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This talk has four goals:
© Give context and history about the big picture.
@ Introduce webs and web vectors in quantum representation theory.
© Describe a new construction of web vectors.

@ Discuss applications to geometry and combinatorics.
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Diagrammatic representation theory

The sl, spider category models the representation theory of sl, and its associated quantum
group using diagrams. The morphisms in this category are called s, webs. The diagram for a
web is a planar, directed graph with boundary and some edge decorations.
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Diagrammatic representation theory

The sl, spider category models the representation theory of sl, and its associated quantum
group using diagrams. The morphisms in this category are called s, webs. The diagram for a
web is a planar, directed graph with boundary and some edge decorations.

Who cares and why?

@ Physics: quantum conformal field theory, quantum computing, etc. (Kuperberg 1997)

@ Knot theorists: computing quantum link and tangle invariants (Khovanov & Kuperberg
1997 and others)

@ Representation theorists: connected to loop groups, crystals, Hecke algebras, etc. (Rumer
& Teller & Weyl 1932)

e Combinatorists: combinatorics of matchings, standard Young tableaux, etc. (Petersen &
Pylyavskyy & Rhoades 2009)

@ Algebraic geometers: Springer fibers, generalized Schubert calculus (Fung 2003)
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Diagrammatic representation theory

Core concerns:

Explicit computations (e.g. link invariant, invariant vector)
Deciding if two objects (bases, graphs, etc.) are equivalent
Counting how many, parametrizing sets

Tools for calculating

Equivariant maps preserving something, categorification
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Background: sl, representations (vibes only)

The usual set-up of group representations considers group G acting on vector space V. For
instance, take G = SL,(€) acting on €".

(o) (n)-(2)
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811 812 iy _
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Background: sl, representations (vibes only)

The usual set-up of group representations considers group G acting on vector space V. For
instance, take G = SL,(€) acting on €".

811 812 iy _

821 822 V2
It's easier to focus on elementary operations: scale a row, add a multiple of one row to
another. Passing to the Lie algebra sl, gives operations

(56)(%)=(5)=es
(5 %) (n)-(n)-ws
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Background: sl, representations (vibes only)

Upshot:
e F1,E,, ..., E,—1 move the standard basis vectors x1, X2, ... up one
o F1,Fy,...,F,_1 move the standard basis vectors xi, x», ... down one
o Ki, Ky, ..., K,—1 scale two standard basis vectors simultaneously and “oppositely”
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Background: sl, representations (vibes only)

@ The same thing works if V is any wedge product of copies of C". The fundamental
representations are the vector spaces Vi = AXC". For each S = {j; > --- > ji} there is
a basis element x;; A xj, A -+ A X,
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@ The same thing works if V is any wedge product of copies of C". The fundamental
representations are the vector spaces Vi = AXC". For each S = {j; > --- > ji} there is
a basis element x;; A xj, A -+ A X,

@ It's customary to encode each basis vector and its subset S using a binary string. For
instance, use 0110 to represent x3 A x2 and {3,2} C {4,3,2,1}.

@ The operators induced by E; and F; send one basis vector to another based on whether a
single 1 in one binary string can be moved one step in the appropriate direction to get to
the other binary string.

0110 -2 0101 but 0110 £ zero
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@ The same thing works if V is any wedge product of copies of C". The fundamental
representations are the vector spaces Vi = AXC". For each S = {j; > --- > ji} there is
a basis element x;; A xj, A -+ A X,

@ It's customary to encode each basis vector and its subset S using a binary string. For
instance, use 0110 to represent x3 A x2 and {3,2} C {4,3,2,1}.

@ The operators induced by E; and F; send one basis vector to another based on whether a
single 1 in one binary string can be moved one step in the appropriate direction to get to
the other binary string.

