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"Nature isn't classical, dammit, and if you 
want to make a simulation of nature, you'd 
better make it quantum mechanical."



Quantum Advantage

Quantum advantage = exponential speedup over all classical algorithms.

Examples:

 Shor’s algorithm:  integer factorization / Hidden subgroup problem

 Quantum Chemistry/Materials Science
Peter Shor



Quantum Advantage

Quantum advantage = exponential speedup over all classical algorithms.

Examples:

 Jones polynomial: calculating the Jones polynomial is as hard as any 
problem that can be computed on a quantum computer

Approximating Jones 
polynomials

Efficient quantum algorithm for 

approximating the Jones polynomial at 

roots of unity  

Vaughan Jones Zeph LandauDorit Aharanov



Are there problems in 
categorification that can be 
naturally computed on a quantum 
computer?



Crash course in quantum information



Unitarity and Quantum Topology

Jones polynomial works 
because at q a root of 
unity, the Temperley–
Lieb algebra admits a 

unitary path model.

Quantum computation 
requires unitary 

evolution (Hermitian 
generators).

For categorification, we 
must identify 

Hermitian/unitary 
analogues of algebraic 

data.



Quantum 
Algorithms for 
Homology
LGZ QUANTUM ALGORITHM FOR TOPOLOGICAL DATA ANALYSIS



Topology of Data

 Topological Data Analysis (TDA) is a way to analyze the structure of data 

 Holes that “persist” as the scale varies provide information about the data

Schmidhuber-Lloyd 

arXiv: 2209.14286 



EXAMPLE 
APPLICATION

Protein structure

Proteins: shape = function

Predicting protein shape was 

once one of biology’s hardest 

problems — until AlphaFold2, an 

AI breakthrough that won the 

2024 Nobel Prize in Chemistry.

Q8W3K0: A potential plant disease resistance protein.

From Alphafold online bank



Predicting the shape and 

function of proteins
•Now, with hundreds of millions of 

predicted structures available, 

Topological Data Analysis offers a 

new way to make sense of this 

protein universe.

•A recent study appearing in Nature 

Communications used TDA to study the 

protein universe and saw that loops and 

voids detected by TDA correlated 

strongly with known protein function.

Madsen et al., Nature Communications 16, 7503 (2025).



A quantum algorithm for 

Topological Data Analysis

 Lloyd, Gamerone, and Zanardi introduced 

a quantum algorithm for computing Betti 

numbers of simplicial complexes.

 Relies on combinatorial Hodge theory to 

compute Betti numbers.  Produces a 

family of Hermitian operators Δ𝑘

 Uses quantum phase estimation on the 

unitary operator 𝑈 = 𝑒𝑖Δ𝑘𝑡

Seth Lloyd Paolo ZanardiSilvano Garnerone



Combinatorial Hodge Theory

 Given a chain complex of finite-dimensional vector spaces

 Choose an inner product ∙,∙ 𝑑 on 𝐶𝑑 and define an adjoint of the boundary 

operator 𝜕∗: 𝐶𝑑−1 → 𝐶𝑑  by 
𝜕𝑓, 𝑔 𝑑−1 = 𝑓, 𝜕∗𝑔 𝑑

 Define the Hodge Laplacian Δ𝑛 = 𝜕𝜕∗ + 𝜕∗𝜕 ∶ 𝐶𝑛 → 𝐶𝑛

Theorem (Hodge Theory):    𝐻𝑘 𝐶 = ker Δ𝑘

 Gives distinguished ”harmonic” representatives of homology



Quantum Phase Estimation 

 Given a unitary operator 𝑈 and an eigenstate ۧ|Ψ

 Quantum Phase estimation is a circuit with  

INPUT STATE:          ۧ|Ψ ۧ|0   

OUTPUT STATE:  ۧ|Ψ ۧ|𝜃

 Where ۧ|𝜃  is given as a binary fraction, e.g.  

