denoted  $\text{SSYT}(\lambda, \mu)$ ):

$$\lambda = (4, 2, 2, 1), \quad \mu = (3, 2, 2, 1, 1) \quad b = \begin{array}{|c|c|c|c|} \hline 1 & 1 & 1 & 2 \\ \hline 2 & 3 & & \\ \hline 3 & 4 & & \\ \hline 5 & & & \\ \hline \end{array}.$$

## Tableau models: types $B - D$

- ▶ **Kashiwara-Nakashima tableaux** (KN), having negative entries too;

## Tableau models: types $B - D$

- ▶ **Kashiwara-Nakashima tableaux** (KN), having negative entries too;
- ▶ **King tableaux** (King), having negative entries too;

## Tableau models: types $B - D$

- ▶ **Kashiwara-Nakashima tableaux** (KN), having negative entries too;
- ▶ **King tableaux** (King), having negative entries too;
- ▶ **semistandard oscillating tableaux** (SSOT), defined as sequences of shapes which differ by adding/deleting row strips.

## Tableau models: types $B - D$

- ▶ **Kashiwara-Nakashima tableaux** (KN), having negative entries too;
- ▶ **King tableaux** (King), having negative entries too;
- ▶ **semistandard oscillating tableaux** (SSOT), defined as sequences of shapes which differ by adding/deleting row strips.

**Fact.** In type  $C$  there are bijections between  $\text{KN} \leftrightarrow \text{King}$  [Sheats, 1999] and  $\text{King} \leftrightarrow \text{SSOT}$  [Lee, 2025].

## Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

# Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

Labeled by  $p \times q$  rectangles:  $B^{p,q}$ .

# Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

Labeled by  $p \times q$  rectangles:  $B^{p,q}$ . Here only column shapes  $B^{p,1}$ .

## Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

Labeled by  $p \times q$  rectangles:  $B^{p,q}$ . Here only column shapes  $B^{p,1}$ .

Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$ , consider the tensor product:

$$B^{\otimes \mathbf{p}} = B^{p_1,1} \otimes B^{p_2,1} \otimes \dots$$

## Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

Labeled by  $p \times q$  rectangles:  $B^{p,q}$ . Here only column shapes  $B^{p,1}$ .

Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$ , consider the tensor product:

$$B^{\otimes \mathbf{p}} = B^{p_1,1} \otimes B^{p_2,1} \otimes \dots$$

**Fact.** The crystal  $B := B^{\otimes \mathbf{p}}$  is connected, and it has a grading by the **energy function**, which is constant on the classical components  $B_{\text{cl}}$  (0-edges removed).

## Kirillov-Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations of affine Lie algebras  $\mathfrak{g}_{\text{af}}$ , so their edges are labeled  $\alpha_0, \alpha_1, \dots$

Labeled by  $p \times q$  rectangles:  $B^{p,q}$ . Here only column shapes  $B^{p,1}$ .

Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$ , consider the tensor product:

$$B^{\otimes \mathbf{p}} = B^{p_1,1} \otimes B^{p_2,1} \otimes \dots$$

**Fact.** The crystal  $B := B^{\otimes \mathbf{p}}$  is connected, and it has a grading by the **energy function**, which is constant on the classical components  $B_{\text{cl}}$  (0-edges removed).

Its definition is involved: it is a sum of local energies, computed based on the **combinatorial  $R$ -matrix**. So we need a simpler computation.

## KR crystals (cont.)

Type  $A_{n-1}$ . We have  $B^{k,1} \simeq B(\omega_k) = B(1^k)$ , so the vertices of  $B^{\otimes p}$  are represented as column-strict fillings (with integers  $1, \dots, n$ ) of the diagram with columns of heights  $p_1, p_2, \dots$

## KR crystals (cont.)

**Type  $A_{n-1}$ .** We have  $B^{k,1} \simeq B(\omega_k) = B(1^k)$ , so the vertices of  $B^{\otimes p}$  are represented as column-strict fillings (with integers  $1, \dots, n$ ) of the diagram with columns of heights  $p_1, p_2, \dots$

**Types  $B - D$ .**  $B^{\otimes p}$  is represented as a sequence of Kashiwara-Nakashima columns.

# Lusztig's $q$ -weight multiplicities

Lusztig's  $q$ -analogue of weight multiplicities  $K_{\lambda,\mu}(q)$  of  $K_{\lambda,\mu} = K_{\lambda,\mu}(1)$  is obtained via a  $q$ -analogue of the **Weyl character formula**:

$$\mathrm{ch}_q V(\lambda) = \frac{\sum_{w \in W} (-1)^{\ell(w)} x^{w(\lambda + \rho) - \rho}}{\prod_{\alpha \in R^+} (1 - qx^{-\alpha})} = \sum_{\mu} K_{\lambda,\mu}(q) x^{\mu},$$

where  $\rho = 1/2 \sum_{\alpha \in R^+} \alpha$ .

# Lusztig's $q$ -weight multiplicities

Lusztig's  $q$ -analogue of weight multiplicities  $K_{\lambda,\mu}(q)$  of  $K_{\lambda,\mu} = K_{\lambda,\mu}(1)$  is obtained via a  $q$ -analogue of the **Weyl character formula**:

$$\mathrm{ch}_q V(\lambda) = \frac{\sum_{w \in W} (-1)^{\ell(w)} x^{w(\lambda + \rho) - \rho}}{\prod_{\alpha \in R^+} (1 - qx^{-\alpha})} = \sum_{\mu} K_{\lambda,\mu}(q) x^{\mu},$$

where  $\rho = 1/2 \sum_{\alpha \in R^+} \alpha$ .

For  $\mu \in P^+$  (assumed throughout), we have  $K_{\lambda,\mu}(q) \in \mathbb{Z}_{\geq 0}[q]$  (**Kostka-Foulkes polynomial** in type  $A$ ).

