

Recursive Computations for Khovanov-Rozansky Homology

Misha Mazin

**Based on previous work with Nicolle González, Matt Hogancamp, and Carmen Caprau, and on recent conversations with Nicolle González and Eugene Gorsky.*

Categorified Young symmetrizers (Elias-Hogancamp)

Categorified Young symmetrizers (Elias-Hogancamp)

1

$$\boxed{K_n} = \boxed{K_n}$$

Categorified Young symmetrizers (Elias-Hogancamp)

①

$$\begin{array}{c} \vdots \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ \text{---} \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ \text{---} \\ \text{---} \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ K_n \\ \vdots \end{array} , \end{array>$$

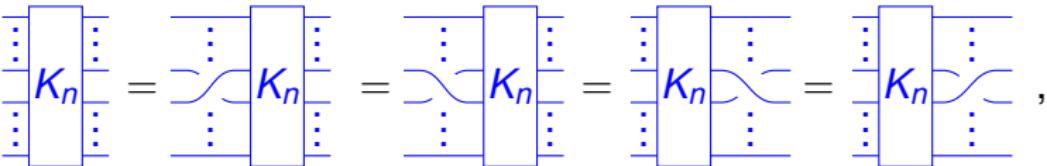
Categorified Young symmetrizers (Elias-Hogancamp)

①

$$\begin{array}{c} \vdots \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ \text{---} \\ K_n \\ \vdots \end{array} = \begin{array}{c} \vdots \\ \text{---} \\ K_n \\ \text{---} \\ \vdots \end{array} = \begin{array}{c} \vdots \\ K_n \\ \text{---} \\ \vdots \end{array} ,$$

② Under parity assumption:

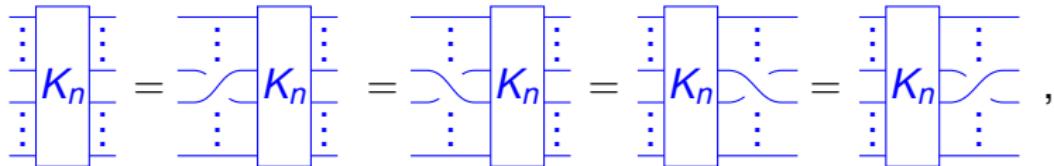
Categorified Young symmetrizers (Elias-Hogancamp)

①  ,

② Under parity assumption:

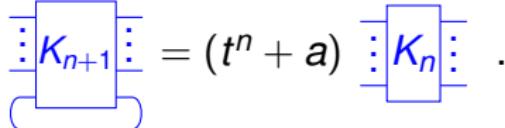
$$\overbrace{\dots | K_n | \dots}^{\text{wavy line}} = t^{-n} \overbrace{\dots | K_{n+1} | \dots}^{\text{vertical line}} + qt^{-n} \overbrace{\dots | K_n | \dots}^{\text{wavy line}} ,$$

Categorified Young symmetrizers (Elias-Hogancamp)

①  ,

② Under parity assumption:

$$\left[\begin{array}{c|c|c} \vdots & K_n & \vdots \\ \hline & \vdots & \vdots \end{array} \right] = t^{-n} \left[\begin{array}{c|c|c} \vdots & K_{n+1} & \vdots \\ \hline & \vdots & \vdots \end{array} \right] + qt^{-n} \left[\begin{array}{c|c} \vdots & K_n \\ \hline & \vdots \end{array} \right] ,$$

③  .

Categorified Young symmetrizers (Elias-Hogancamp)

①

② Under parity assumption:

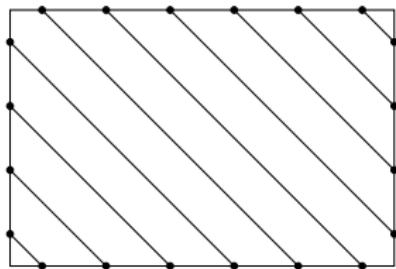
③

Remark

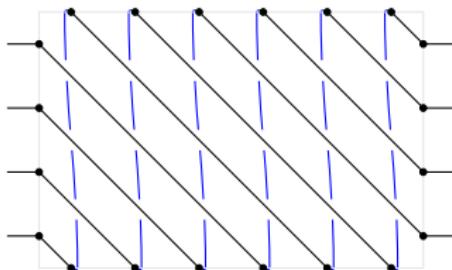
In particular, from (2) with $n = 0$ one gets

$$\text{---} = \boxed{K_1} + q \text{---} \quad \text{or} \quad (1 - q) \text{---} = \boxed{K_1} \text{---} .$$

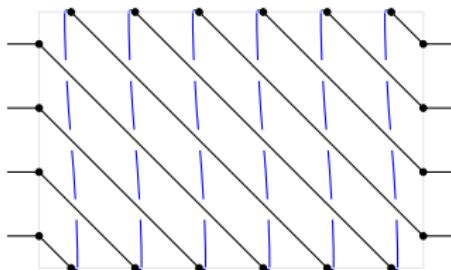
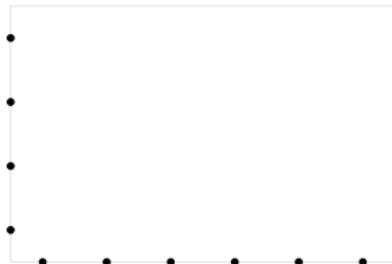
Hogancamp-Mellit recursions



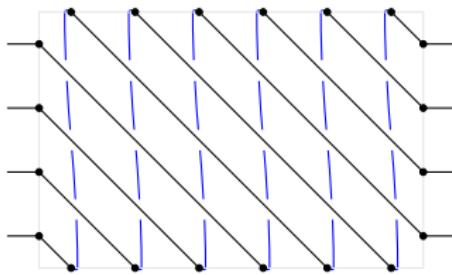
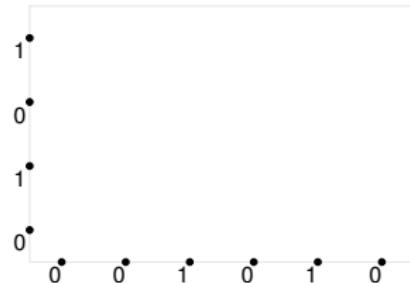
Hogancamp-Mellit recursions



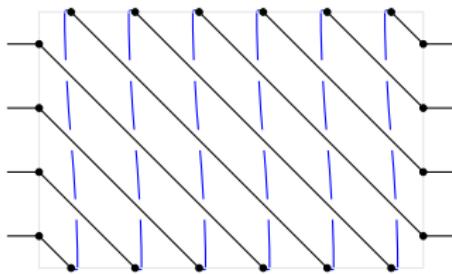
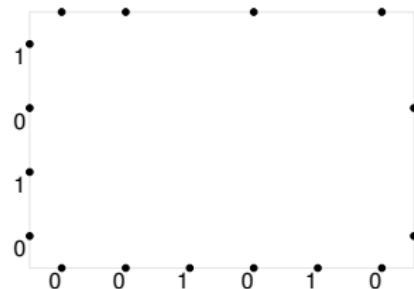
Hogancamp-Mellit recursions



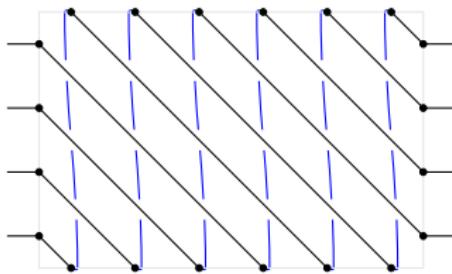
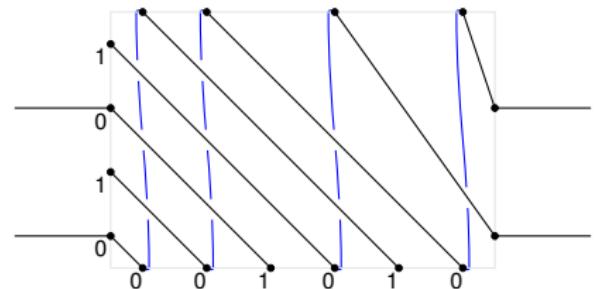
Hogancamp-Mellit recursions



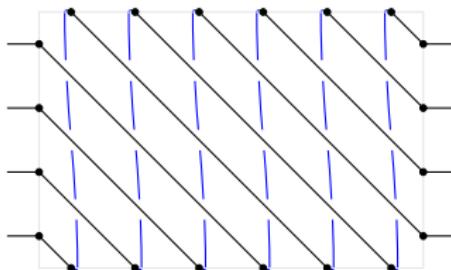
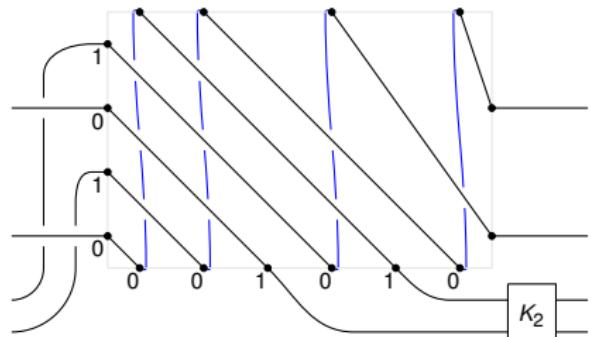
Hogancamp-Mellit recursions



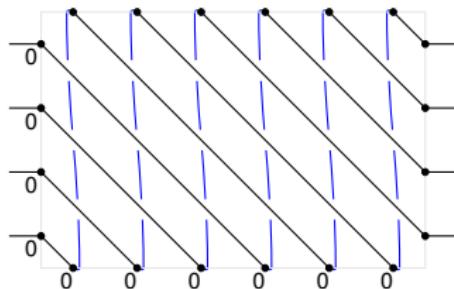
Hogancamp-Mellit recursions



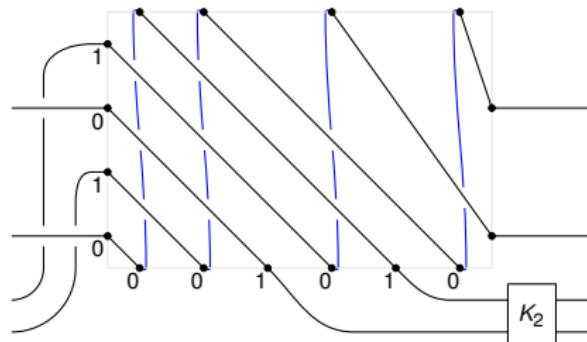
Hogancamp-Mellit recursions



Hogancamp-Mellit recursions

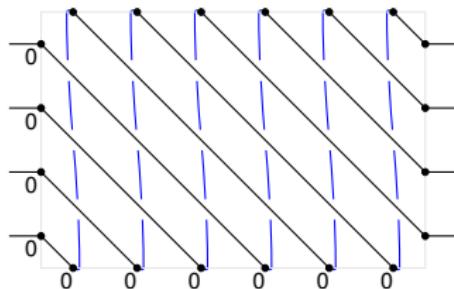


$$R_{0000,000000}(q, t, a)$$

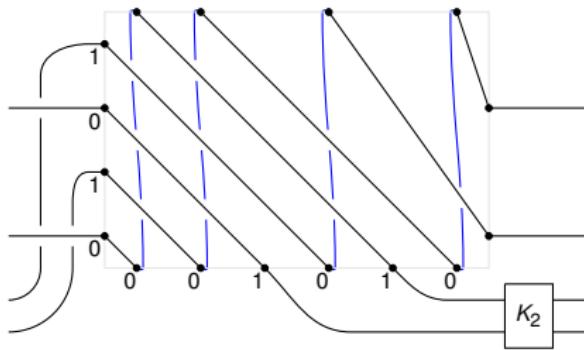


$$R_{0101,001010}(q, t, a)$$

Hogancamp-Mellit recursions



$$R_{0000,000000}(q, t, a)$$



$$R_{0101,001010}(q, t, a)$$

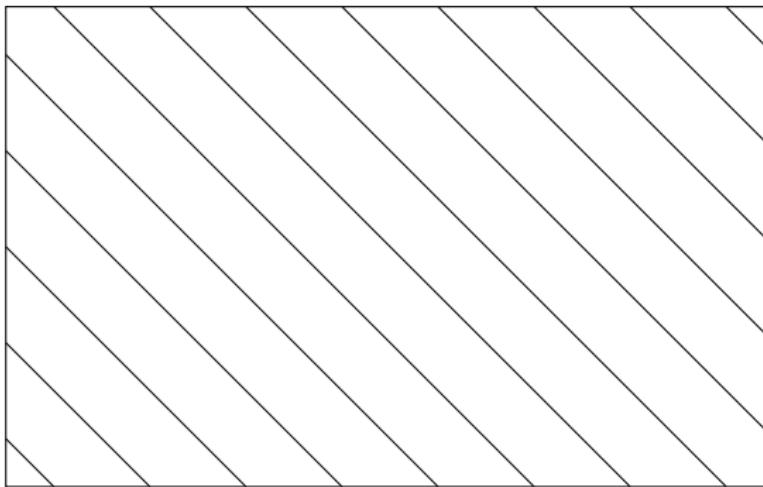
Theorem (Hogancamp-Mellit)

$$R_{0\mathbf{u},0\mathbf{v}} = t^{-|\mathbf{u}|} R_{\mathbf{u}1,\mathbf{v}1} + qt^{-|\mathbf{u}|} R_{\mathbf{u}0,\mathbf{v}0}, \quad R_{1\mathbf{u},0\mathbf{v}} = R_{\mathbf{u}1,\mathbf{v}}, \quad R_{\emptyset,0^n} = \left(\frac{1+a}{1-q}\right)^n,$$