 Instead of powers of 10 

 Use powers of 2

 The precision of approximation determined by the number of bits



Example U =
1 0

0 𝑒
2𝜋𝑖

5

 , eigenstate ۧ|Ψ = ۧ|1

𝜃 = 0.2 using a four-bit approximation

 0.0001 = 0.125

 0.0011 = 0.1875

 0.0100 = 0.25

 0.0101= 0.3125



Quantum Phase Estimation

 The key behind phase estimation is the quantum Fourier transform (QFT)

 

 

Conclude by measuring the second register

Inverse QFT



Key for LGZ algorithm

 Quantum Phase Estimation doesn’t need input state to be an 

eigenstate!

 Input:  a superposition of eigenstates

 Output: eigenphase 𝜃𝑖 with probability 𝑐𝑖
2

 This allows us to sample the distribution of eigenvalues 



LGZ Algorithm

Input

Uniform mixture 
over 𝑘-simplices: 
𝜌𝑘 = σ 𝑆𝑘

𝑠𝑘 𝑠𝑘

Apply

QPE on Δ𝑘

Output

 histogram of 
normalized Betti 

numbers 

dim(ker Δ𝑘)

𝑆𝑘
 =

𝛽𝑖

𝑆𝑘

The Hilbert space 𝐶 has to have an efficient 

description, for example, it could be the 
subspace of a full 𝑛−qubit Hilbert space 

described by a polynomial (in 𝑛) number of 

constraints

Must be able to efficiently create this state

The Hodge Laplacian Δ𝑘has to be efficiently 

exponentiable 𝑼 = 𝒆𝒊𝜟𝒌𝒕

This is the case if ∂ is local or sparse

Convergence time governed by the 

inverse of the spectral gap

𝑔𝑎𝑝 Δ𝑘
−1

= 𝒪 𝑝𝑜𝑙𝑦 𝑛



Can you hear the shape of data?

 LGZ allows the computation of all eigenvalues of the 
Laplacian (nonzero spectrum depends on inner 

product)

 Higher eigenvalues provide additional information 

about the simplicial complex

 First nonzero eigenvalue = spectral gap is a critical 

quantity that governs random walks along simplices

 Generalizes Cheeger inequalities from graphs and 

Riemannian manifolds



Limitations of LGZ algorithm

 Only polynomial speedup in the worst case for simplicial Betti 

numbers (Schmidhuber,  Lloyd)

 Persistence gives an exponential advantage 

(Gyurik, Schmidhuber,  King, Dunjko, Hayakawa)

 Can we find an algorithm with an exponential advantage?

https://arxiv.org/search/?searchtype=author&query=Schmidhuber%2C+A
https://arxiv.org/search/?searchtype=author&query=Lloyd%2C+S
https://arxiv.org/search/?searchtype=author&query=Gyurik%2C+C
https://arxiv.org/search/?searchtype=author&query=Schmidhuber%2C+A
https://arxiv.org/search/?searchtype=author&query=King%2C+R
https://arxiv.org/search/?searchtype=author&query=Dunjko%2C+V
https://arxiv.org/search/?searchtype=author&query=Hayakawa%2C+R


A quantum 

algorithm for 

Khovanov homology
HODGE LAPLACIANS IN KHOVANOV HOMOLOGY



Khovanov homology



Khovanov homology

 Based on a 2D TQFT defined from the 

commutative Frobenius algebra

𝑉 = 𝐻∗ 𝑆1 =  ℂ 𝑋 /𝑋2 = 𝑠𝑝𝑎𝑛 𝟙, 𝑋

 Disjoint union of circles for each 
resolution assigned tensor powers of 𝑉

 Differentials come from Frobenius 

multiplication and comultiplication 

 Khovanov homology has no unitary 

structure. No obvious connection to 
quantum circuits.  