0110 -2 0101 but 0110 £ zero

@ The same basic shorthand works for representations

\/I]_®\/12®®\/Ik
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Uy (sl,) representations (vibes only)

Denote C(q) by Cq. Pretend that U,(sl,) consists of matrices with entries in C,. Then
Ug(sly) actson Vj, ® Vi, ® --- ® V, like sl, does but with extra factors of g*t.
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Denote C(q) by Cq. Pretend that U,(sl,) consists of matrices with entries in C,. Then
Ug(sly) actson Vj, ® Vi, ® --- ® V, like sl, does but with extra factors of g*t.

Let S={in>--->i} C{1,...,n}.
e Basis vectors for /\S(Cg): Xs = Xiy Nq **+ Ng Xi,
@ Basis vectors for (/\S(CZ))*: (xs)*

@ Quantum exterior products work like ordinary exterior products but with an extra factor of
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Uy (sl,) representations (vibes only)

Denote C(q) by Cq. Pretend that U,(sl,) consists of matrices with entries in C,. Then
Ug(sly) actson Vj, ® Vi, ® --- ® V, like sl, does but with extra factors of g*t.

Let S={in>--->i} C{1,...,n}.
e Basis vectors for /\S(Cg): Xs = Xiy Nq **+ Ng Xi,
@ Basis vectors for (/\S(CZ))*: (xs)*

@ Quantum exterior products work like ordinary exterior products but with an extra factor of
(—q)*! depending on whether basis vector e; with bigger index moves left or right.

Question: What are the Ug(sl,)-invariant vectors?
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Diagrammatic representation theory

The sl,, spider category models the representation theory of sl, and its associated quantum

group using diagrams. The morphisms in this category are called sl,, webs. The diagram for a
web is a planar, directed graph with boundary and some edge decorations.
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Diagrammatic representation theory

The sl,, spider category models the representation theory of sl, and its associated quantum

group using diagrams. The morphisms in this category are called sl,, webs. The diagram for a
web is a planar, directed graph with boundary and some edge decorations.

@ Web edges carry weights and orientations that depend on the choice of n.
o Edge decorations at the boundary dictate source and target spaces.

@ The web interior describes a specific homomorphism between representations.

A2(C3) ® (Cg) Upsls) ~ Vo
CeCleCleCd Ug(st) ~» VieVieVie W
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Diagrammatic representation theory

The sl, spider category models the representation theory of sl, and its associated quantum
group using diagrams. The morphisms in this category are called s(, webs. The diagram for a
web is a planar, directed graph with boundary and some edge decorations.

@ Web edges carry weights and orientations that depend on the choice of n.
o Edge decorations at the boundary dictate source and target spaces.

When all vertices of a web lie on one axis, this setup specifies a Ug(sl,)-invariant web vector.

i1 ik

{ g -————_g-} L{q(s[n)m\/,-1®\/,-2...®\/i

w

~ Wy € |nvuq(5[n)(\/,'1 ® V,'2 e ® V,k)

Uy(sly) ~ Vo = Cq

Tymoczko Quantum representations on webs 9 / 40



Computing with webs: web bases and web relations

The web vector associated to a web graph is the invariant vector lying inside some tensor
product of copies of V; or V;*. The vector space spanned by all sl, web vectors is the invariant
space for Ug(sl,). A web basis is a set of webs that gives a basis for an invariant space.

Tymoczko
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Computing with webs: web bases and web relations

The web vector associated to a web graph is the invariant vector lying inside some tensor
product of copies of V; or V/*. The vector space spanned by all sl, web vectors is the invariant
space for Ug(sl,). A web basis is a set of webs that gives a basis for an invariant space

Good properties for a web basis:

o Identifiability: |s this particular web vector an element of the web basis?
@ Decomposition: Given a web vector, how do | write it in terms of basis vectors?

@ Rotation invariance: ls the web basis preserved under operations like rotation of graphs?

When do web graphs represent the same web vector? \Web relations are skein-theoretic
equivalence relations that encode algebraic operations preserving an invariant vector

= [3]q

sl3 web relations: -><:>F [2lg——

ﬁ/‘\](
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Computing with webs:

@ For sl and sl3, the web relations yield web bases called reduced webs that have all three
“good properties.”

