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"Nature isn't classical dammit, and if you
want to make a simulation of nature you'd
better make it quantum mechanical.



Quantum Advantage

Quantum advantage = exponential speedup over all classical algorithms.

Examples:
» Shor’s algorithm: integer factorization / Hidden subgroup problem

Peter Shor

» Quantum Chemistry/Materials Science
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Quantum Advantage

Quantum advantage = exponential speedup over all classical algorithms.

Examples:

» Jones polynomial: calculating the Jones polynomial is as hard as any
problem that can be computed on a guantum computer

Efficient quantum algorithm for
approximating the Jones polynomial at

roots of unity
Approximating Jones

polynomials

Dorit Aharanov  vaughan Jones Zeph Landau




Are there problems In
categorification that can be

naturally computed on a qguantum
computere



Crash course iIn qguantum informatfion

Qubits: A qubit is described by a unit vector in C? .
Y) = al0) + B[1), «o,BeC, |a*+[B°=1

[ n qubits = vector in (C*)®"

Gates: A quantum gate is a unitary matrix U € U(2") acting on n qubits :

1 1

U:(CH® - (CH®", UU=1 Exampless H= LL »

V2

Quantum Circuits: A quantum circuit is a sequence of quantum gates

CNOT = I:

0) 4 H

Yout) = Ur - - - UsU |[¥hin) 0)

0)

0)

Circuits are efficient if they use few [= poly(n)] gates 0)




Unitarity and Quantum Topology

Jones polynomial works
because at g a root of
unity, the Temperley-
Lieb algebra admits a
unitary path model.

Quantum computation
requires unitary
evolution (Hermitian
generators).

For categorification, we
must identify
Hermitian/unitary
analogues of algebraic
data.
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Quantum
Algorithms for
Homology

LGZ QUANTUM ALGORITHM FOR TOPOLOGICAL DATA ANALYSIS
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Topological Data Analysis (TDA) is a way to analyze the structure of data
Holes that “persist” as the scale varies provide information about the data



EXAMPLE
APPLICATION

Protein structure
Proteins: shape = function

Predicting protein shape was
once one of biology's hardest
problems — until AlphaFold2, an
Al breakthrough that won the
2024 Nobel Prize in Chemistry.

Q8W3KO0: A potential plant disease resistance protein.

From Alphafold online bank



Predicting the shape and
function of proteins

E. coli (mesophile)

M. thermoacetica (thermophile)

+Now, with hundreds of millions of
predicted structures available,
Topological Data Analysis offers a
new way to make sense of this
protein universe.

-A recent study appearing in Nature
Communications used TDA to study the
protein universe and saw that loops and
voids detected by TDA correlated
strongly with known protein function.



A quantum algorithm for
Topological Data Analysis

» Lloyd, Gamerone, and Zanardi infroduced
a quantum algorithm for computing Beftti
numbers of simplicial complexes.

-

> Re“es on Combino’roriol HOdge TheOW TO Seth Lloyd S’il‘vono Gcrneréne Paolo Zanardi
compute Betti numbers. Produces @
family of Hermitian operators A,

» Uses quantum phase estimation on the
unitary operator U = et4kt



Combinatorial Hodge Theory

» Given a chain complex of finite-dimensional vector spaces

On, On

e 8 8
0-25C, 1 — ... 23 Cy =5 0.

» Choose aninner product (:,-)4 on C; and define an adjoint of the boundary
operator d*: C4_, = C4 by
(af; g)d—l = (f)a*g)d

» Define the Hodge Laplacian A, = dd* +d*d : C,, - C,

Theorem (Hodge Theory): H,(C) = ker A,

» Gives distinguished "harmonic’” representatives of homology

B = dim Hy, = dim (Ker Ok /Im 3k+1) = dim Ker (8;2% + 3k+13;2+1) = dim KerAy




Quantum Phase Esiimation

Given a unitary operator U and an eigenstate |¥) Uly) = e[y,
Quantum Phase estimation is a circuit with

INPUT STATE: IP)|0)

OUTPUT STATE:  |¥)|6)

Where |0) is given as a binary fraction, e.g.