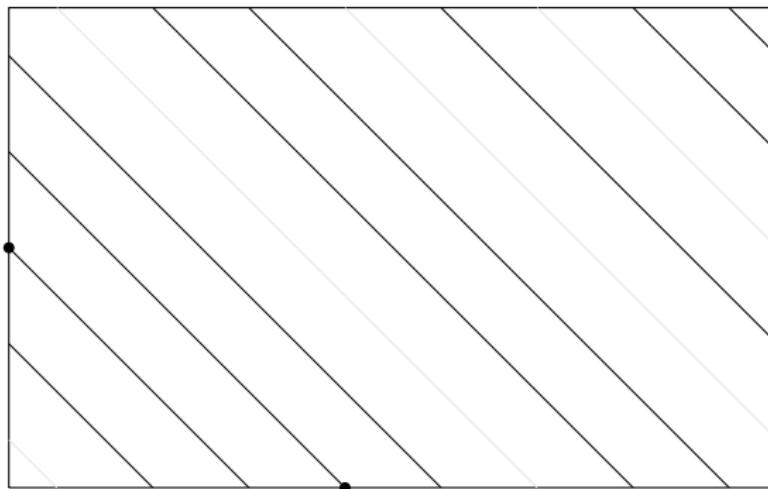
$$R_{1\mathbf{u},1\mathbf{v}} = (t^{|\mathbf{u}|} + a) R_{\mathbf{u},\mathbf{v}}, \quad R_{0\mathbf{u},1\mathbf{v}} = R_{\mathbf{u},\mathbf{v}1}, \quad R_{0^m,\emptyset} = \left(\frac{1+a}{1-q}\right)^m,$$

where $R_{\emptyset,\emptyset} := 1$.

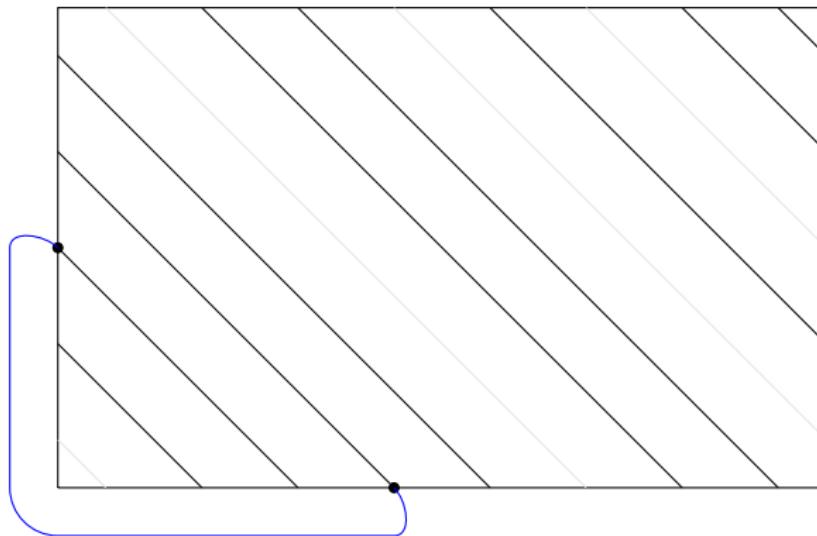
Shortcut torus knots



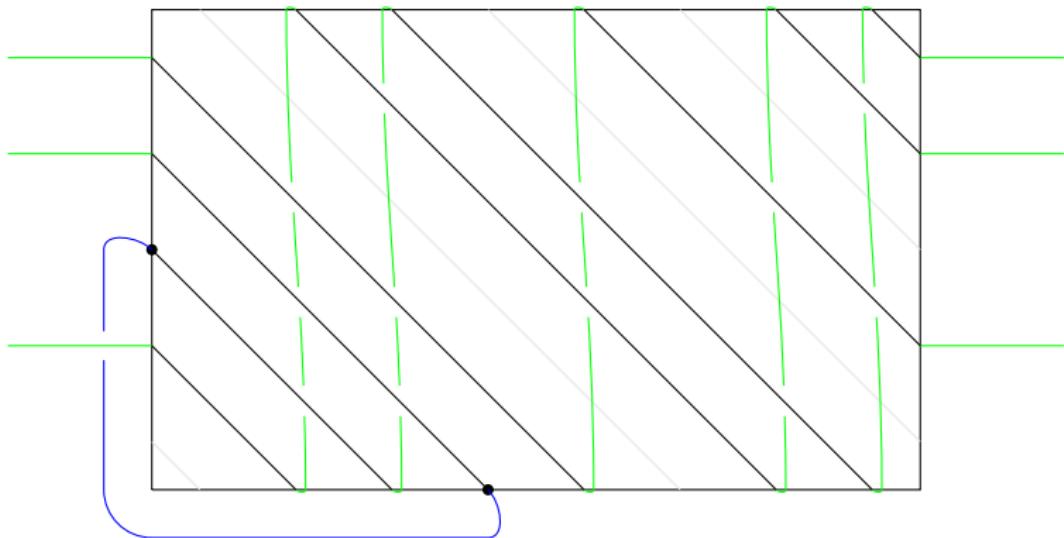
Shortcut torus knots



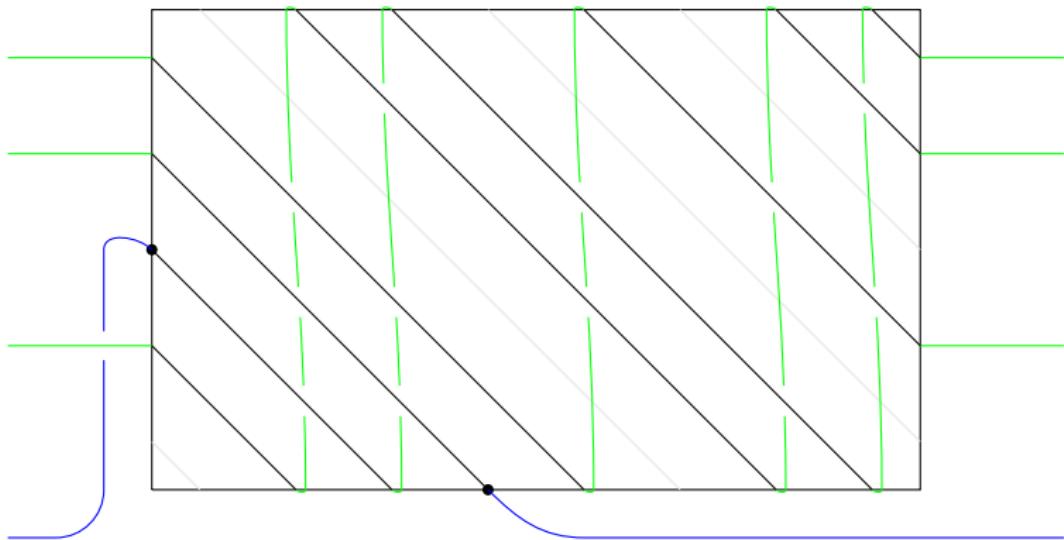
Shortcut torus knots



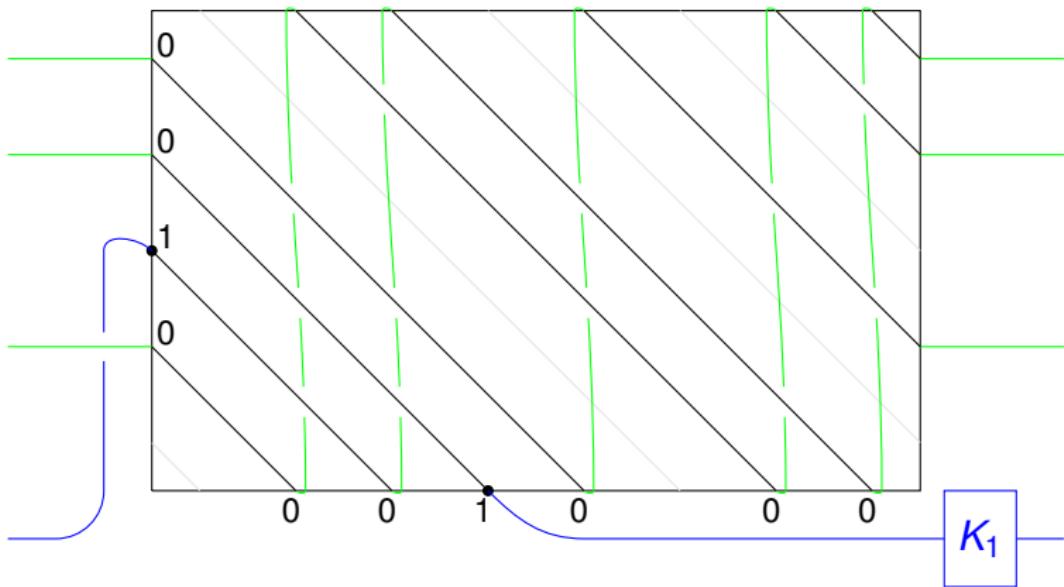
Shortcut torus knots



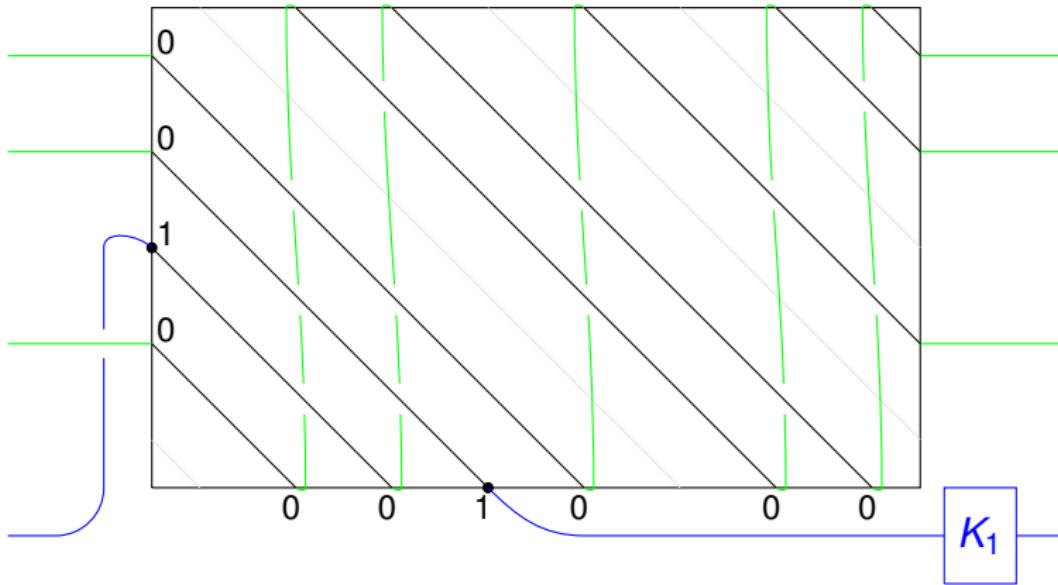
Shortcut torus knots



Shortcut torus knots



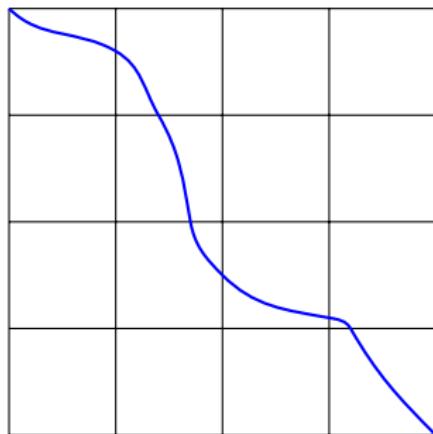
Shortcut torus knots



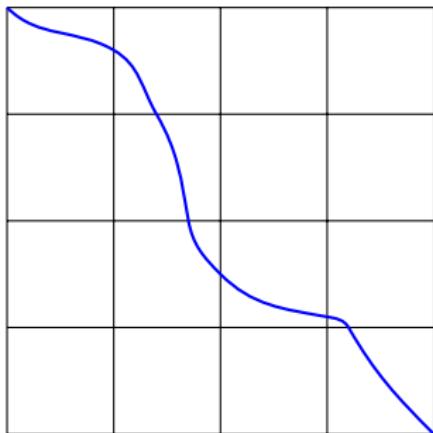
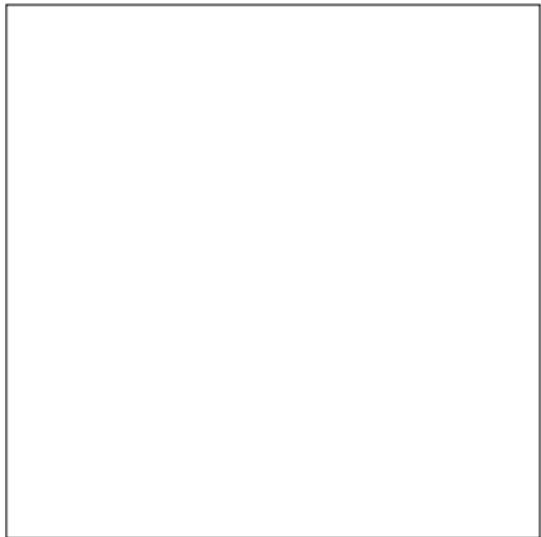
Theorem

All knots that appear in the Hogancamp-Mellit recursion are the shortcut torus knots (as above).