» The reduced web basis for sl “is” noncrossing matchings (or Temperley-Lieb diagrams).

» The reduced web basis for sl3 “is” web graphs without any bigons or squares in the interior.
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Computing with webs:

@ For sl and sl3, the web relations yield web bases called reduced webs that
“good properties.”

» The reduced web basis for sl “is” noncrossing matchings (or Temperley-Lieb

» The reduced web basis for sl3 “is” web graphs without any bigons or squares

have all three

diagrams).
in the interior.

@ Web relations when n = 2 and n = 3 always simplify the web graph. Edge labels can
be omitted. Relations reduce the number of faces and interior vertices. Boundary depth

of the web graph is a partial order preserved by web relations.
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Computing with webs

o Gaetz-Pechenik-Pfannerer-Striker-Swanson recently constructed sl; web bases with these
same three properties. The work is exciting but more complicated. So far, it hasn't been
extended.
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Computing with webs

@ Gaetz-Pechenik-Pfannerer-Striker-Swanson recently constructed sl; web bases with these
same three properties. The work is exciting but more complicated. So far, it hasn't been
extended.

@ Westbury and Fontaine construct sl, web bases that lack most of these properties.

@ Why does it get harder when n gets bigger?
Non-reducing sls web relation: _ ) I . > ~ N — <
(from Kim's 2003 thesis) . ™~

@ Also the construction of webs for n > 4 makes it easy to accidentally scale and hard to
identify the coefficient of a web vector.
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A big issue: constructing webs and relations

There are many different conventions for drawing webs and constructing web vectors.

Top Row: Cautis-Kamnitzer-Morrison, Kim, Fontaine,
Bottom Row: Kuperberg, Fraser-Lam-Le

But most don't give a complete set of relations when n > 4.
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Exception: CKM webs

Cautis-Kamnitzer-Morrison (2014) have a complete setup for computing with webs. They give
explicit formulas for web vectors and a complete set of local relations.

n—k n—k
R n—k-1 n—k—1
iﬂt : /\\"ﬂ_l

k i k i
k+l +1
n—l n—l
k—s+r —
r s—t L = nk-l
kK k—s = Kk K+ k
L ¢ 4 k—s—r I+s+r
r

s
k+i+m k+i+m k ST N
k !

Figure: Web relations from 2014 CKM paper
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Getting an invariant vector from a CKM web

To construct a web vector from the CKM web graph:

@ Morsify the graph.
@ Find all binary labelings.
© Compute the local coefficient at each vertex and tag.

@ The web vector is the state sum over all binary labelings.
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Getting an invariant vector from a CKM web

To construct a web vector from the CKM web graph:

@ Morsify the graph.
@ Find all binary labelings.
© Compute the local coefficient at each vertex and tag.

@ The web vector is the state sum over all binary labelings.

@ If you are a topologist, you don’t mind Morsifying.

o If you want a diagrammatic categorification that preserves information about duals
V < V* then you want something like tags.
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Fontaine web conventions

An sl, web is a plane graph with

@ univalent boundary vertices along a top axis and
@ trivalent internal vertices.
e Each edge is oriented and weighted with an element of {1,...,n—1}.

@ At each trivalent vertex, the sum of incoming edge weights minus the sum of outgoing
edge weights is divisible by n:

flow is preserved mod n at each vertex

An sl; web:
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Relations for Fontaine webs: strandings

Definition: Given a directed edge u — v labeled k, a (valid) stranding of the edge is a choice
of0<i1<i2<i3<---<ij<nwith

ij = ij-1 2 = -+ + (=1 i € {k,n — k}
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Relations for Fontaine webs: strandings

Definition: Given a directed edge u — v labeled k, a (valid) stranding of the edge is a choice
of 0 <ip < <izg<---<ij<nwith

ij = ij-1 2 = -+ + (=1 i € {k,n — k}

The strands are denoted \;, ..., A; and drawn as colored directed paths on u > v to
distinguish them from each other and from the edge u +— v.