## Lusztig's $q$ -weight multiplicities (cont.)

The polynomials  $K_{\lambda,\mu}(q)$  have remarkable properties:

- ▶ they are **affine Kazhdan-Lusztig polynomials**;

## Lusztig's $q$ -weight multiplicities (cont.)

The polynomials  $K_{\lambda,\mu}(q)$  have remarkable properties:

- ▶ they are **affine Kazhdan-Lusztig polynomials**;
- ▶ they record the **Brylinski-Kostant filtration** of weight spaces;

## Lusztig's $q$ -weight multiplicities (cont.)

The polynomials  $K_{\lambda,\mu}(q)$  have remarkable properties:

- ▶ they are **affine Kazhdan-Lusztig polynomials**;
- ▶ they record the **Brylinski-Kostant filtration** of weight spaces;
- ▶ they are related to the **Hall-Littlewood polynomials**;

## Lusztig's $q$ -weight multiplicities (cont.)

The polynomials  $K_{\lambda,\mu}(q)$  have remarkable properties:

- ▶ they are **affine Kazhdan-Lusztig polynomials**;
- ▶ they record the **Brylinski-Kostant filtration** of weight spaces;
- ▶ they are related to the **Hall-Littlewood polynomials**;
- ▶ they are related to the **energy function** on **Kirillov-Reshetikhin (KR) crystals** (next).

# Computing Lusztig's $q$ -weight multiplicities

“Gold standard:”

In type  $A$ ,  $K_{\lambda,\mu}(q)$  is calculated by the Lascoux-Schützenberger **charge statistic** on SSYT of shape  $\lambda$  and content  $\mu$ :

$$K_{\lambda,\mu}(q) = \sum_{T \in \text{SSYT}(\lambda, \mu)} q^{\text{charge}(T)}.$$

## Other classical types: important long-standing problem

There are only partial results:

- ▶  $K_{\lambda,0}(q)$  of type  $C_n$  computed via crystal graphs [Lecouvey-L., 2020], extending a type  $A$  formula of Lascoux-Leclerc-Thibon;

## Other classical types: important long-standing problem

There are only partial results:

- ▶  $K_{\lambda,0}(q)$  of type  $C_n$  computed via crystal graphs [Lecouvey-L., 2020], extending a type  $A$  formula of Lascoux-Leclerc-Thibon;
- ▶ extension of the above formula to types  $B_n$  and  $D_n$  [Jang-Kwon, 2021];

## Other classical types: important long-standing problem

There are only partial results:

- ▶  $K_{\lambda,0}(q)$  of type  $C_n$  computed via crystal graphs [Lecouvey-L., 2020], extending a type  $A$  formula of Lascoux-Leclerc-Thibon;
- ▶ extension of the above formula to types  $B_n$  and  $D_n$  [Jang-Kwon, 2021];
- ▶  $K_{\lambda,\mu}(q)$  of type  $C_n$  for  $\lambda$  a row [Dolega-Gerber-Torres, 2020], via a charge statistic conjectured by Lecouvey;

## Other classical types: important long-standing problem

There are only partial results:

- ▶  $K_{\lambda,0}(q)$  of type  $C_n$  computed via crystal graphs [Lecouvey-L., 2020], extending a type  $A$  formula of Lascoux-Leclerc-Thibon;
- ▶ extension of the above formula to types  $B_n$  and  $D_n$  [Jang-Kwon, 2021];
- ▶  $K_{\lambda,\mu}(q)$  of type  $C_n$  for  $\lambda$  a row [Dolega-Gerber-Torres, 2020], via a charge statistic conjectured by Lecouvey;
- ▶  $K_{\lambda,\mu}(q)$  of type  $C_2$  [Patimo-Torres, 2025], via the **atomic decomposition** of the respective crystals [Lecouvey-L., 2021].

## Reviving a traditional approach. Main goal

Facts. (1) In type A, there is a well-known duality [Schur, Nakayashiki-Yamada] between  **$q$ -weight multiplicities** (charge on SSYT) and **tensor product multiplicities** (energy function on tensor products of column-shape KR crystals of affine type A).

## Reviving a traditional approach. Main goal

Facts. (1) In type  $A$ , there is a well-known duality [Schur, Nakayashiki-Yamada] between  **$q$ -weight multiplicities** (charge on SSYT) and **tensor product multiplicities** (energy function on tensor products of column-shape KR crystals of affine type  $A$ ).

(2) This was recently extended to  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) [Choi-Kim-Lee, 2025].

## Reviving a traditional approach. Main goal

Facts. (1) In type  $A$ , there is a well-known duality [Schur, Nakayashiki-Yamada] between  **$q$ -weight multiplicities** (charge on SSYT) and **tensor product multiplicities** (energy function on tensor products of column-shape KR crystals of affine type  $A$ ).

(2) This was recently extended to  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for computing the energy function on tensor products of column-shape KR crystals, based on the **quantum alcove model** [L.-Naito-Sagaki-Schilling-Shimozono, 2017].

## Reviving a traditional approach. Main goal

**Facts.** (1) In type  $A$ , there is a well-known duality [Schur, Nakayashiki-Yamada] between  **$q$ -weight multiplicities** (charge on SSYT) and **tensor product multiplicities** (energy function on tensor products of column-shape KR crystals of affine type  $A$ ).

(2) This was recently extended to  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for computing the energy function on tensor products of column-shape KR crystals, based on the **quantum alcove model** [L.-Naito-Sagaki-Schilling-Shimozono, 2017].

**Goal.** Combine (2) and (3), compute the  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) via a charge statistic.

## Reviving a traditional approach. Main goal

**Facts.** (1) In type  $A$ , there is a well-known duality [Schur, Nakayashiki-Yamada] between  **$q$ -weight multiplicities** (charge on SSYT) and **tensor product multiplicities** (energy function on tensor products of column-shape KR crystals of affine type  $A$ ).

(2) This was recently extended to  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) [Choi-Kim-Lee, 2025].

(3) There is a type-independent combinatorial formula for computing the energy function on tensor products of column-shape KR crystals, based on the **quantum alcove model** [L.-Naito-Sagaki-Schilling-Shimozono, 2017].

**Goal.** Combine (2) and (3), compute the  $q$ -weight multiplicities of type  $C_n$  (all weights) and  $B_n$  (spin weights) via a charge statistic.  
Need the correspondence between the quantum alcove model and the respective tableaux models [L.-Schultze].

# The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root system, of type  $A_{n-1} - G_2$ .

# The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root system, of type  $A_{n-1} - G_2$ .

Main ingredient: the quantum Bruhat graph on  $W$ , denoted  $\text{QBG}(W)$ .