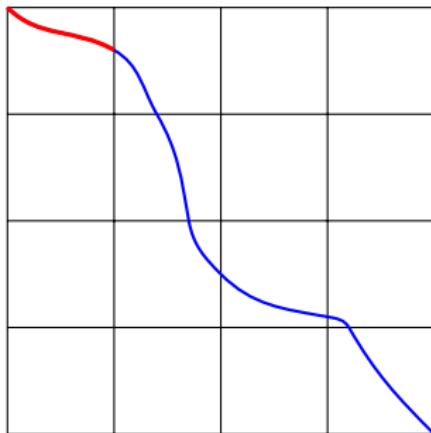
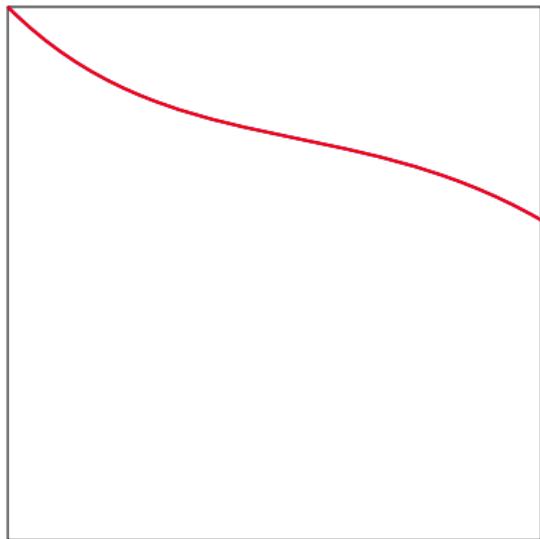
Monotone knots of Galashin-Lam



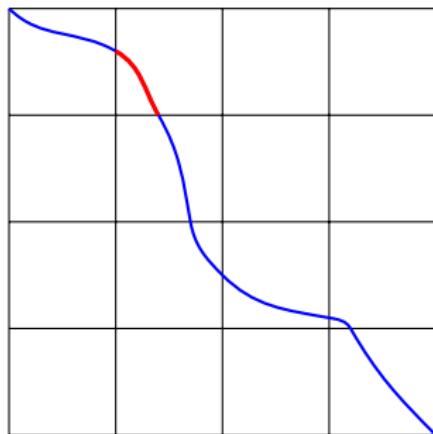
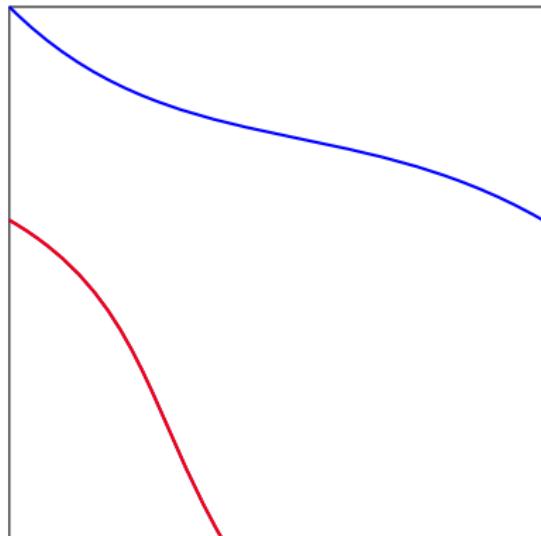
Monotone knots of Galashin-Lam



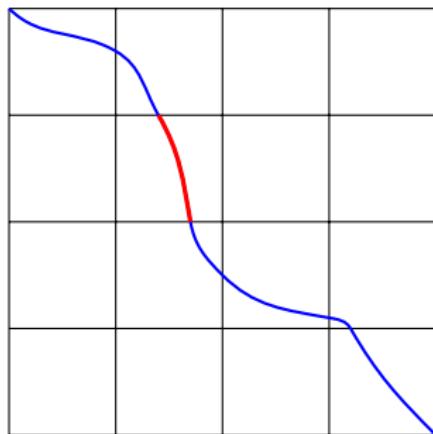
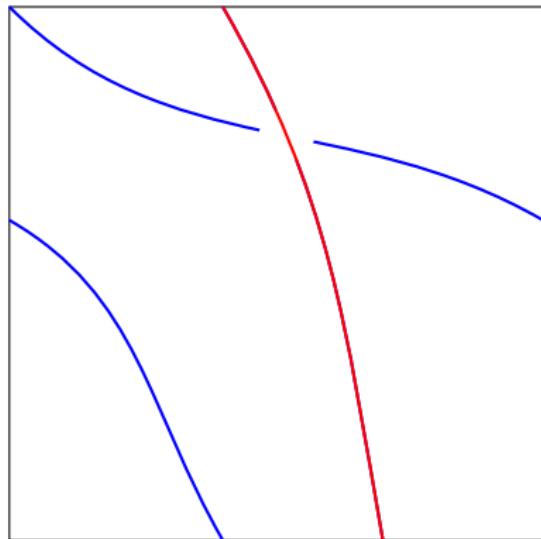
Monotone knots of Galashin-Lam



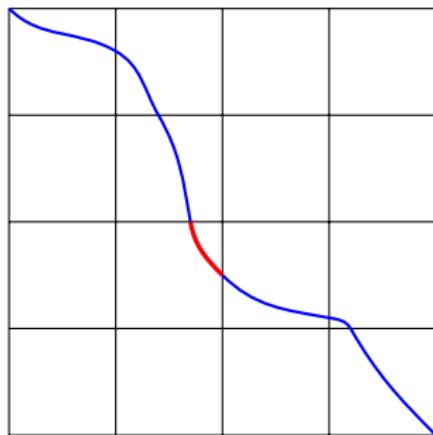
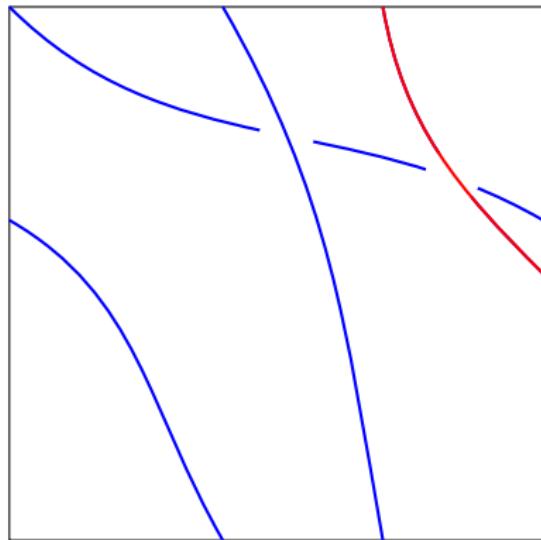
Monotone knots of Galashin-Lam



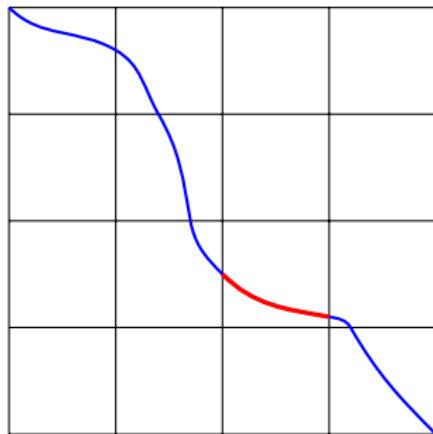
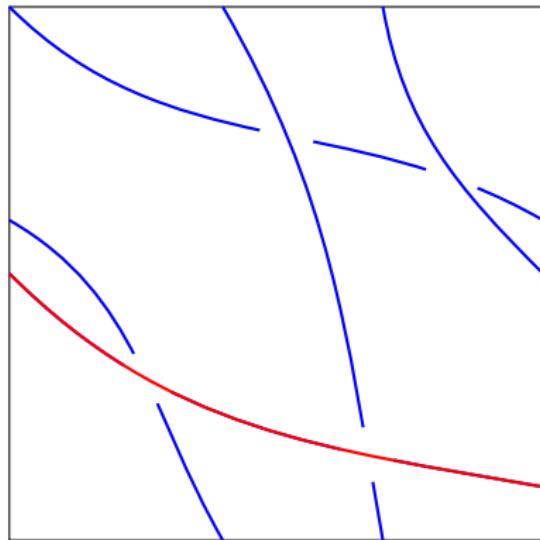
Monotone knots of Galashin-Lam



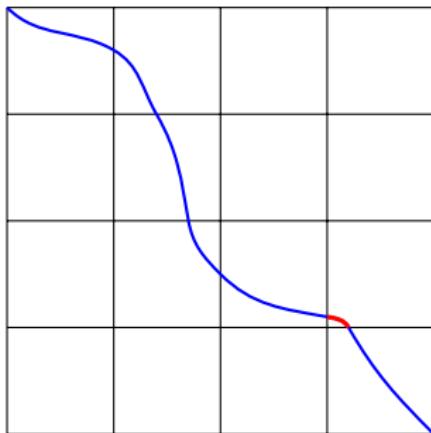
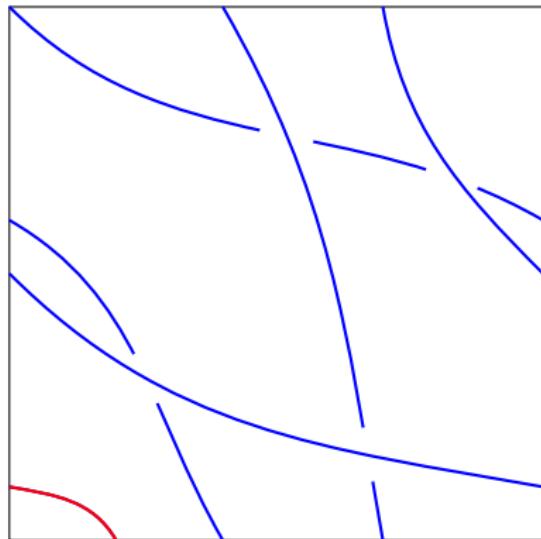
Monotone knots of Galashin-Lam



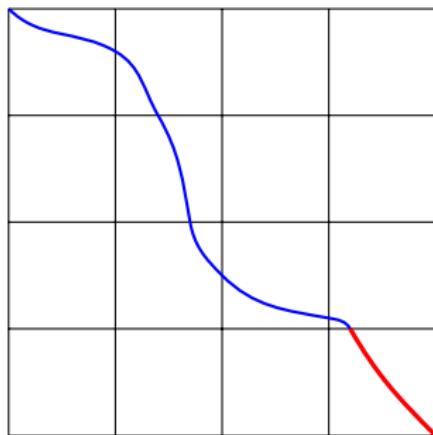
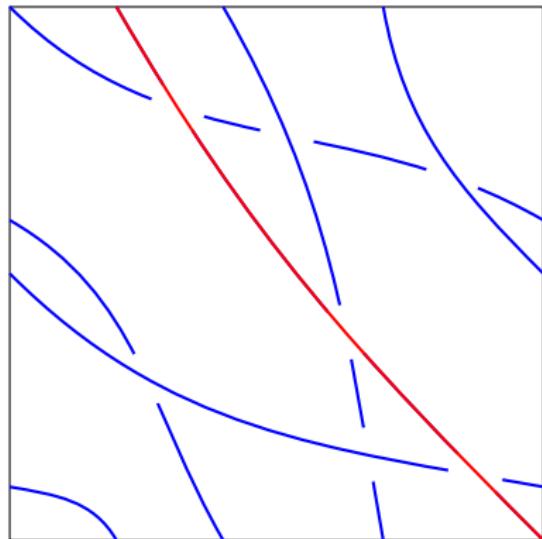
Monotone knots of Galashin-Lam