Instead of powers of 10 0.15625 =1 x 10 '+ 5x 10 246 x 10 2+ 2x 1074+ 5 x 1075,

Use powers of 2
000101 =0x2'40x22+1x2°%4+0x2%*+1x275

The precision of approximation determined by the number of bits



10 )
Example U = 2mi |, €lgenstate |W) = [1)

0 es

6 = 0.2 using a four-bit approximation

0.0001 = 0.125
0.0011 =0.1875 " o
0.0100 = 0.25
0.0101= 0.3125 B

OOOOOOOOOOOOOOOO



Quantum Phase Estimation

» The key behind phase estimation is the quantum Fourier transform (QFT)
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Key for LGZ algorithm

Quantum Phase Estimation doesn’t need input state to be an
eigenstatel

Input: a superposition of eigenstates | &) = Zc,;hb,;},
Output: eigenphase 6; with probability |¢;|?

This allows us to sample the distribution of eigenvalues



LGZ Algorithm

i h ‘ h d Output h
Input histogram of
Uniform mixture Apply normalized Betfi
over k-simplices: . QPE on 4, . | numbers
Pre = 2is, ISk XSkl dim(ker A) _ Bi
| Skl | Sk
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Can you hear the'shape of datae

LGZ allows the computation of all eigenvalues of the
Laplacian (nonzero spectrum depends on inner
product)

Higher eigenvalues provide additional information
about the simplicial complex

First nonzero eigenvalue = spectral gap is a crifical
quantity that governs random walks along simplices

Generalizes Cheeger inequalities from graphs and
Riemannian manifolds




Limitations of LGZ algorithm

» Only polynomial speedup in the worst case for simplicial Betfi
numbers (Schmidhuber, Lloyd)

» Persistence gives an exponentialadvantage
(Gyurik, Schmidhuber, King, Dunjko, Hayakawal)

» Can we find an algorithm with an exponential advantage?


https://arxiv.org/search/?searchtype=author&query=Schmidhuber%2C+A
https://arxiv.org/search/?searchtype=author&query=Lloyd%2C+S
https://arxiv.org/search/?searchtype=author&query=Gyurik%2C+C
https://arxiv.org/search/?searchtype=author&query=Schmidhuber%2C+A
https://arxiv.org/search/?searchtype=author&query=King%2C+R
https://arxiv.org/search/?searchtype=author&query=Dunjko%2C+V
https://arxiv.org/search/?searchtype=author&query=Hayakawa%2C+R

A quantum
algorithm for
Khovanov homology



Khovanov homology

Khovanov homology is a bigraded homology whose Euler characteristic is the Jones polynomial.

A diagram of a knot or link K is associated to:
Chain groups Ci,j indexed by homological grading 7and quantum grading /.

Define boundary maps 31-’]- : Ci,j — Cz'_l,j using formal rules from a specific Frobenius
algebra structure.

ker 8,;,3-

im 041,

This defines homology groups Kh*/(K) := H; ;(K) =

Each Kh*(K) is topologically invariant.

The Jones polynomial is recovered as ~ J(K) = » (—1)'¢’ dim(Kh*/ (K))
1]




Khovanov homology

» Based on a 2D TQFT defined from the
commutative Frobenius algebra
V =H*(SY) = C[X]/X? = span(1, X)

» Disjoint union of circles for each
resolution assigned tensor powers of V

» Differentials come from Frobenius
multiplication and comultiplication

» Khovanov homology has no unitary
structure. No obvious connection to
quantum circuits.



Khovanov Hodge Laplacian

» Equip the vector space of the circle IV = span(1, X) with a non-degenerate bilinear
form {(.|.): V®V - C where 1 and X are orthonormal

» Define adjoints of Frobenius structure

VRV 2V mVaVeV
|11) — 0 1) — |11)

m: VeV -V OV -2VeV
[11) — [1) 1) = [1X) + | X1)
|1X) — | X) | X) — | XX)

11X — |1) |1 X) — |1X) + | X1)
[ X1) — |1)
XX) > |X)

)
[ X1) = |X>
[ XX) =

» Givesrise to a Hodge Laplacian | Ay: Kh¥(K) — Kh'(K)



Quantum algorithms for Khovanov homology

» Hodge theory allows us 1o compute Khovanov homology from a Hermitian
operator

ker Bi,j

im 011,

* *
~ ker (8i,j8i,j + 8i+1,j z’+1,j) — ker Ai,j

Kh'/(K) =

Ai,j Is:
* Hermitian (a Hamiltonian) Computing Khovanov homology is

* Positive semi-definite —> equivalent to preparing the groundstate

* Local _ of a (supersymmetric) quantum system!
* Supersymmetric




LG/ for Khovanov homology

I Quantum algorithm [LGZ’2007]

Step 1: Construct an equal mixture of the chain space

1
pii= At D> lei)cil
Ciil

i€Ci,j

Step 2: Exponentiate A, ; and perform quantum
phase estimation on p; ;

Step 3: Estimate the relative frequency of
0-eigenvalues

#of zero-eigenvalues ~ dim Ker A; ; _ Bi.j
#of samples dim A, ; Ci 4]

NP-hard in the simplicial case,
still open for Khovanov homology

Efficient because of sparsity

Does not work!