# The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root system, of type  $A_{n-1} - G_2$ .

Main ingredient: the quantum Bruhat graph on  $W$ , denoted  $\text{QBG}(W)$ .

This is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_\alpha, \quad \text{where}$$

# The quantum alcove model for KR crystals

Is uniform for all Lie types, and only depends on the finite root system, of type  $A_{n-1} - G_2$ .

Main ingredient: the quantum Bruhat graph on  $W$ , denoted  $\text{QBG}(W)$ .

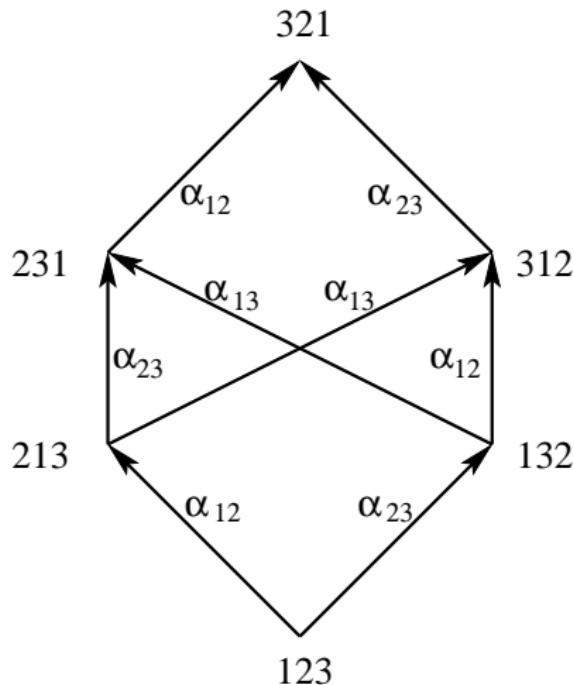
This is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_\alpha, \quad \text{where}$$

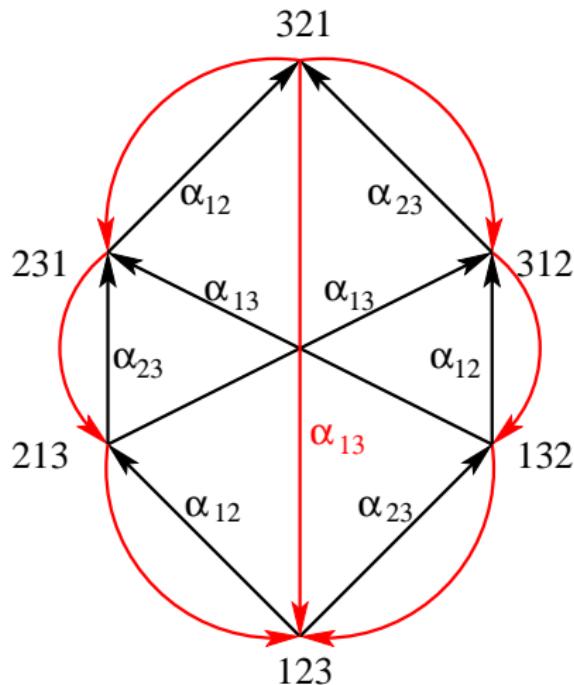
$$\begin{aligned} \ell(ws_\alpha) &= \ell(w) + 1 \quad (\text{covers of Bruhat order}), \quad \text{or} \\ \ell(ws_\alpha) &= \ell(w) - 2\text{ht}(\alpha^\vee) + 1. \end{aligned}$$

(If  $\alpha^\vee = \sum_i c_i \alpha_i^\vee$ , then  $\text{ht}(\alpha^\vee) := \sum_i c_i$ .)

Hasse diagram of the Bruhat order for  $S_3$ :



## Quantum Bruhat graph for $S_3$ :



## The realization of KR crystals of arbitrary type (cont.)

**Definition.** Given  $\mu \in P^+$ , we start by fixing *any* corresponding sequence of positive roots called a  **$\mu$ -chain**

$$\Gamma = (\beta_1, \dots, \beta_m).$$

## The realization of KR crystals of arbitrary type (cont.)

**Definition.** Given  $\mu \in P^+$ , we start by fixing *any* corresponding sequence of positive roots called a  **$\mu$ -chain**

$$\Gamma = (\beta_1, \dots, \beta_m).$$

(**Remark.** Explicit constructions are available, and the model is independent of this choice.)

## The realization of KR crystals of arbitrary type (cont.)

**Definition.** Given  $\mu \in P^+$ , we start by fixing *any* corresponding sequence of positive roots called a  **$\mu$ -chain**

$$\Gamma = (\beta_1, \dots, \beta_m).$$

(**Remark.** Explicit constructions are available, and the model is independent of this choice.)

Let  $r_i := s_{\beta_i}$ , and consider the set  $\mathcal{A}(\Gamma)$  of **admissible subsets**:

$$J = \{j_1 < j_2 < \dots < j_s\} \subseteq \{1, \dots, m\},$$

## The realization of KR crystals of arbitrary type (cont.)

**Definition.** Given  $\mu \in P^+$ , we start by fixing *any* corresponding sequence of positive roots called a  **$\mu$ -chain**

$$\Gamma = (\beta_1, \dots, \beta_m).$$

(**Remark.** Explicit constructions are available, and the model is independent of this choice.)