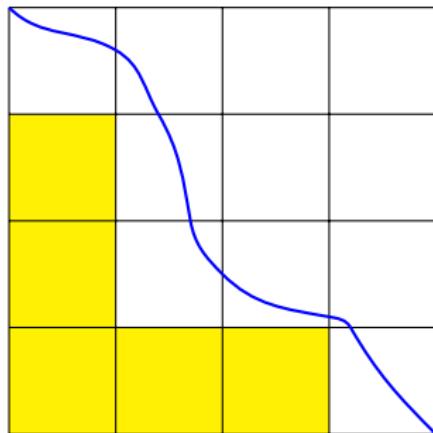
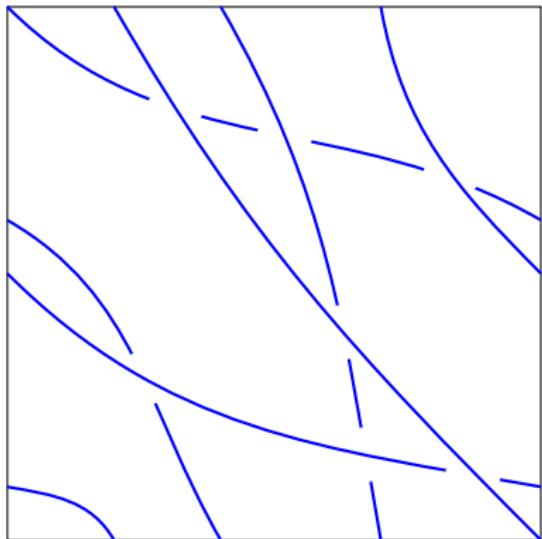
Monotone knots of Galashin-Lam



Monotone knots of Galashin-Lam



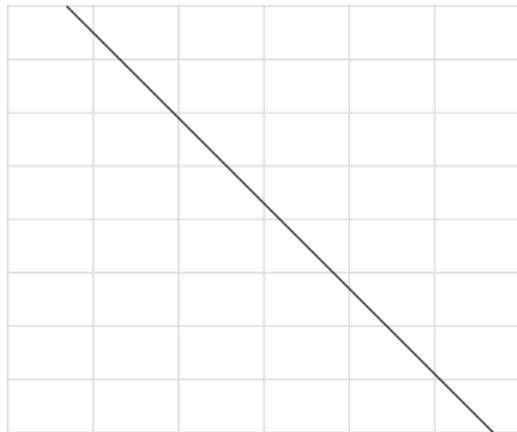
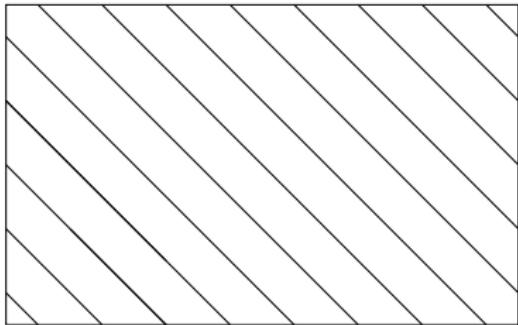
Monotone knots of Galashin-Lam



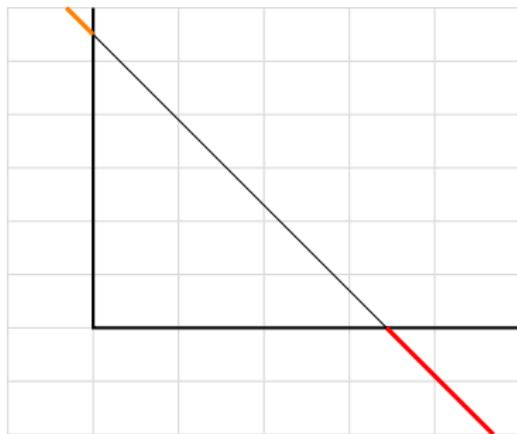
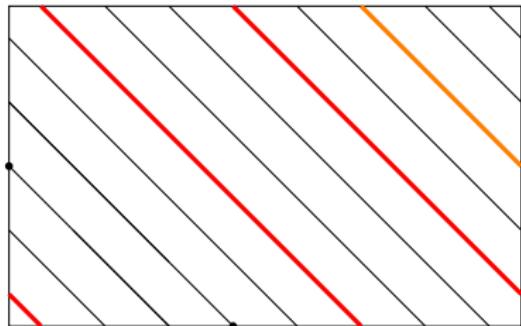
Theorem (Galashin-Lam)

Up to an isotopy, the knot only depends on the partition under the curve.

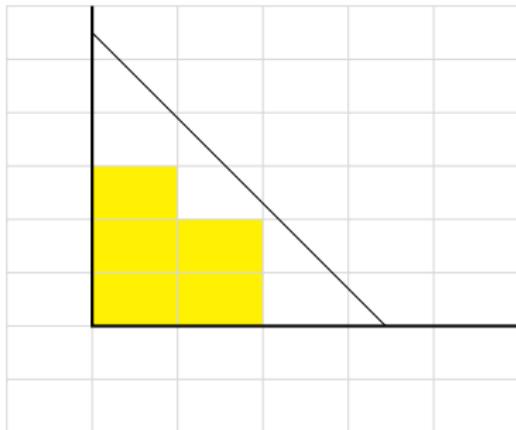
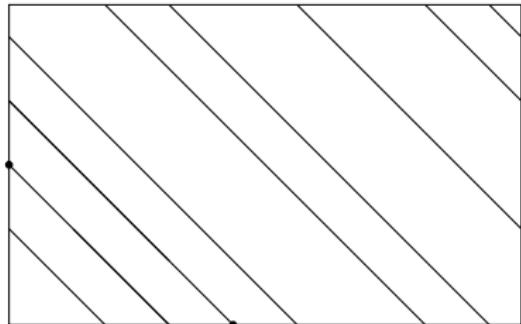
Monotone Knots of Triangular Partitions



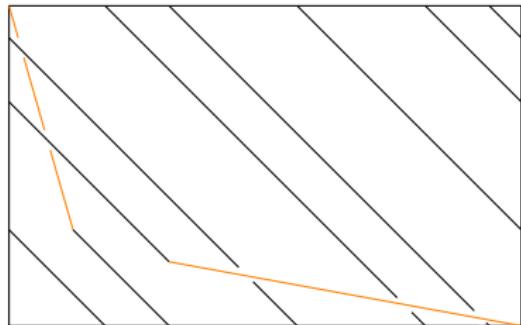
Monotone Knots of Triangular Partitions



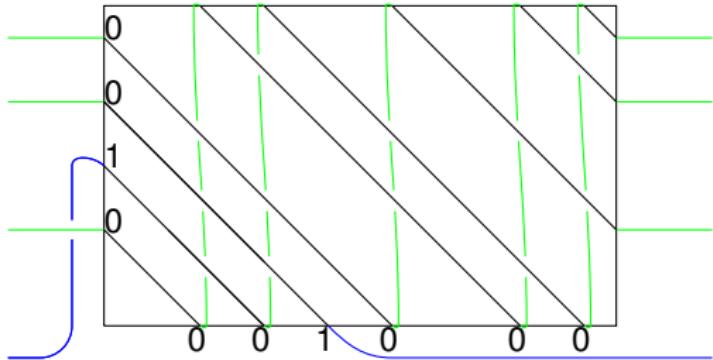
Monotone Knots of Triangular Partitions



Monotone Knots of Triangular Partitions



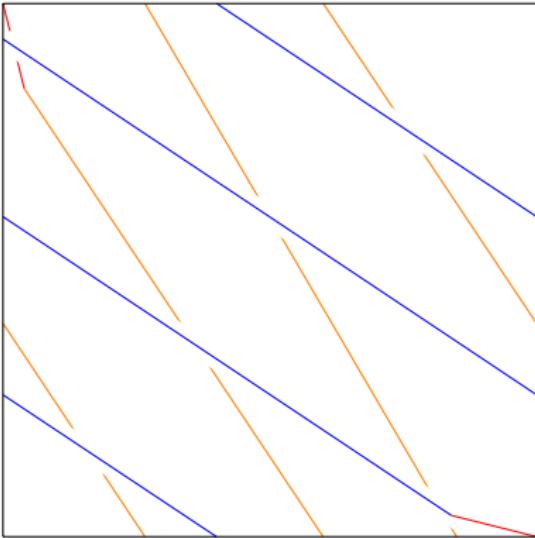
Monotone Knots of Triangular Partitions



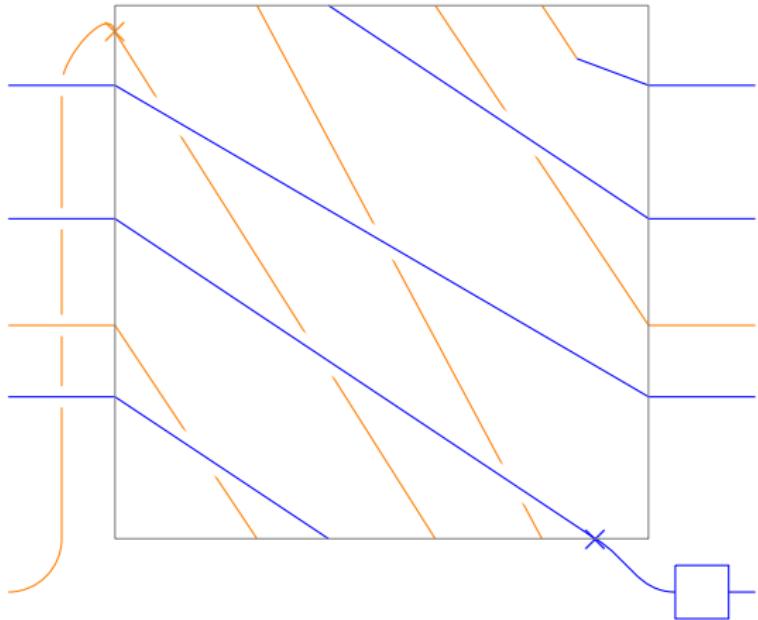
Theorem

Monotone knots of the triangular partitions are the shortcut torus knots.

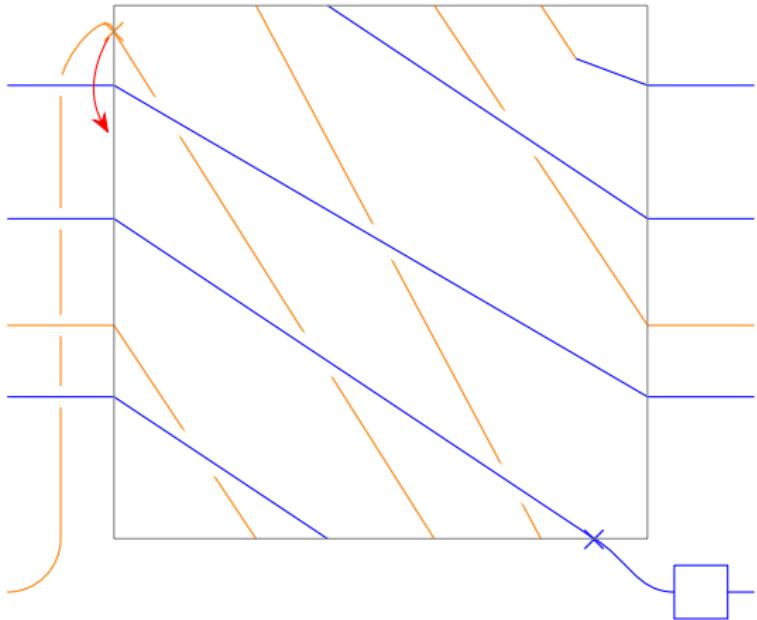
Example: (3, 1, 1)



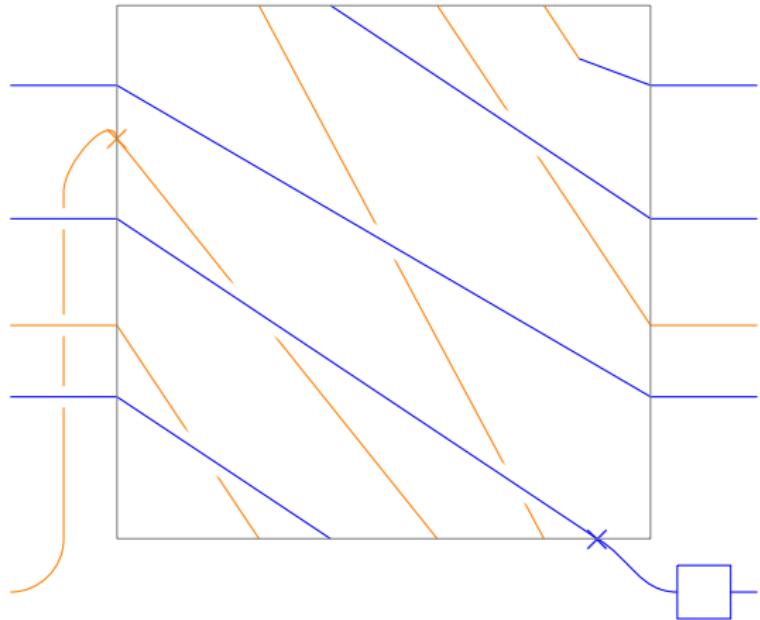
Example: (3, 1, 1)