Khovanov Hodge Laplacian

 Equip the vector space of the circle 𝑉 = 𝑠𝑝𝑎𝑛(1, 𝑋) with a non-degenerate bilinear 

form . . ∶ 𝑉 ⊗ 𝑉 → ℂ where 𝟙 and 𝑋 are orthonormal

 Define adjoints of Frobenius structure

 Gives rise to a Hodge Laplacian   Δij: Khi,j(K)  → Khi,j(K) 



Quantum algorithms for Khovanov homology

 Hodge theory allows us to compute Khovanov homology from a Hermitian 

operator



LGZ for Khovanov homology



Modified LGZ algorithm

 With Alexander Schmidhuber, Michele Reilly, Paolo Zanardi, and 

Seth Lloyd we modify the LGZ algorithm



Laplace 
spectrum is 
not a 
topological 
invariant

Spectral gap is a quantity associated to a diagram, 

not a knot

𝑆𝑝𝑒𝑐 Δ0 = 0,0

𝑆𝑝𝑒𝑐 Δ0 = 0,0,1,2



Twisted unknots

The spectral gap decreases with n, but rate of decrease is only polynomial in 

the number of crossings 



Open questions

 Sampling the enhanced Khovanov states 

 Convergence of Gibbs cooling

 Analytic lower-bounds on the spectral gap of the Khovanov 

Laplacian? 

 Extensive numerical calculations confirm the gap does not decrease 

exponentially 

 Can the Khovanov Laplacian encode arbitrary quantum 

Hamiltonians? (QMA-completeness) 

  Strong evidence for exponential quantum speedup? 

  Quantum algorithms for other homological invariants? (for example, 

Lee homology)



Spectral Gaps in graph theory

Let G be a weighted graph with vertex set 𝑉 and edge set 𝐸

 One can form a graph Laplacian Δ =  𝐷 –  𝐴 where 

 A = adjacency matrix entries = 𝑤𝑖j= weights of edges

 D = degree matrix 

 Graph Laplacians have a famous bound on the spectral gap 
known as Cheeger inequalities

Too bad this has nothing to do with Khovanov 

homology!



Spectral Gaps in Graph Theory

Let G be a weighted graph with vertex set 𝑉 and edge set 𝐸

 Form the signless Laplace matrix      Q =  𝐷 +  𝐴 

 Unlike the usual graph Laplacian,   Q is positive semidefinite

 Only zero if the graph G contains a bipartite component

 For a subset 𝑆 ⊂ 𝑉 of vertices let 𝒆𝒎𝒊𝒏(𝑺) be the minimum edges that need to 

be removed from induced subgraph 𝐺𝑆 so that it becomes bipartite

 𝒄𝒖𝒕(𝑺) = edges with a boundary in S and 𝑉 − 𝑆

 Define the quantity



Bounding the spectral gap

Theorem (Desai, Rao):  If 𝜆 𝑚𝑖𝑛 𝑄  is the smallest eigenvalue of 𝑄 =  𝐷 + 𝐴 then

where 𝑑∗is the largest degree of a vertex in G 

Theorem (Schmidhuber, Reilly, Zanardi, Lloyd, L)

One can define a graph 𝐺𝑞 𝐾  associated with the lowest homological 

degree and arbitrary 𝑞-degree in Khovanov homology KH(K) such that Δ0,𝑞 𝐾  

is the signless Laplace matrix of the graph 𝐺𝑞 𝐾  





New directions for 

link homology from 

quantum algorithms
HODGE LAPLACIANS IN LINK HOMOLOGY



Harmonic Khovanov homology 

What is the topological relevance of harmonic Khovanov homology? 

 The Khovanov Hodge Laplacian allows us to choose distinguished 

“harmonic” representatives of homology.

 Harmonic Khovanov homology is functorial

 Harmonic chains functor is naturally isomorphic to the homology functor

 Spectral gap and higher spectral data are not topological invariants

 Gives some data associated to a knot diagram not a knot

 

Jernej Grlj



Can you hear the shape 
of Khovanov homology?
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