Let  $r_i := s_{\beta_i}$ , and consider the set  $\mathcal{A}(\Gamma)$  of **admissible subsets**:

$$J = \{j_1 < j_2 < \dots < j_s\} \subseteq \{1, \dots, m\},$$

such that the following is a path in  $\text{QBG}(W)$ :

$$Id \xrightarrow{\beta_{j_1}} r_{j_1} \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} r_{j_1} \dots r_{j_s}.$$

## Main results

**Theorem.** [L.-Naito-Sagaki-Schilling-Shimozono] *Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$  and an arbitrary Lie type, consider a  $\mu$ -chain  $\Gamma$ , where*

$$\mu := \omega_{p_1} + \omega_{p_2} + \dots$$

## Main results

**Theorem.** [L.-Naito-Sagaki-Schilling-Shimozono] *Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$  and an arbitrary Lie type, consider a  $\mu$ -chain  $\Gamma$ , where*

$$\mu := \omega_{p_1} + \omega_{p_2} + \dots$$

*The crystal structure of the tensor product of KR crystals  $B^{\otimes \mathbf{p}}$  is realized on the set  $\mathcal{A}(\Gamma)$ .*

## Main results

**Theorem.** [L.-Naito-Sagaki-Schilling-Shimozono] *Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$  and an arbitrary Lie type, consider a  $\mu$ -chain  $\Gamma$ , where*

$$\mu := \omega_{p_1} + \omega_{p_2} + \dots$$

*The crystal structure of the tensor product of KR crystals  $B^{\otimes \mathbf{p}}$  is realized on the set  $\mathcal{A}(\Gamma)$ .*

**Theorem.** [L.-Schultze] *In all classical types there is a forgetful bijection from  $\mathcal{A}(\Gamma)$  to the tableau model (sequence of Kashiwara-Nakashima columns).*

## Main results

**Theorem.** [L.-Naito-Sagaki-Schilling-Shimozono] *Given a composition  $\mathbf{p} = (p_1, p_2, \dots)$  and an arbitrary Lie type, consider a  $\mu$ -chain  $\Gamma$ , where*

$$\mu := \omega_{p_1} + \omega_{p_2} + \dots$$

*The crystal structure of the tensor product of KR crystals  $B^{\otimes \mathbf{p}}$  is realized on the set  $\mathcal{A}(\Gamma)$ .*

**Theorem.** [L.-Schultze] *In all classical types there is a forgetful bijection from  $\mathcal{A}(\Gamma)$  to the tableau model (sequence of Kashiwara-Nakashima columns). The inverse map is explicitly constructed via a greedy algorithm.*

## Example in type $A_2^{(1)}$

$$\mathbf{p} = (1, 2, 2, 1) = \begin{array}{c} \square \quad \square \quad \square \quad \square \\ \square \quad \square \\ \square \quad \square \end{array}; \quad \mu = \omega_1 + \omega_2 + \omega_2 + \omega_1 = (4, 2, 0).$$

## Example in type $A_2^{(1)}$

$$\mathbf{p} = (1, 2, 2, 1) = \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array}; \quad \mu = \omega_1 + \omega_2 + \omega_2 + \omega_1 = (4, 2, 0).$$

A  $\mu$ -chain as a concatenation of  $\omega_1$ -,  $\omega_2$ -,  $\omega_2$ -, and  $\omega_1$ -chains:

$$\Gamma = ( (1, 2), (1, 3) \mid (2, 3), (1, 3) \mid (2, 3), (1, 3) \mid (1, 2), (1, 3) ).$$

## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ).

## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ).

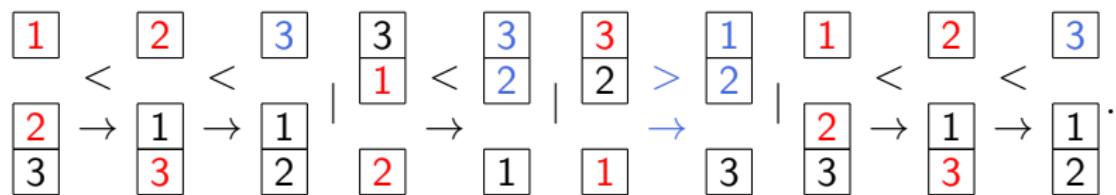
**Claim:**  $J$  is admissible.

## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

(  $(1, 2)$ ,  $(1, 3)$  |  $(2, 3)$ ,  $(1, 3)$  |  $(2, 3)$ ,  $(1, 3)$  |  $(1, 2)$ ,  $(1, 3)$  ).

**Claim:**  $J$  is admissible. Indeed, the corresponding QBG path is:

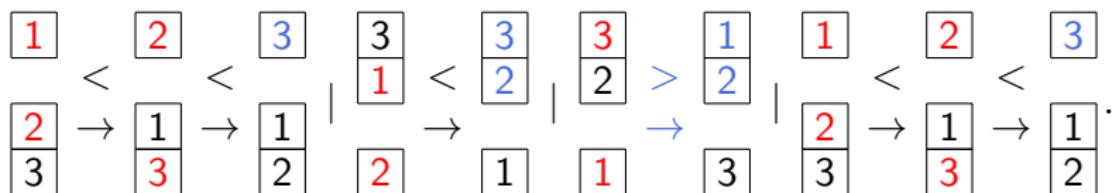


## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

(  $(1, 2)$ ,  $(1, 3)$  |  $(2, 3)$ ,  $(1, 3) \mid (2, 3)$ ,  $(1, 3)$  |  $(1, 2)$ ,  $(1, 3)$  ).

**Claim:**  $J$  is admissible. Indeed, the corresponding QBG path is:



The corresponding element  $b \in B^{\otimes p} = B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ :

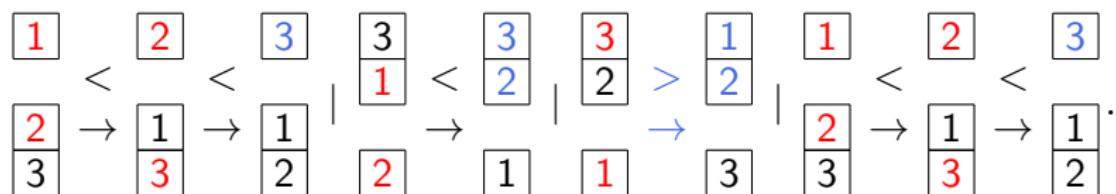
$$J \xrightarrow{\text{fill}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 3 \\ 2 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} \xrightarrow{\text{sort}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 2 \\ 3 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} = b.$$

## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ).