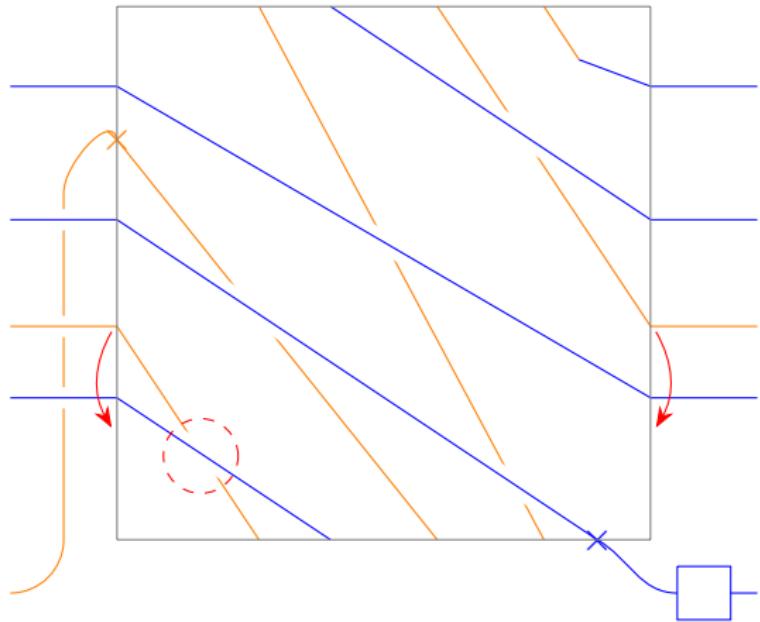
Example: (3, 1, 1)



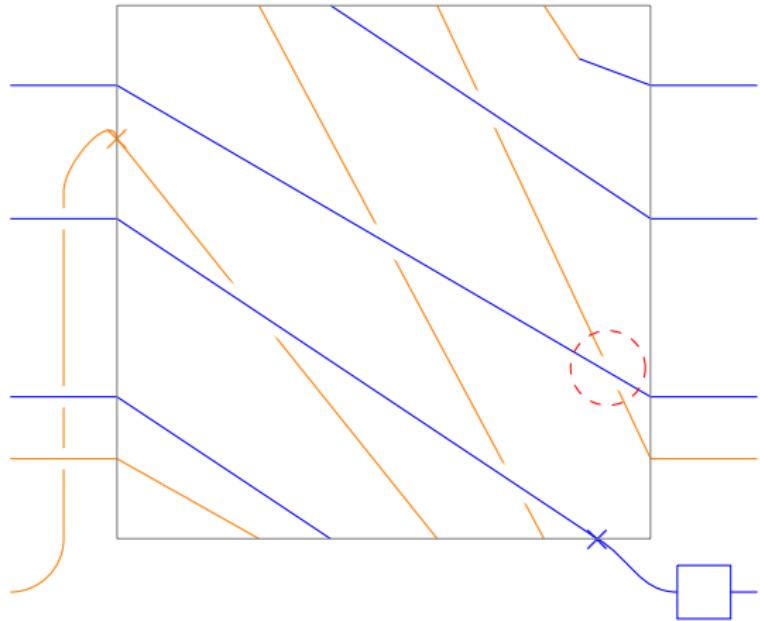
Example: (3, 1, 1)



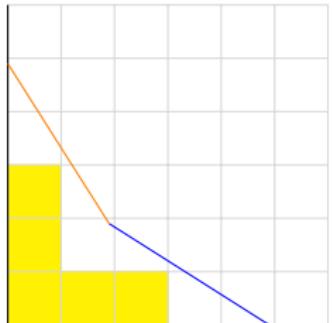
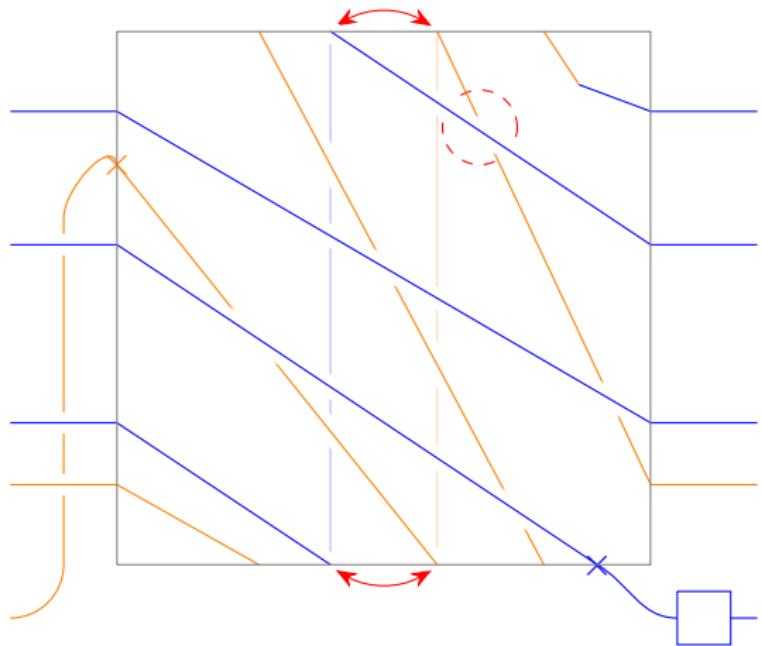
Example: (3, 1, 1)



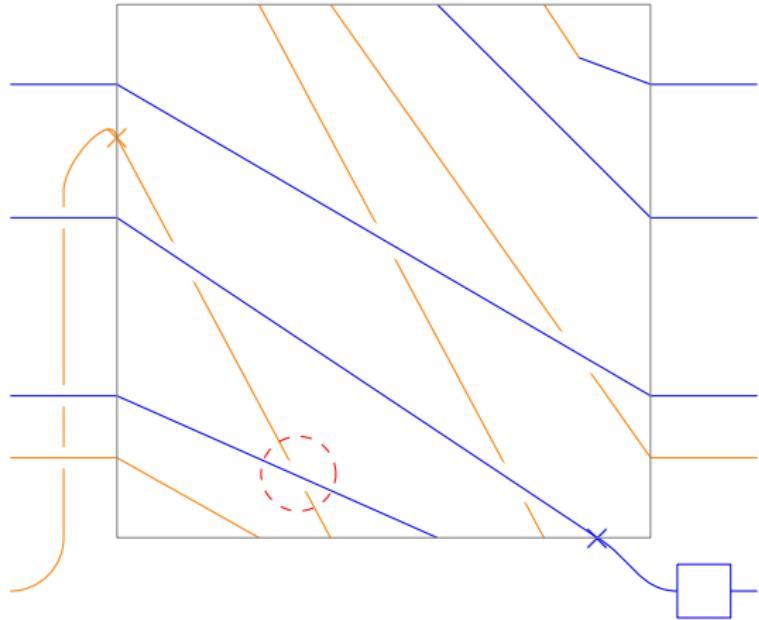
Example: (3, 1, 1)



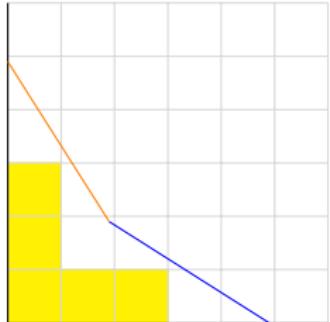
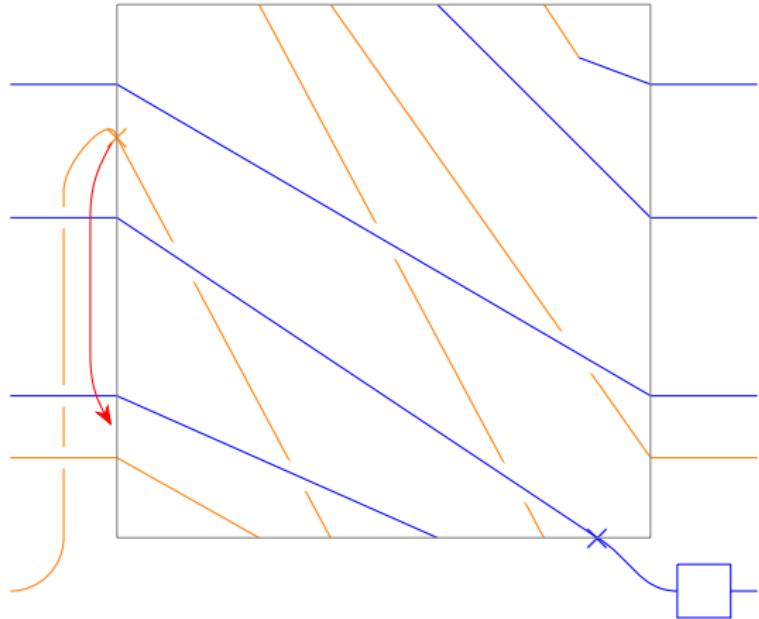
Example: (3, 1, 1)



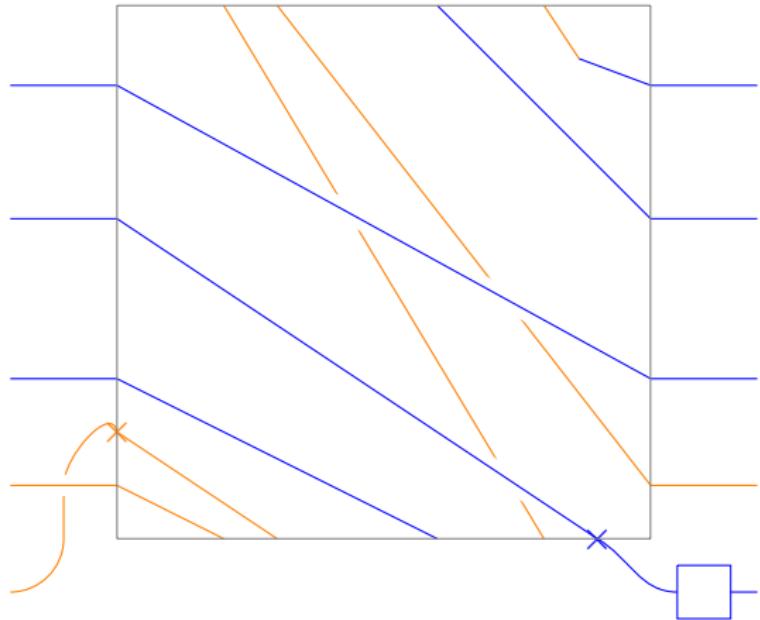
Example: (3, 1, 1)



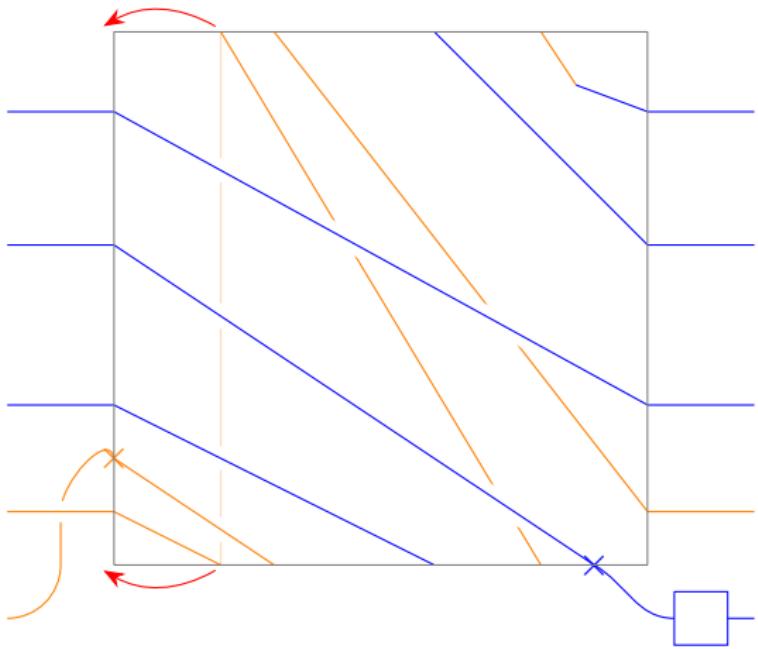
Example: (3, 1, 1)



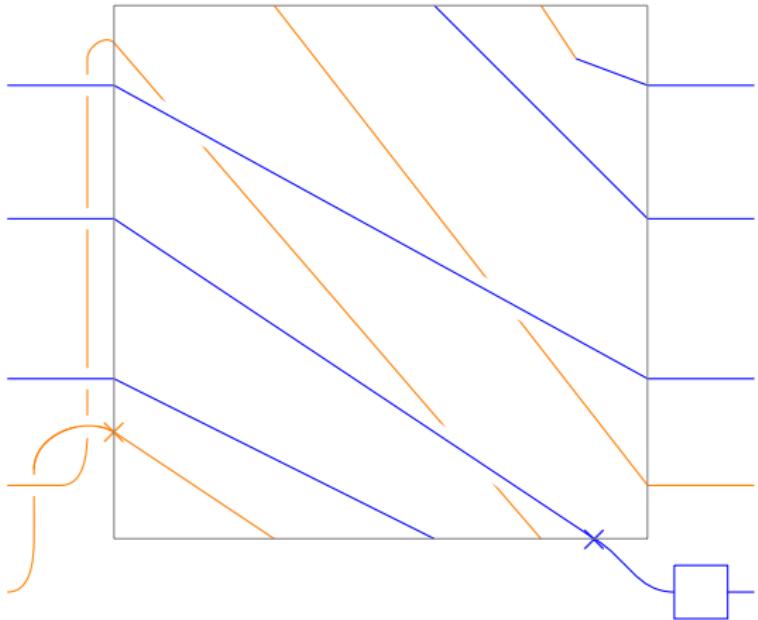
Example: (3, 1, 1)