o If the alternating sum is k then the strands directed with the edge u > v are associated
to positive coefficients (respectively against and negative).

o If the alternating sum is n — k then these signs are reversed: strands directed against the
edge are associated to positive coefficients (respectively with and negative).
Example:

e

A1 A2 A3
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Relations for Fontaine webs: strandings

Definition: A (valid) stranding of a web graph is a collection of directed paths with labels in
{A1, A2, ..., Ap—1} (called strands) with the properties that:

@ There is a valid stranding on each edge.
@ Each strand either starts and ends on the boundary, or forms a closed loop in the graph.

@ Two strands with the same label do not intersect each other.

Quantum representations on webs 18 / 40
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Relations for Fontaine webs: strandings

Definition: A (valid) stranding of a web graph is a collection of directed paths with labels in
{A1, A2, ..., Ap—1} (called strands) with the properties that:

@ There is a valid stranding on each edge.
@ Each strand either starts and ends on the boundary, or forms a closed loop in the graph.

@ Two strands with the same label do not intersect each other.

This means the set of all strands labeled \; form a directed noncrossing matching on a subset
of the web's boundary vertices (possibly with closed, oriented loops in the interior of the web).
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Relations for Fontaine webs: strandings

Together, strands give a multicolored, directed noncrossing matching that “saturates” each
edge of the graph.
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Strandings and web vectors: the boundary vector
@ Given a valid stranding of a web graph, label each boundary vertex v with the binary
vector whose i, i + 1 entries are given by how \; runs along the edge incident to v:

01 if \; is directed with the edge
10 if \; is directed opposite the edge
equal if A; is not on the edge
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Strandings and web vectors: the boundary vector

@ Given a valid stranding of a web graph, label each boundary vertex v with the binary
vector whose i, i + 1 entries are given by how \; runs along the edge incident to v:

01 if \; is directed with the edge
10 if \; is directed opposite the edge
equal if A; is not on the edge

1000 0100 0010 0100 0010 0001 1000 0001
D T R S k! Rl Nt SRRl Y

= X1 QX2 ®X3Q X ®X3R X4 X1 ® Xa
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Strandings and web vectors: the boundary vector

@ Given a valid stranding of a web graph, label each boundary vertex v with the binary
vector whose i, i + 1 entries are given by how \; runs along the edge incident to v:

01 if \; is directed with the edge
10 if \; is directed opposite the edge
equal if A; is not on the edge

1000 0100 0010 0100 0010 0001 1000 0001
D T R S k! Rl Nt SRRl Y

= X1 QX2 ®X3Q X ®X3R X4 X1 ® Xa

Fact: This uniquely specifies a binary vector with the same weight as the edge and a basis
vector in the desired quantum tensor space. This is the boundary vector of the stranding.

Tymoczko Quantum representations on webs 20 / 40



Strandings and web vectors: the coefficient

Definition: An edge in a stranded web graph is an (i,j) flow edge if the edge has an odd
number of strands A, satisfying i < ¢ < j.

Example: The (i,i + 1) flow edges are exactly the edges with strand \;.
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Strandings and web vectors: the coefficient

Definition: An edge in a stranded web graph is an (i,j) flow edge if the edge has an odd
number of strands A, satisfying i < ¢ < j.

Example: The (i,i + 1) flow edges are exactly the edges with strand \;.

Definition: The (i,j) flows in a stranded web graph are the connected components of the
subgraph formed by only considering (7, /) flow edges.