**Claim:**  $J$  is admissible. Indeed, the corresponding QBG path is:



The corresponding element  $b \in B^{\otimes p} = B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ :

$$J \xrightarrow{\text{fill}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 3 \\ 2 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} \xrightarrow{\text{sort}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 2 \\ 3 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} = b.$$

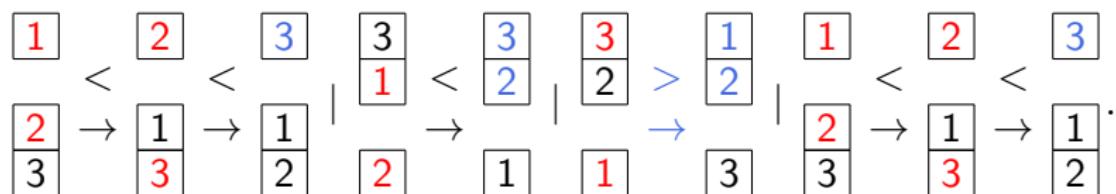
**Inverse map:** invert “sort”, needed for rederiving the type  $A$  charge;

## Example in type $A_2^{(1)}$ (cont.)

Let  $J = \{1, 2, 3, 6, 7, 8\}$ .

(  $(1, 2)$ ,  $(1, 3)$  |  $(2, 3)$ ,  $(1, 3) \mid (2, 3)$ ,  $(1, 3)$  |  $(1, 2)$ ,  $(1, 3)$  ).

**Claim:**  $J$  is admissible. Indeed, the corresponding QBG path is:



The corresponding element  $b \in B^{\otimes p} = B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ :

$$J \xrightarrow{\text{fill}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 3 \\ 2 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} \xrightarrow{\text{sort}} \boxed{3} \otimes \boxed{\begin{smallmatrix} 2 \\ 3 \end{smallmatrix}} \otimes \boxed{\begin{smallmatrix} 1 \\ 2 \end{smallmatrix}} \otimes \boxed{3} = b.$$

**Inverse map:** invert “sort”, needed for rederiving the type  $A$  charge; then relate all pairs of consecutive columns in  $\text{sort}^{-1}(b)$  (for  $b \in B^{\otimes p}$ ) by QBG paths, constructed via a greedy algorithm.

# The energy function in arbitrary type

**Definition.** For  $J \in \mathcal{A}(\Gamma)$ , define the statistic

$$\text{height}(J) := \sum_{j \in J^-} h_j ,$$

where

$$J^- := \{j_i : r_{j_1} \dots r_{j_{i-1}} > r_{j_1} \dots r_{j_{i-1}} r_{j_i}\} .$$

## The energy function in arbitrary type

**Definition.** For  $J \in \mathcal{A}(\Gamma)$ , define the statistic

$$\text{height}(J) := \sum_{j \in J^-} h_j ,$$

where

$$J^- := \{j_i : r_{j_1} \dots r_{j_{i-1}} > r_{j_1} \dots r_{j_{i-1}} r_{j_i}\} .$$

**Theorem.** [L.-Naito-Sagaki-Schilling-Shimozono] *Given  $J$  in  $\mathcal{A}(\Gamma)$ , which is identified with  $B^{\otimes \mathbf{p}}$ , the energy function at the vertex  $J$  is given by  $\text{height}(J)$ .*

## Recall:

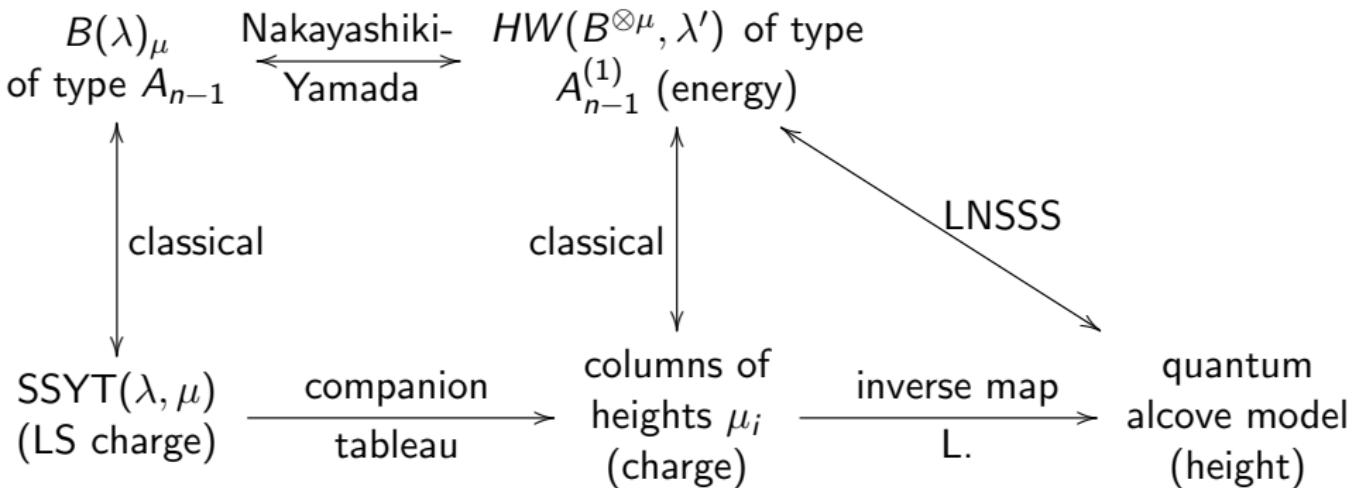
Main goal. Rederive the type A charge (for  $q$ -weight multiplicities) via the connection to the energy function on KR crystals (tensor product multiplicities computed via the quantum alcove model).

## Recall:

Main goal. Rederive the type  $A$  charge (for  $q$ -weight multiplicities) via the connection to the energy function on KR crystals (tensor product multiplicities computed via the quantum alcove model).

Then generalize to types  $C$  and  $B$ .

## Rederiving the type A charge



Consider  $B_{\text{cl}}^{\otimes\mu}$  (remove the edges labeled by  $\alpha_0$ ), and its connected components which are isomorphic to  $B(\lambda')$ . Let  $HW(B^{\otimes\mu}, \lambda')$  be the set of **highest weight vertices** of these components.