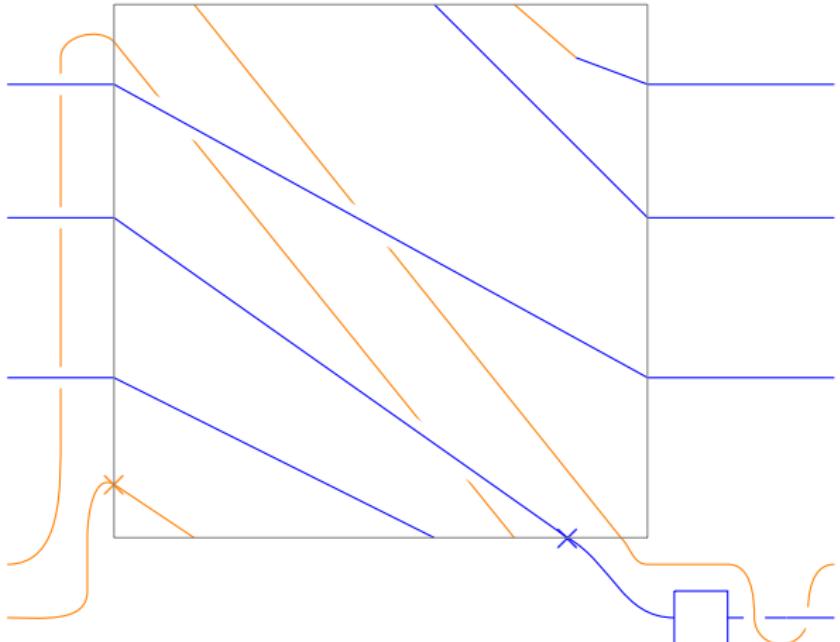
Example: (3, 1, 1)

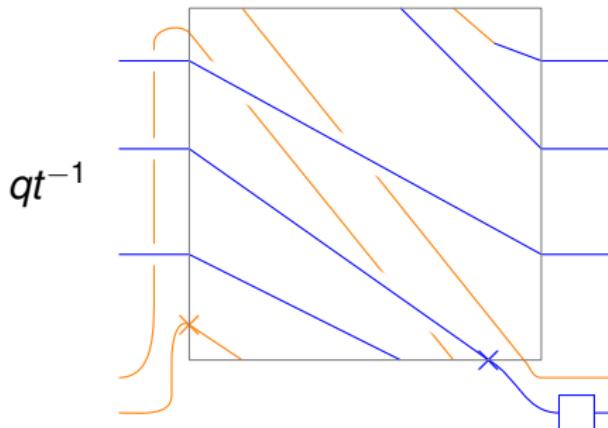
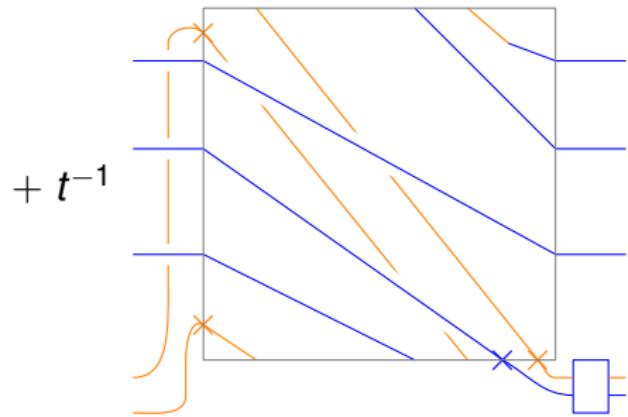
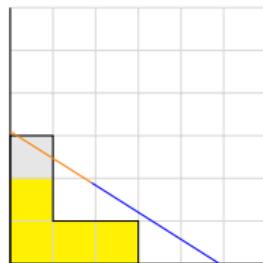
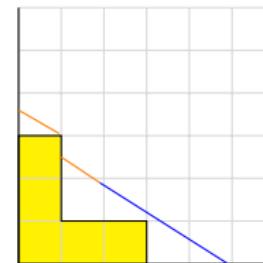


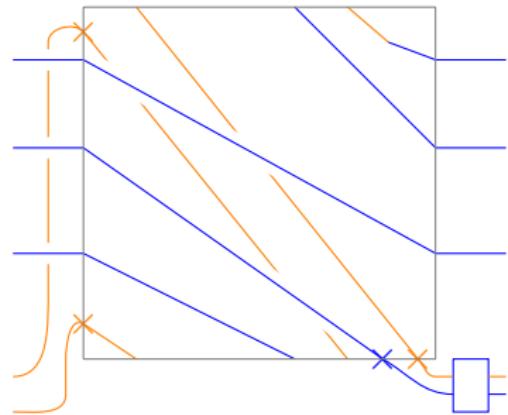
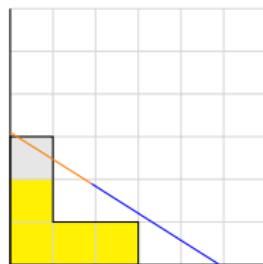
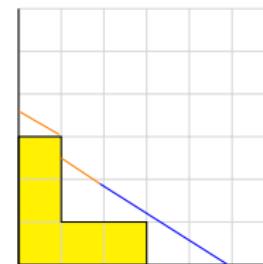
Example: (3, 1, 1)

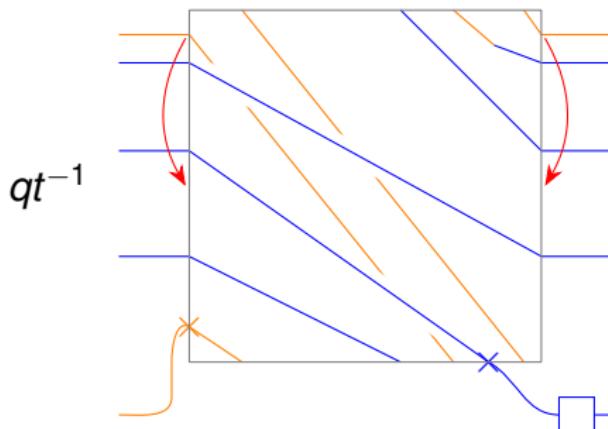
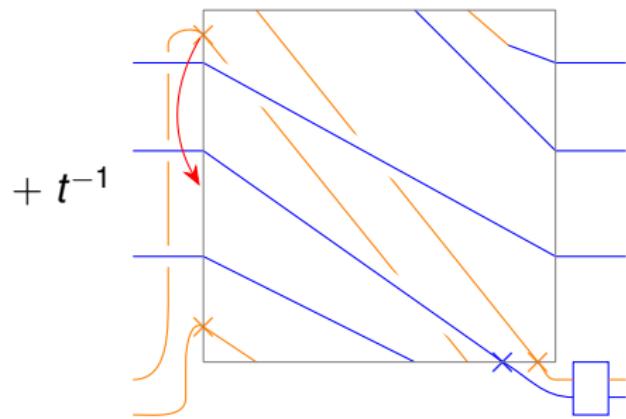
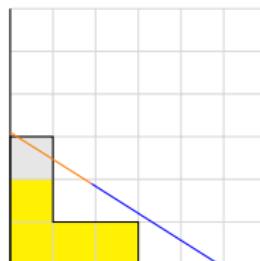


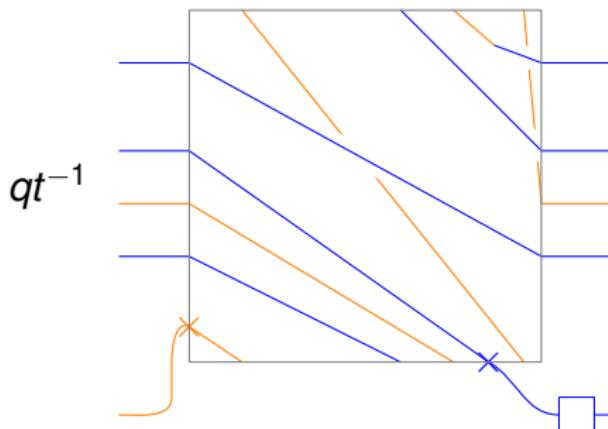
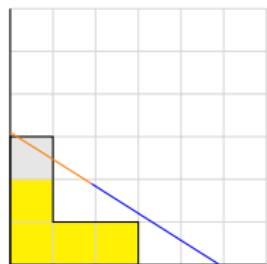
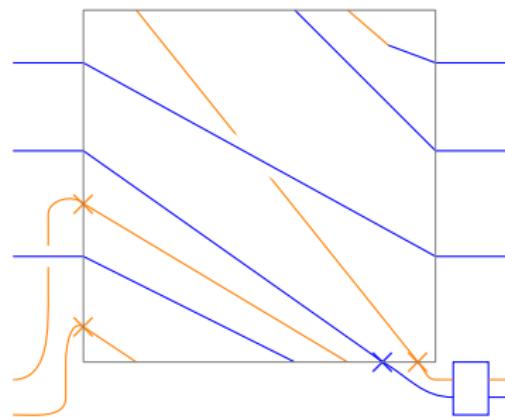
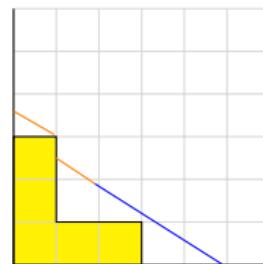
Example: (3, 1, 1)

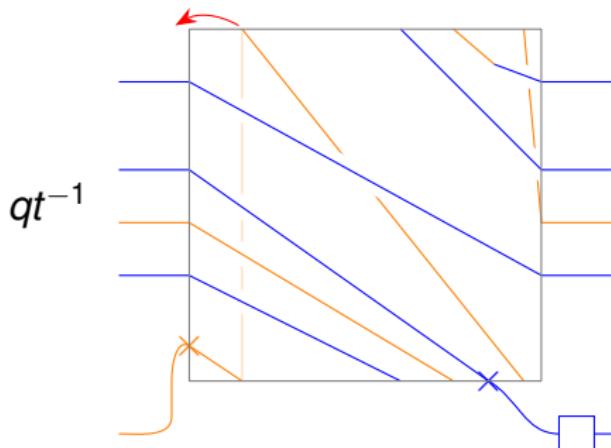
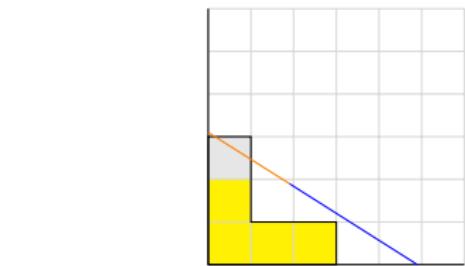
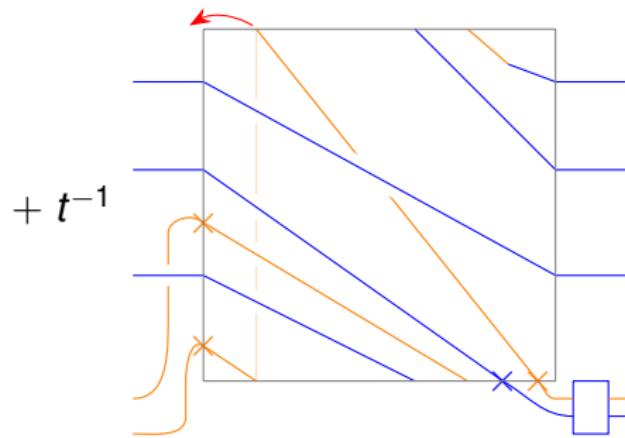
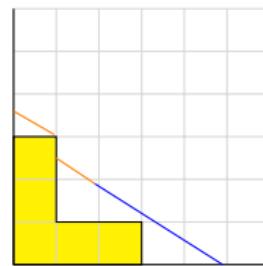


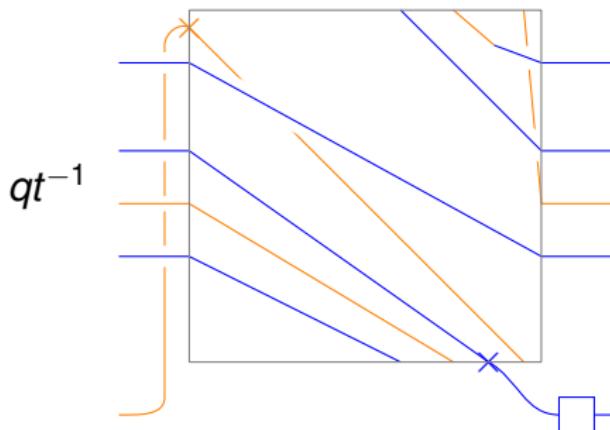
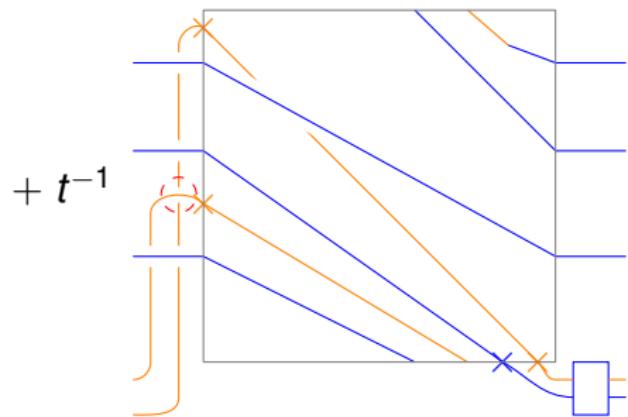
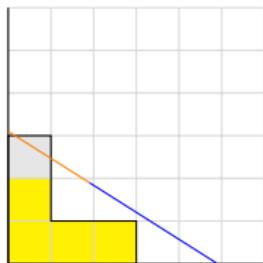