We find numerically that the Betti
numbers of Khovanov homology
are small




Modified LGZ algorithm

» With Alexander Schmidhuber, Michele Rellly, Paolo Zanardi, and
Seth Lloyd we modify the LGZ algorithm

Step 1: Construct a low-temperature Gibbs state Efficiency depends on
forT = gap(4; ;) _BA; ; thermalization time and
, e | ga
pij(T) _ spectral gap
! Trle=A%s]

Step 2: Exponentiate A;; and perform quantum phase N .
. : ’ . : Efficient if the temperature is
estimation on P4 j . Measure if zero-eigenvalue was found. sufficiently low and the

This projects onto spectral gap is inverse-

1 Z |ci,j>(ci,j| polynomial

i == —m————
"7 | dim Ker A |
We jEKer Aj

Step 3: Perform a SWAP test on copies of T ; , which
suceeds with probability

DPsuce = § numbers are small!

1 (1 1 ) Efficient because the Betti
+

Bij

to estimate the Betti number of Khovanov homology
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Spectral gap is a quantity associated to a diagram,
not a knot

Laplace
spectrum Is
Nnot a

fopological
Invariant




Twisted unknofts

Min Gap of TU,
1
0.585786
0.381966
0.267949

Minimal spectral gap of the twisted unknot

Example: Twisted unknot o] o - Lorentzian fit (R = 1.00)

10.3732

0.949381307

0.152241
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0.0810141
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n
1
2
3
4
gap = | 4 (nL98306)? 5 0.198062
6
7
8
9

The spectral gap decreases with n, but rate of decrease is only polynomial in
the number of crossings



Open questions

» Sampling the enhanced Khovanov states

» Convergence of Gibbs cooling

» Analyfic lower-bounds on the spectral gap of the Khovanov
Laplacian?

» Extensive numerical calculations confirm the gap does not decrease
exponentially

» Can the Khovanov Laplacian encode arbitrary quantum
Hamiltonianse (QMA-completeness)

» Strong evidence for exponential quantum speedup?

» Quantum algorithms for other homological invariantse (for example,
Lee homology)



Spectral Gaps in graph theory

Let G be a weighted graph with vertex set V and edge set E
» One canform a graph Laplacion A = D - A where
» A = adjacency matrix entries = w;= weights of edges

» D = degree matrix

» Graph Laplacians have a famous bound on the spectral gap
known as Cheeger inequalities

2h(G) = A >

Too bad this has nothing to do with Khovanov
homology!




Spectral Gaps in Graph Theory

Let G be a weighted graph with vertex set IV and edge set E
» Form the signless Laplace matrix BQ="D + A4

» Unlike the usual graph Laplacian, Q is positive semidefinite

» Only zero if the graph G contains a bipartite component

» ForasubsetS cV of vertices let e,,;,,(S) be the minimum edges that need to
be removed from induced subgraph G so that it becomes bipartite

» cut(S) = edges with aboundaryinSand ¥V — S
» Define the quantity

Ty m emin(S) + |cut(S)|

B




Bounding the spectral gap

Theorem (Desai, Rao): If Ay (Q) is the smallest eigenvalue of Q = D + Athen

\112

< . <
Ad* = )\mm(Q) = 4

where d*is the largest degree of a vertexin G

Theorem (Schmidhuber, Relilly, Zanardi, Lloyd, L)

One can define a graph G,(K) associated with the lowest homological
degree and arbifrary g-degree in Khovanov homology KH(K) such that A ,(K)
is the signless Laplace matrix of the graph G, (K)
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New directions for
ink homology from
gquantum algorithms

HODGE LAPLACIANS IN LINK HOMOLOGY



Harmonic Khovanov homology

What is the topological relevance of harmonic Khovanov homology@

» The Khovanov Hodge Laplacian allows us to choose distinguished
“harmonic” representatives of homology.

W

Jernej Grlj

» Harmonic Khovanov homology is functorial
» Harmonic chains functor is naturally isomorphic to the homology functor
» Spectral gap and higher spectral data are not topological invariants

» Gives some data associated to a knot diagram not a knot



Can you hear the shape
of Khovanov homologye¢
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