LS=Lascoux-Schützenberger

LNSSS=L.-Naito-Sagaki-Schilling-Shimozono

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

Fact. The following rule (based on the quantum Bruhat graph) is used to construct the map  $\text{sort}^{-1}$ :

|           |       |
|-----------|-------|
| $a_1$     | $b_1$ |
| ...       | ...   |
| $a_i$     | $b_i$ |
| $a_{i+1}$ |       |
| ...       |       |

$$b_i = \min \{ b_i, b_{i+1}, \dots \}$$

in the circular order starting at  $a_i$  :

$$a_i, a_i + 1, \dots, n, 1, \dots, a_i - 1.$$

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

Fact. The following rule (based on the quantum Bruhat graph) is used to construct the map  $\text{sort}^{-1}$ :

|           |       |
|-----------|-------|
| $a_1$     | $b_1$ |
| ...       | ...   |
| $a_i$     | $b_i$ |
| $a_{i+1}$ |       |
| ...       |       |

$$b_i = \min \{ b_i, b_{i+1}, \dots \}$$

in the circular order starting at  $a_i$  :

$$a_i, a_i + 1, \dots, n, 1, \dots, a_i - 1.$$

Example.

$$\text{sort}^{-1} \left( \begin{array}{c|c|c|c} 3 & 2 & 1 & 2 \\ \hline 5 & 3 & 2 & \\ \hline 6 & 4 & 4 & \end{array} \right) = \begin{array}{c|c|c|c} 3 & & & \\ \hline 5 & & & \\ \hline 6 & & & \end{array}.$$

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

Fact. The following rule (based on the quantum Bruhat graph) is used to construct the map  $\text{sort}^{-1}$ :

|           |       |
|-----------|-------|
| $a_1$     | $b_1$ |
| ...       | ...   |
| $a_i$     | $b_i$ |
| $a_{i+1}$ |       |
| ...       |       |

$$b_i = \min \{ b_i, b_{i+1}, \dots \}$$

in the circular order starting at  $a_i$  :

$$a_i, a_i + 1, \dots, n, 1, \dots, a_i - 1.$$

Example.

$$\text{sort}^{-1} \left( \begin{array}{|c|c|c|c|} \hline 3 & 2 & 1 & 2 \\ \hline 5 & 3 & 2 & \\ \hline 6 & 4 & 4 & \\ \hline \end{array} \right) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & & \\ \hline 5 & & & \\ \hline 6 & & & \\ \hline \end{array}.$$

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

Fact. The following rule (based on the quantum Bruhat graph) is used to construct the map  $\text{sort}^{-1}$ :

|           |       |
|-----------|-------|
| $a_1$     | $b_1$ |
| ...       | ...   |
| $a_i$     | $b_i$ |
| $a_{i+1}$ |       |
| ...       |       |

$$b_i = \min \{ b_i, b_{i+1}, \dots \}$$

in the circular order starting at  $a_i$  :

$$a_i, a_i + 1, \dots, n, 1, \dots, a_i - 1.$$

Example.

$$\text{sort}^{-1} \left( \begin{array}{|c|c|c|c|} \hline 3 & 2 & 1 & 2 \\ \hline 5 & 3 & 2 & \\ \hline 6 & 4 & 4 & \\ \hline \end{array} \right) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & & \\ \hline 5 & 2 & & \\ \hline 6 & & & \\ \hline \end{array}.$$

## Rederiving the type A charge (cont.)

Recall: the bijection from the quantum alcove model to the tableau model is

$$\mathcal{A}(\Gamma) \xrightarrow{\text{fill}} \text{fill}(\mathcal{A}(\Gamma)) \xrightarrow{\text{sort}} B^{\otimes \mu}.$$

Fact. The following rule (based on the quantum Bruhat graph) is used to construct the map  $\text{sort}^{-1}$ :

|           |       |
|-----------|-------|
| $a_1$     | $b_1$ |
| ...       | ...   |
| $a_i$     | $b_i$ |
| $a_{i+1}$ |       |
| ...       |       |

$$b_i = \min \{ b_i, b_{i+1}, \dots \}$$

in the circular order starting at  $a_i$  :

$$a_i, a_i + 1, \dots, n, 1, \dots, a_i - 1.$$

Example.

$$\text{sort}^{-1} \left( \begin{array}{|c|c|c|c|} \hline 3 & 2 & 1 & 2 \\ \hline 5 & 3 & 2 & \\ \hline 6 & 4 & 4 & \\ \hline \end{array} \right) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & 4 & 2 \\ \hline 5 & 2 & 2 & \\ \hline 6 & 4 & 1 & \\ \hline \end{array}.$$

## Rederiving the type A charge (cont.)

Given an admissible subset  $J$  in  $\mathcal{A}(\Gamma)$ , with associated column-strict filling  $b \in B^{\otimes \mu}$ , we can read off the statistic  $\text{height}(J)$  (expressing the energy) from  $\text{sort}^{-1}(b)$ :

## Rederiving the type A charge (cont.)

Given an admissible subset  $J$  in  $\mathcal{A}(\Gamma)$ , with associated column-strict filling  $b \in B^{\otimes \mu}$ , we can read off the statistic  $\text{height}(J)$  (expressing the energy) from  $\text{sort}^{-1}(b)$ :

$$\text{height}(J) = \sum_{u \in \text{Des}(\text{sort}^{-1}(b))} \text{arm}(u) = 1 + 2 + (2 + 1) = 6.$$

$$\text{sort}^{-1}(b) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & 4 & 2 \\ \hline 5 & 2 & 2 & \\ \hline 6 & 4 & 1 & \\ \hline \end{array}.$$

## Rederiving the type A charge (cont.)

Given an admissible subset  $J$  in  $\mathcal{A}(\Gamma)$ , with associated column-strict filling  $b \in B^{\otimes \mu}$ , we can read off the statistic  $\text{height}(J)$  (expressing the energy) from  $\text{sort}^{-1}(b)$ :

$$\text{height}(J) = \sum_{u \in \text{Des}(\text{sort}^{-1}(b))} \text{arm}(u) = 1 + 2 + (2 + 1) = 6.$$

$$\text{sort}^{-1}(b) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & 4 & 2 \\ \hline 5 & 2 & 2 & \\ \hline 6 & 4 & 1 & \\ \hline \end{array}.$$

**Remark.** This computation is the same as the one for the classical charge (Lascoux-Schützenberger), so we have  $\text{charge}(b) = \text{height}(J)$ .