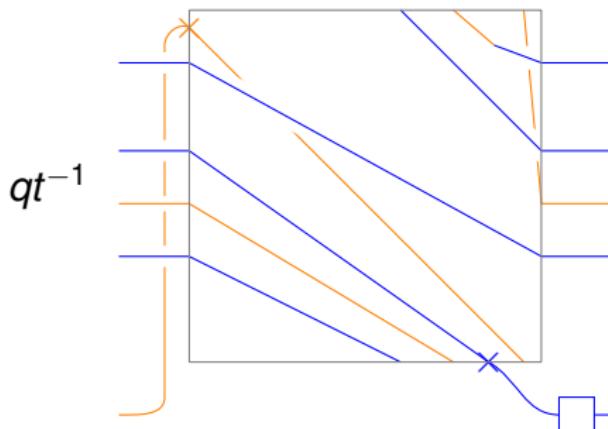
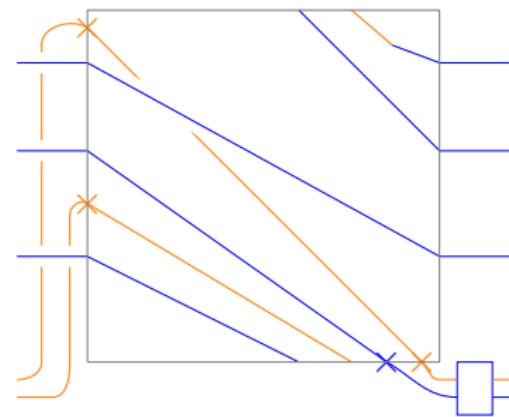
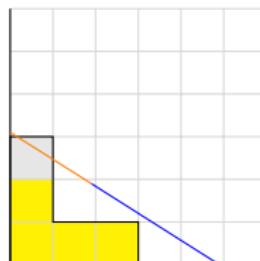
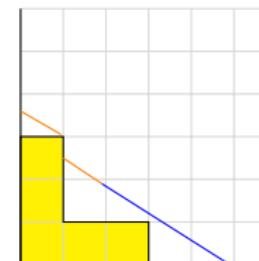
qt^{-1}  $+ t^{-1}$ 

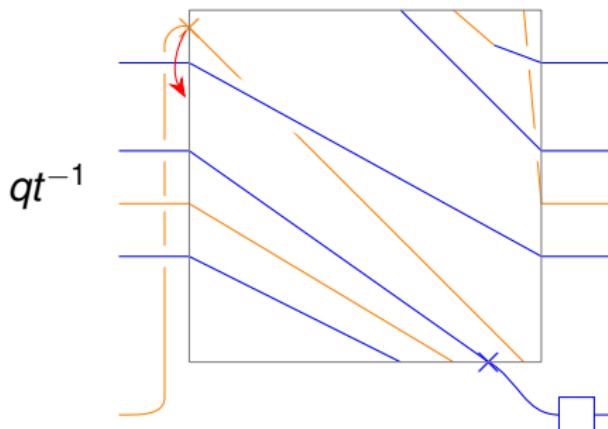
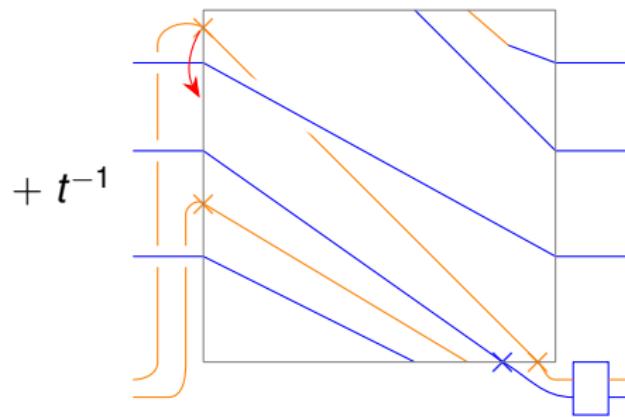
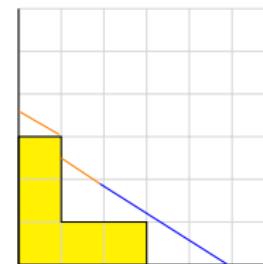


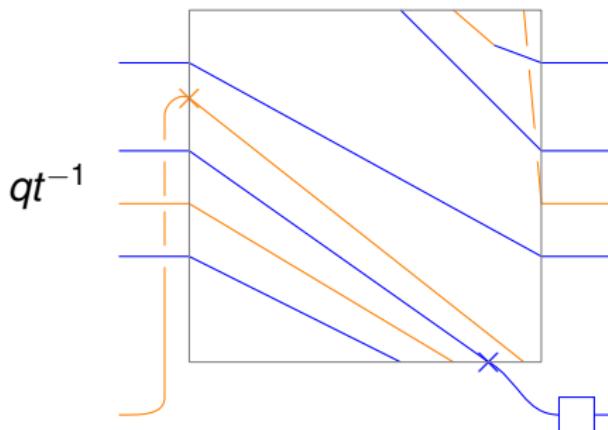
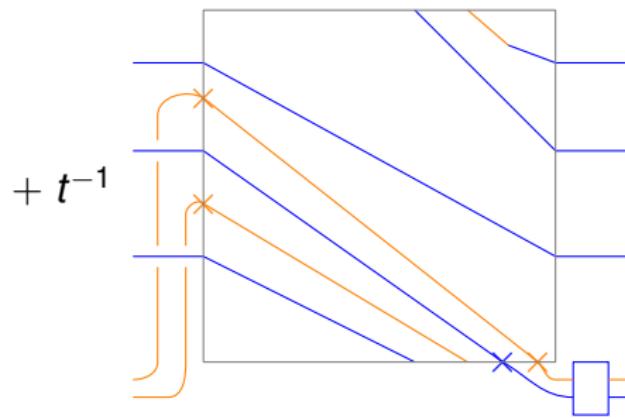
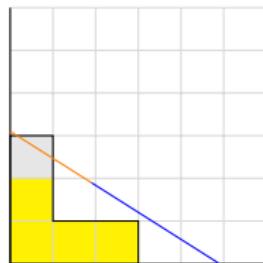
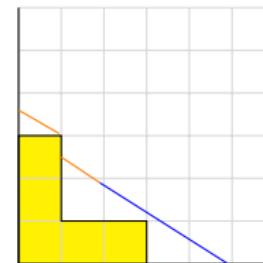


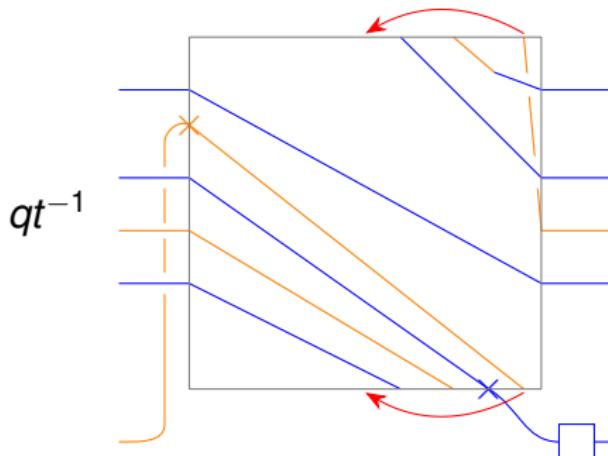
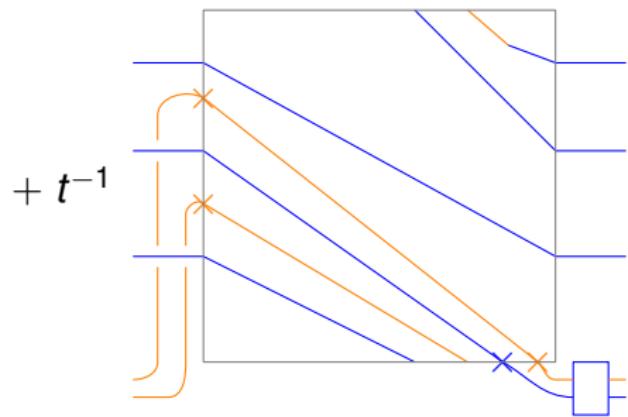
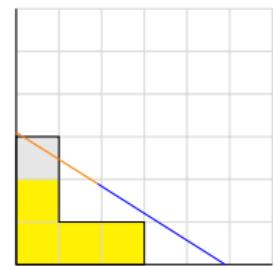
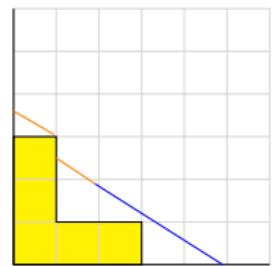


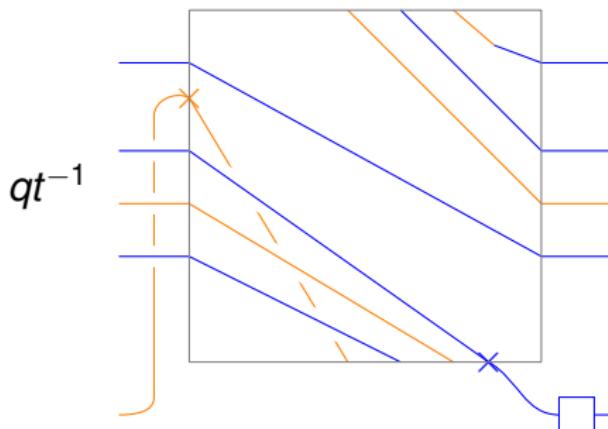
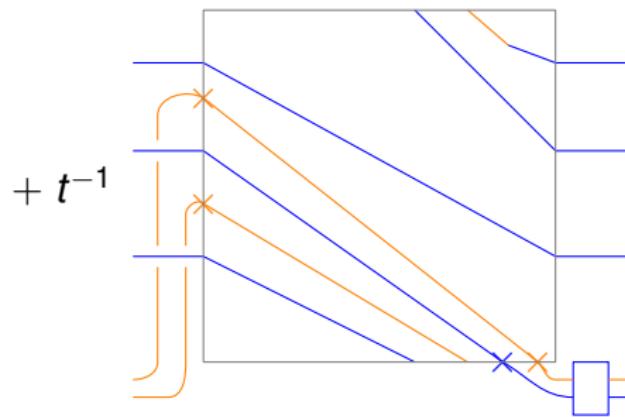


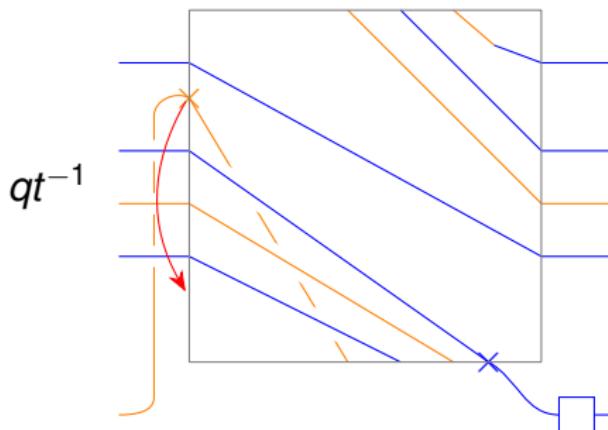
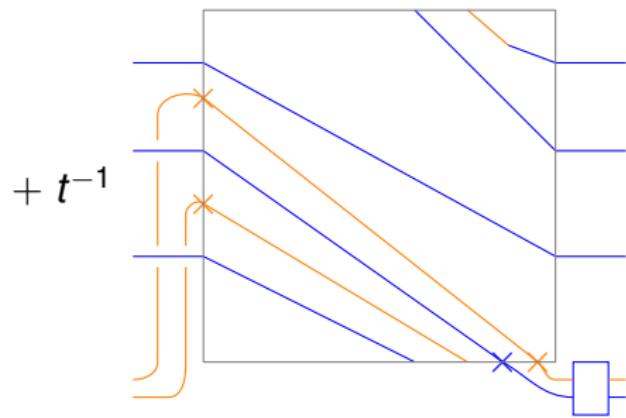