Fact: All (i,/) flows are directed paths in the web graph that either start and end at the
boundary, or form a closed loop in the interior of the graph.
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Strandings and web vectors: the coefficient

(1,2) flows 1000 0100 0010 0100 0010 0001 1000 0001 (1,3) flows 1000 0100 0010 0100 0010 0001 1000 0001
1 clockwise, 1 clockwise,

1 counter 1 counter

(2,3) flows 1000 0100 0010 0100 0010 0001 1000 0001 (2,4) flows

1 clockwise 0 clockwise

1 counter 2 counter

(3,4) flows 1000 0100 0010 0100 0010 0001 1000 000L (1,4) flows

A ) PR 00 _\& ) TIOWs

0 clockwise 1 clockwise

2 counter 1 counter
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Strandings and web vectors

Theorem [Russell-T]: Fix a web graph G and let S be the set of all valid strandings. Denote
the boundary vector of the stranding S € S by bs. Let a(S) be the number of closed

clockwise flows and b(S) be the number of counterclockwise flows. Then the web vector
corresponding to G is

Vo = 3 (~q) KO
Ses

Previous example: (—q) 8 (x @ 0 @ x3 Q@ x @ x3 ® x4 ® X1 @ X4)
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Strandings and web vectors

Theorem [Russell-T]: Fix a web graph G and let S be the set of all valid strandings. Denote
the boundary vector of the stranding S € S by 55. Let a(S) be the number of closed
clockwise flows and b(S) be the number of counterclockwise flows. Then the web vector
corresponding to G is

Vo = 3 (~q) KO
Ses

Previous example: (—q) 8 (x @ 0 @ x3 Q@ x @ x3 ® x4 ® X1 @ X4)
Takeaway: Web graphs admit a global structure of strands. Web vectors can be read from

web graphs by the number and direction of strands in each stranding. Relations are a natural
consequence of the global structure of strands.
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Some connections to other work

o Khovanov-Kuperberg: Use a state-sum over flows to generate sl3 web vectors. Their
flows are our (1, 3) flows.
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Some connections to other work

Khovanov-Kuperberg: Use a state-sum over flows to generate sl3 web vectors. Their
flows are our (1,3) flows.

T: Builds sl3 basis webs using m-diagrams. Left arcs are A; strands and right arcs are A
strands.

Fontaine: Defines coherent webs which have a binary labeling coming from distance in
the web dual. This is the binary labeling for a leading term of the web vector.

Robert: Gives a variation of our construction for web graphs without boundary (i.e. with
web vector a scalar in C(q)).

Gaetz-Pechenik-Pfannerer-Striker-Swanson: Give a web vector state sum over web

labelings identifying the leading term using trip permutations. Trip permutations have
n — 1 trip strands, but they are not the same as our strands.

Tymoczko Quantum representations on webs 24 / 40



Applications

Using strandings, we prove:

e Nonvanishing/Positivity: If a web graph G has a valid stranding by S then the associated
web vector wg is nonvanishing in term xs.

@ Every web graph has a valid stranding/Base stranding: If G is a web graph, then there is
a straightforward algorithm to produce a valid stranding of G by a particular Sp.

@ Basis Criteria: We provide a condition of Fontaine's for a set of webs to form a web basis,
without relying on Fontaine’s notion of “coherent webs.”

@ sl, Web Bases: We produce a collection of web bases for sl,, webs, extending Fontaine’s
web basis.

o Complete Set of Relations: We prove a complete, concise set of relations.

@ Geometry of Springer fibers: A family of non-reduced webs parametrizes the entries of
top-dimensional Springer Schubert cells.

@ Evacuation “is" Reflection of Web Graphs: The tableau operation of evacuation
corresponds to reflecting a web graph.
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Application: Webs in geometry

The flag variety is G/B
If G = GL,(C) and B is upper-triangular matrices then each flag is
e ... acoset gB

e ... a nested subspace V C V, C---C C”

e ... a matrix with zeros to the right and below a permutation
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Application: Webs in geometry

The flag variety is G/B
If G = GL,(C) and B is upper-triangular matrices then each flag is
e ... acoset gB

e ... a nested subspace V C V, C---C C”
3 0 1 0 0 1
1 1 0 1 0 0

e ... a matrix with zeros to the right and below a permutation

=N W
O O =
o = O
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Application: Webs in geometry

Each gB has a representative in exactly one of the following:

[a—y
o
[u—y
—
o

* 1 0 1 00 1 00
100 0 = 1 010
0 01 01 0 01
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Application: Webs in geometry

Each gB has a representative in exactly one of the following:

—
o
= O
—
o

* 1 0 1 00 1 00
10 0 = 1 01
0 01 01 0 01

These are the Schubert cells BwB/B. They are parametrized by permutation matrices w.
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Application: Webs in geometry

Fix a linear operator X : C" — C"

The Springer fiber of X consists of flags gB = V4 for which

e ... g1 Xg is upper-triangular

e ... the image XV, of each subspace is contained in V;
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Application: Webs in geometry

Fix a linear operator X : C" — C"

The Springer fiber of X consists of flags gB = V4 for which

e ... g1 Xg is upper-triangular

e ... the image XV, of each subspace is contained in V;

For example: The Springer fiber of X = 0 is the full flag variety.
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Springer fibers

We focus on the case when X is nilpotent
@ ... X™=0 for some m

@ ...the only eigenvalue for X is zero
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Springer fibers

We focus on the case when X is nilpotent
@ ... X™=0 for some m

@ ...the only eigenvalue for X is zero

Fact: The Springer fiber of X is homeomorphic to the Springer fiber of each conjugate of X.
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Springer fibers

We focus on the case when X is nilpotent
@ ... X™=0 for some m

@ ...the only eigenvalue for X is zero

Fact: The Springer fiber of X is homeomorphic to the Springer fiber of each conjugate of X.

Jordan blocks partition n. The conjugacy class of X has a unique representative in Jordan
canonical form with blocks arranged in nondecreasing order.

Example: If \(X) has 2 rows then the Springer fiber is a 2-row Springer fiber.
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Springer fibers

Theorem: (Springer’s Representation)

Sp acts naturally on the cohomology H*(Sx)

The top-dimensional cohomology of H*(Sx) is irreducible
In fact H*P(Sx) is irreducible of type A(X)

The set {H™P(S,)} is precisely the collection of irreducible representations of S,

(X ranges over nilpotent conjugacy classes, or partitions of n)

[Springer '76, Borho-MacPherson '83, Hotta '82, Lusztig '84, Garsia-Procesi '92, and others...]
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Theorem: (Springer’s Representation)

Sp acts naturally on the cohomology H*(Sx)

The top-dimensional cohomology of H*(Sx) is irreducible

In fact H*P(Sx) is irreducible of type A(X)

The set {H™P(S,)} is precisely the collection of irreducible representations of S,

(X ranges over nilpotent conjugacy classes, or partitions of n)

[Springer '76, Borho-MacPherson '83, Hotta '82, Lusztig '84, Garsia-Procesi '92, and others...]

One consequence: The number of components of the Springer fiber A(X) equals the
dimension of the irreducible representation of type A(X).
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Springer fibers

Theorem: (Springer’s Representation)

Sy acts naturally on the cohomology H*(Sx)

The top-dimensional cohomology of H*(Sx) is irreducible

In fact H*P(Sx) is irreducible of type A(X)

The set {H™P(S,)} is precisely the collection of irreducible representations of S,

(X ranges over nilpotent conjugacy classes, or partitions of n)

[Springer "76, Borho-MacPherson '83, Hotta '82, Lusztig '84, Garsia-Procesi '92, and others...]

One consequence: The number of components of the Springer fiber A(X) equals the
dimension of the irreducible representation of type A(X).

Concretely: If \(X) is a rectangle then the components of the Springer fiber are indexed by
reduced webs.
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2-row Springer fibers and webs

e Theorem: [Goldwasser, Nadeem, Sun, T] Reduced webs parametrize the cells of
2-row Springer fibers.
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2-row Springer fibers and webs

e Theorem: [Goldwasser, Nadeem, Sun, T] Reduced webs parametrize the cells of
2-row Springer fibers.