## Rederiving the type A charge (cont.)

Given an admissible subset  $J$  in  $\mathcal{A}(\Gamma)$ , with associated column-strict filling  $b \in B^{\otimes \mu}$ , we can read off the statistic  $\text{height}(J)$  (expressing the energy) from  $\text{sort}^{-1}(b)$ :

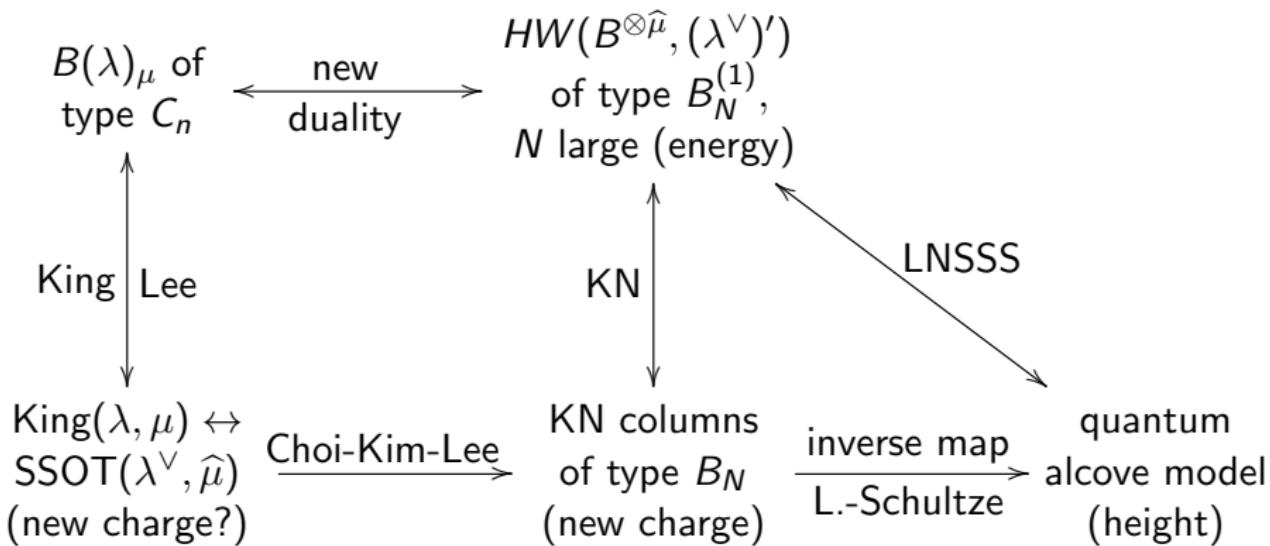
$$\text{height}(J) = \sum_{u \in \text{Des}(\text{sort}^{-1}(b))} \text{arm}(u) = 1 + 2 + (2 + 1) = 6.$$

$$\text{sort}^{-1}(b) = \begin{array}{|c|c|c|c|} \hline 3 & 3 & 4 & 2 \\ \hline 5 & 2 & 2 & \\ \hline 6 & 4 & 1 & \\ \hline \end{array}.$$

**Remark.** This computation is the same as the one for the classical charge (Lascoux-Schützenberger), so we have  $\text{charge}(b) = \text{height}(J)$ .

**Main idea** (for the new approach to charge, to be generalized).  
The classical charge  $\Leftrightarrow \text{sort}^{-1} \Leftrightarrow$  quantum Bruhat graph.

# A new type $C_n$ charge



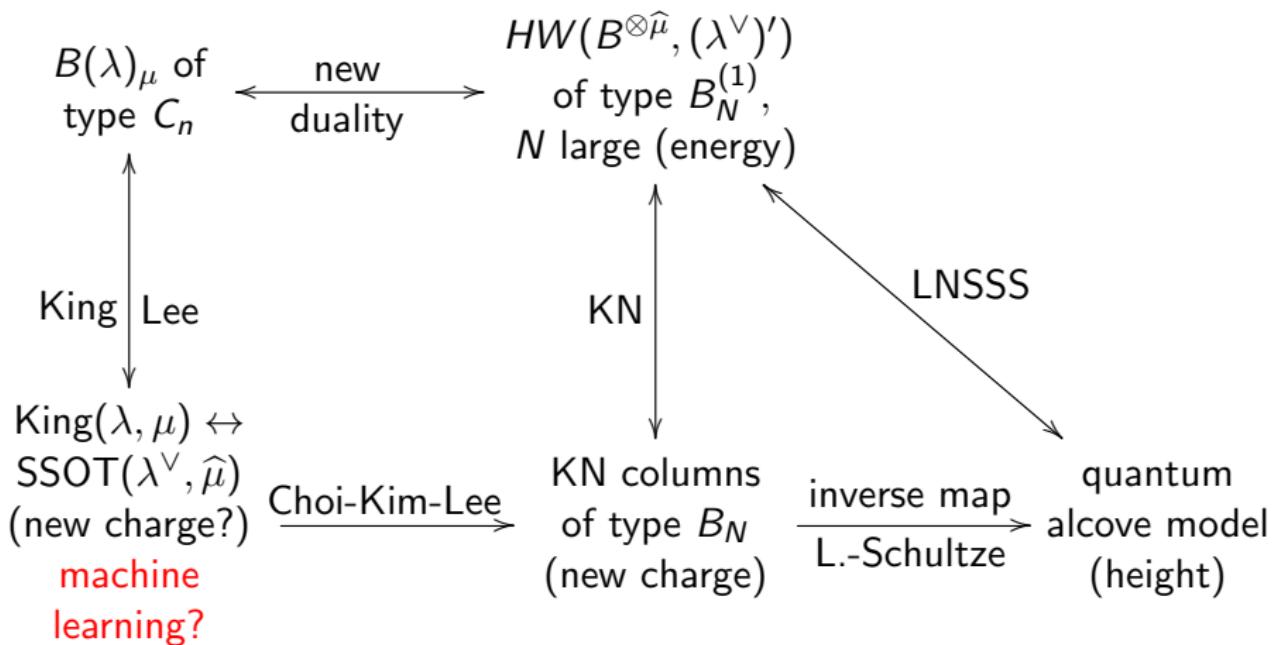
$\lambda^\vee := (g - \lambda_n, \dots, g - \lambda_1)$ ,  $\widehat{\mu} := (g - \mu_1, \dots, g - \mu_n)$ , for  $g \geq \lambda_1$