 qt^{-1}
 $+ t^{-1}$


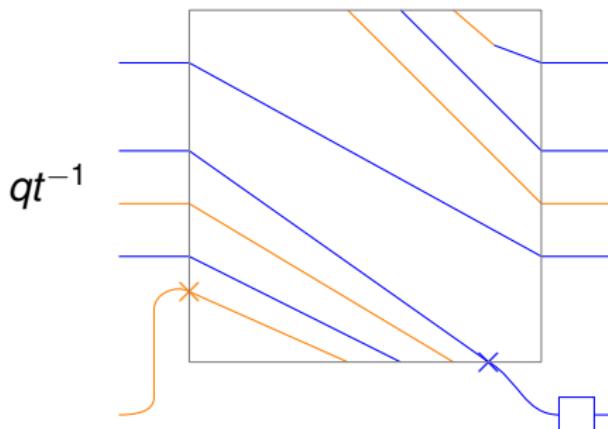
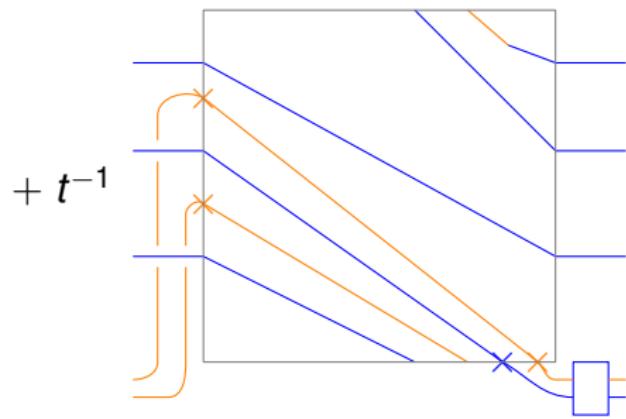
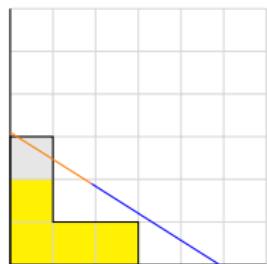
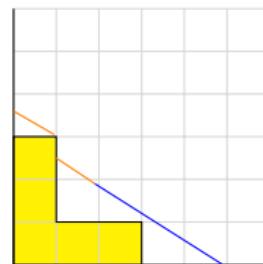


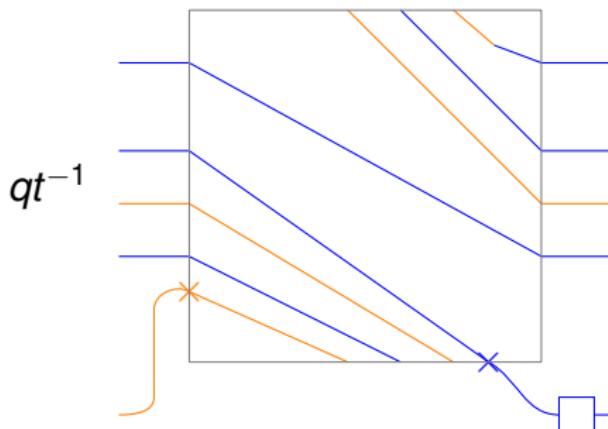
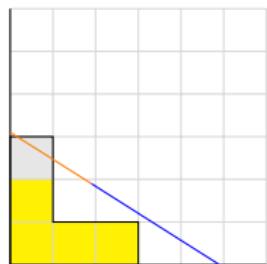




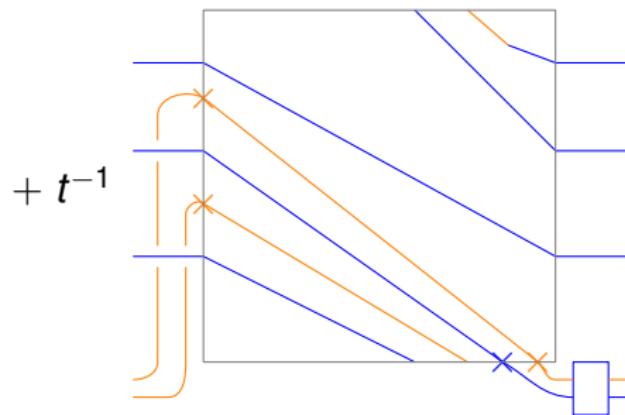
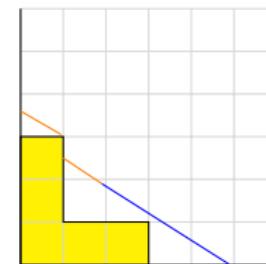




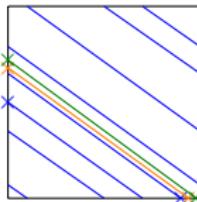




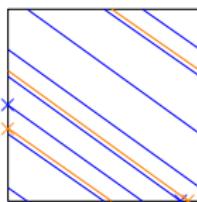
$$qt^{-1} R_{10000,0001}$$



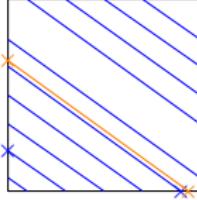
$$t^{-1} R_{01010,0011}$$



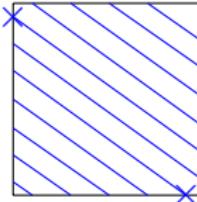
$$t^{-3} T_{0010110,000111}$$



$$qt^{-3} T_{0011000,000011}$$

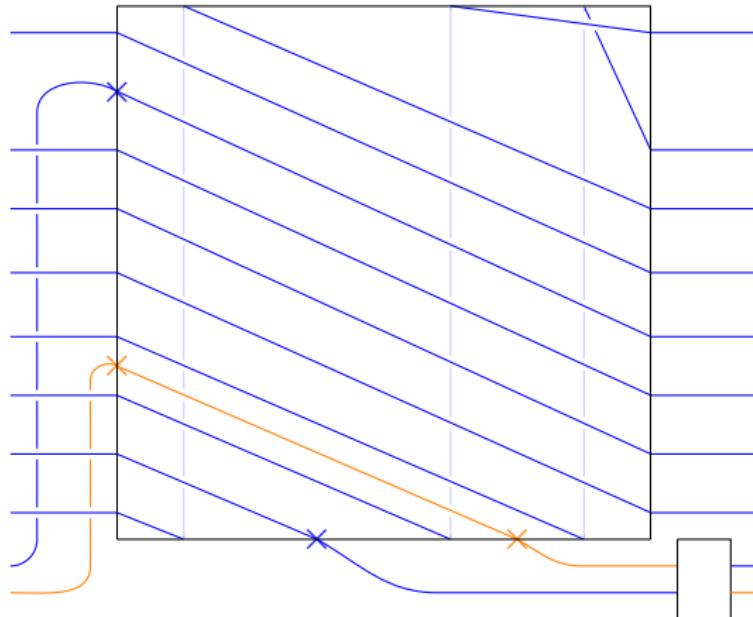


$$qt^{-2} T_{0100010,000011}$$

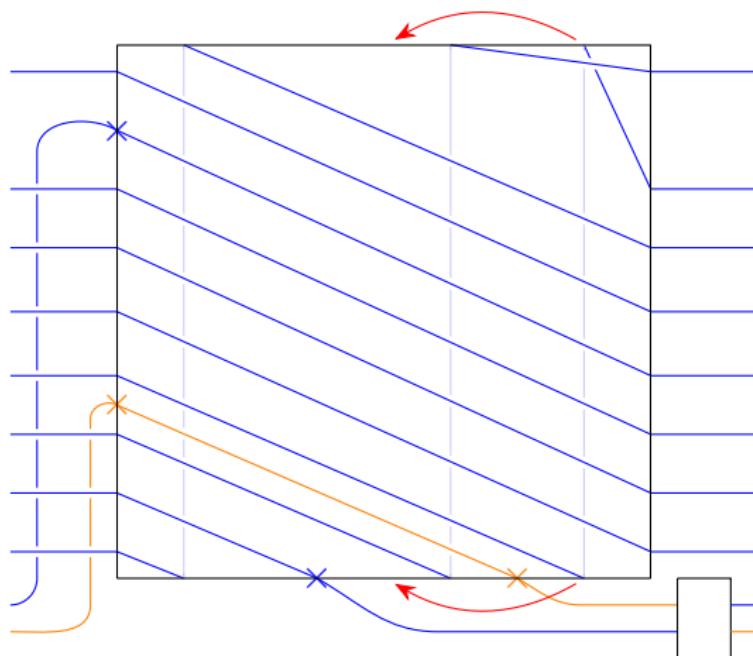


$$q^2 t^{-2} T_{0000001,00001}$$

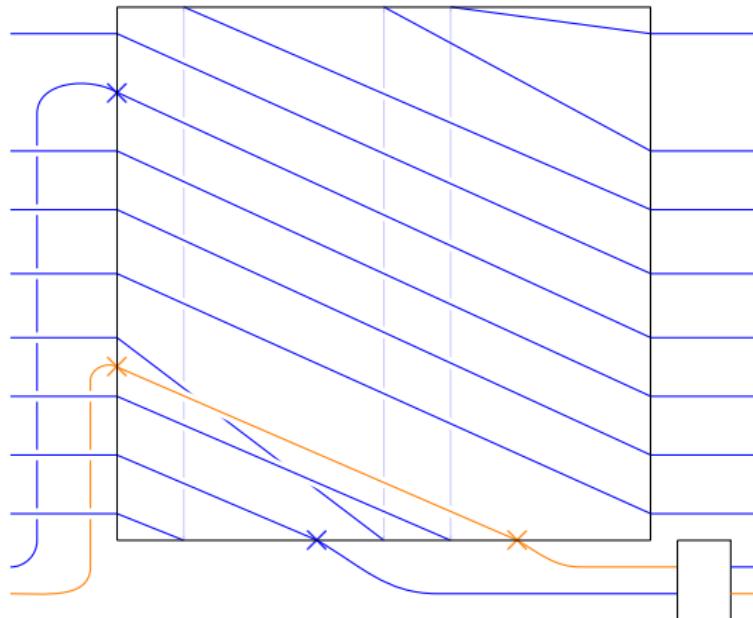
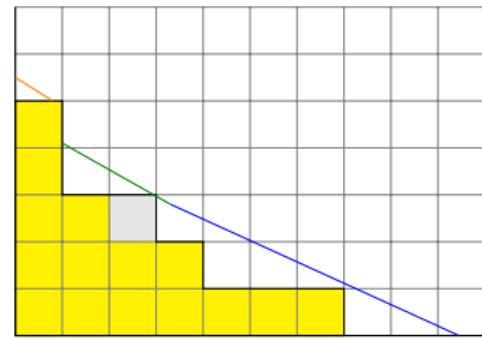
Troubles



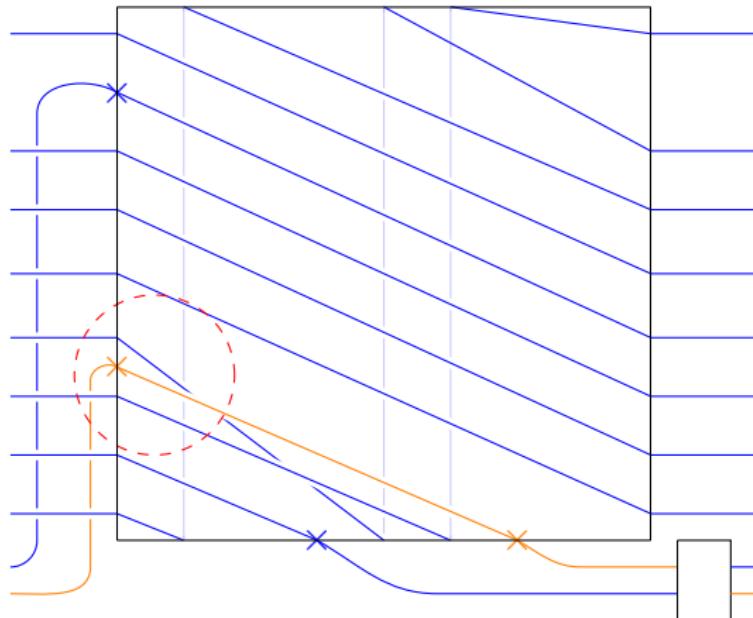
Troubles



Troubles



Troubles



Results

Theorem (Almost)

Let λ be a concave partition such that there is a triangular subpartition $\tau \subset \lambda$ such that the boxes of $\lambda \setminus \tau$ belong to one column (or one row). Then the KR homology of the corresponding monotone knot is parity and can be recursively computed using symmetrizers.

Results

Theorem (Almost)

Let λ be a concave partition such that there is a triangular subpartition $\tau \subset \lambda$ such that the boxes of $\lambda \setminus \tau$ belong to one column (or one row). Then the KR homology of the corresponding monotone knot is parity and can be recursively computed using symmetrizers.

Theorem (Probably)

Same for two consecutive columns/rows.

Results

Theorem (Almost)

Let λ be a concave partition such that there is a triangular subpartition $\tau \subset \lambda$ such that the boxes of $\lambda \setminus \tau$ belong to one column (or one row). Then the KR homology of the corresponding monotone knot is parity and can be recursively computed using symmetrizers.

Theorem (Probably)

Same for two consecutive columns/rows.

Also, it should be relatively easy to obtain explicit area/dinv-type formulas in these cases.

Thank you!