@ More Theorem: In fact, closures of cells can be identified by cutting arcs appropriately.
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3-row Springer fibers and strandings

We wanted to say the same for 3-row Springer fibers.

b1 1 b2 C 10
0 0 b+ o 01
2,170 0 00 e e
0 0 a2 1 00 1L et
"1 0 0 0 00
00 1 0 00

a]
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3-row Springer fibers and strandings

We realized that a purple noncrossing matching accounts for the remaining variables.

b1 1 b2 C 10
0 0 bi+x c 01
2,170 0 00 e e
0 0 a2 1 00 1L et
"1 0 0 0 00
00 1 0 00

a]
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3-row Springer fibers and strandings

Emily Hafken, Veronica Lang, and Orit Tashman figured out that
o if we pull blue arcs below red arcs,

@ then we can read x from how the purple arcs cross the blue-red combos

b1 c1 b2 ()] 1 0
0 0 bi+* ¢ 01
a0 1 0 000 ‘e et
0 0 as 1 00

C1 N c
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3-row Springer fibers and strandings

Theorem [Hafken, Lang, Tashman, T-]: The top-dimensional cells of 3-row Springer fibers

are parametrized by a family of (unreduced) webs, together with a stranding from the
corresponding reduced web.
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3-row Springer fibers and strandings

Theorem [Hafken, Lang, Tashman, T-]: The top-dimensional cells of 3-row Springer fibers

are parametrized by a family of (unreduced) webs, together with a stranding from the
corresponding reduced web.

@ A similar result appears to hold for smaller-dimensional cells — but not all are affine.
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3-row Springer fibers and strandings

Theorem [Hafken, Lang, Tashman, T-]: The top-dimensional cells of 3-row Springer fibers

are parametrized by a family of (unreduced) webs, together with a stranding from the
corresponding reduced web.

@ A similar result appears to hold for smaller-dimensional cells — but not all are affine.

@ We believe that if this web is expressed as a linear combination of reduced webs, the
reduced web corresponding to the component is the leading term.
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Combinatorial connections: promotion and evacuation

@ Promotion of standard Young tableaux is connected to rotation of stranded webs.
(Peterson-Pylyavskyy-Rhoades, Cowen-Hafken-Seekamp-T)
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@ Evacuation of standard Young tableaux is connected to reflection of stranded webs.
(Patrias-Pechenik, Cowen-Eilfort-Seekamp-T)
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Combinatorial connections: promotion and evacuation

@ Promotion of standard Young tableaux is connected to rotation of stranded webs.
(Peterson-Pylyavskyy-Rhoades, Cowen-Hafken-Seekamp-T)

@ Evacuation of standard Young tableaux is connected to reflection of stranded webs.
(Patrias-Pechenik, Cowen-Eilfort-Seekamp-T)

Theorem [Cowen-Seekamp-Spaulding-T] If T is a rectangular SYT and wr is its
corresponding stranded web then the stranded web corresponding to the evacuation of T
is the reflection of wr.
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Example of evacuation

1 34 1 ace x 112
D] fome o K with ns1x
—_—
2\ /4 Pairings remain: 4 \\\2 \\ Preserves pairing 3\ 5 N
N swap left,right and up,down ) ) exchanges arc colors /
5|6 34717 anddirection to 41 6
| match convetions

—
ASIES
w
~Z
o4
o -
— W
N O
w<
&~ -
o
o -
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Overall takeaways

@ Strands describe a global structure on web graphs that is more natural from a
graph-theoretic point of view and more useful for computations.
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Overall takeaways

@ Strands describe a global structure on web graphs that is more natural from a
graph-theoretic point of view and more useful for computations.

@ Strands also seem to encode geometric information. \_(*V)_/~

@ The right technical tools can greatly expand our understanding of a problem.
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Thank you for your attention!

Preprint available for Russell-T: arXiv:2510.12035

Thanks to the organizers!

Also to NSF and Budapest Semesters in Mathematics for supporting this work.

Tymoczko Quantum representations on webs 40 / 40