SSOT=semistandard oscillating tableaux

KN=Kashiwara-Nakashima

LNSSS=L.-Naito-Sagaki-Schilling-Shimozono

# A new type $C_n$ charge



$\lambda^V := (g - \lambda_n, \dots, g - \lambda_1)$ ,  $\widehat{\mu} := (g - \mu_1, \dots, g - \mu_n)$ , for  $g \geq \lambda_1$

SSOT=semistandard oscillating tableaux

KN=Kashiwara-Nakashima

LNSSS=L.-Naito-Sagaki-Schilling-Shimozono

## KR crystals of type $B_N^{(1)}$ : complications for the inverse map

Complication 1. Unlike in types  $A, C$ , where  $B^{k,1} \simeq B(\omega_k)$ , now

$$(B^{k,1})_{\text{cl}} \simeq B(\omega_k) \oplus B(\omega_{k-2}) \oplus \dots$$

## KR crystals of type $B_N^{(1)}$ : complications for the inverse map

**Complication 1.** Unlike in types  $A, C$ , where  $B^{k,1} \simeq B(\omega_k)$ , now

$$(B^{k,1})_{\text{cl}} \simeq B(\omega_k) \oplus B(\omega_{k-2}) \oplus \dots$$

**Complication 2.** Unlike in type  $A$ , KN columns of type  $B - D$  (realizing  $B(\omega_k)$ ) need to be “split” into two columns of height  $k$  (this is needed to check an “admissibility” condition):

$$\begin{array}{|c|} \hline 2 \\ \hline \bar{3} \\ \hline \bar{2} \\ \hline \end{array} \mapsto \begin{array}{|c|c|} \hline 1 & 2 \\ \hline \bar{3} & \bar{3} \\ \hline \bar{2} & \bar{1} \\ \hline \end{array}, \quad \text{where } 1 < 2 < 3 < \bar{3} < \bar{2} < \bar{1}.$$

## KR crystals of type $B_N^{(1)}$ : complications for the inverse map

**Complication 1.** Unlike in types  $A, C$ , where  $B^{k,1} \simeq B(\omega_k)$ , now

$$(B^{k,1})_{\text{cl}} \simeq B(\omega_k) \oplus B(\omega_{k-2}) \oplus \dots$$

**Complication 2.** Unlike in type  $A$ , KN columns of type  $B - D$  (realizing  $B(\omega_k)$ ) need to be “split” into two columns of height  $k$  (this is needed to check an “admissibility” condition):

$$\begin{array}{|c|} \hline 2 \\ \hline \bar{3} \\ \hline \bar{2} \\ \hline \end{array} \mapsto \begin{array}{|c|c|} \hline 1 & 2 \\ \hline \bar{3} & \bar{3} \\ \hline \bar{2} & \bar{1} \\ \hline \end{array}, \quad \text{where } 1 < 2 < 3 < \bar{3} < \bar{2} < \bar{1}.$$

Before applying the greedy algorithm for constructing the QBG path in the quantum alcove model (relating consecutive columns), we need to **split**, **extend**, and **reorder** ( $\text{sort}^{-1}$ ) the columns.

## KR crystals of type $B_N^{(1)}$ : complications for the inverse map

**Complication 1.** Unlike in types  $A, C$ , where  $B^{k,1} \simeq B(\omega_k)$ , now

$$(B^{k,1})_{\text{cl}} \simeq B(\omega_k) \oplus B(\omega_{k-2}) \oplus \dots$$

**Complication 2.** Unlike in type  $A$ , KN columns of type  $B - D$  (realizing  $B(\omega_k)$ ) need to be “split” into two columns of height  $k$  (this is needed to check an “admissibility” condition):

$$\begin{array}{|c|} \hline 2 \\ \hline \bar{3} \\ \hline \bar{2} \\ \hline \end{array} \mapsto \begin{array}{|c|c|} \hline 1 & 2 \\ \hline \bar{3} & \bar{3} \\ \hline \bar{2} & \bar{1} \\ \hline \end{array}, \quad \text{where } 1 < 2 < 3 < \bar{3} < \bar{2} < \bar{1}.$$

Before applying the greedy algorithm for constructing the QBG path in the quantum alcove model (relating consecutive columns), we need to **split**, **extend**, and **reorder** ( $\text{sort}^{-1}$ ) the columns.

**Complication 3.** Unlike in types  $A, C$ , at every intermediate step in the construction of the QBG path, we need to avoid certain configurations of two consecutive columns (“blocked-off”).

# A charge-type formula for the energy function in type $B_N^{(1)}$

**Theorem.** [L.-Schultze] *Given an admissible subset  $J$  in  $\mathcal{A}(\Gamma)$ , with associated column-strict filling  $b \in B^{\otimes \mu}$ , we can read off the statistic  $\text{height}(J)$  (expressing the energy) from*

$$\text{sort}^{-1} \circ \text{extend} \circ \text{split}(b).$$

## Other results. Further work

- ▶  $q$ -weight multiplicities of type  $B_n$  for spin (half-integer) weights are related to the energy function on KR crystals of type  $D_N^{(2)}$  for large  $N$  [Choi-Kim-Lee, 2025];

## Other results. Further work

- ▶  $q$ -weight multiplicities of type  $B_n$  for spin (half-integer) weights are related to the energy function on KR crystals of type  $D_N^{(2)}$  for large  $N$  [Choi-Kim-Lee, 2025];
- ▶ there is a version of the quantum alcove model for the twisted affine types, but the correspondence with the tableau model is still to be worked out;

## Other results. Further work

- ▶  $q$ -weight multiplicities of type  $B_n$  for spin (half-integer) weights are related to the energy function on KR crystals of type  $D_N^{(2)}$  for large  $N$  [Choi-Kim-Lee, 2025];
- ▶ there is a version of the quantum alcove model for the twisted affine types, but the correspondence with the tableau model is still to be worked out;
- ▶ not yet understood:  $q$ -weight multiplicities of type  $B_n$  for non-spin (integer) weights, and of type  $D_n$ .