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Quantum affine / loop algebras

• Let g be a simple Lie algebra over C. We associate to it

1. the quantum affine algebra

Uq(ĝ)|c=1 = C
〈
ei , fi , hi

〉
i∈I⊔{0}

/(
relations

)
by cleverly adding a vertex 0 to the Dynkin diagram of g.

2. the quantum loop algebra

Uq(Lg) = C
〈
ei ,k , fi ,k , hi ,k

〉
i∈I ,k∈Z

/(
relations

)
by Drinfeld’s “new realization”.

• The two algebras are isomorphic (Drinfeld and Beck, Damiani).

• But only Uq(Lg) is defined when g is a Kac-Moody Lie algebra.
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Representations of quantum affine algebras

• People have long been interested in finite-dim representations of

Uq(ĝ)|c=1
∼= Uq(Lg)

• Chari-Pressley indexed finite-dim irreducibles by “ℓ-weights”

ψ =

(
ψi (z) =

∞∑
k=0

ψi ,k

zk

)
i∈I

∈ RI

where R is the set of power series expansions of rational functions
(over C) that are regular and non-zero at z = 0 and ∞.

• Hernandez-Jimbo generalized this by defining an irreducible

Uq(Lg) ↷ L(ψ)

for any ψ ∈ RI , which might be infinite-dimensional.
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Decompositions into generalized eigenspaces

• Frenkel-Reshetikhin and Frenkel-Mukhin considered decompositions

L(ψ) =
⊕
x

L(ψ)x

as x = (xi1, . . . , xini )i∈I ⊂ C∗ goes over all multisets of non-zero
complex numbers, and the integers (ni ≥ 0)i∈I are arbitrary.

• Specifically, L(ψ)x is the generalized eigenspace of the power series( ∞∑
k=0

hi ,k
zk

)
i∈I

∈ Uq(Lg)[[z
−1]]I

acting on L(ψ) according to the eigenvaluesψi (z)
∏
j∈I

nj∏
a=1

z − xjaq
dij

zqdij − xja


i∈I
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L(ψ) and q-characters

• The generating series of dim L(ψ)x is called a q-character. These 1

form a very rich subject, involving deep connections to many fields:

▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas
via counting paths and Young tableaux in classical types;

▶ geometry: Nakajima’s t-deformed q-characters via quiver
varieties;

▶ integrable systems: work of Frenkel-Hernandez on Baxter’s
relations, XXZ-type models for Uq(ĝ), QQ-systems etc;

▶ cluster algebras: Hernandez-Leclerc observed that the
q-characters of the various L(ψ) generate a cluster algebra;

▶ monoidal categorification that implies the above cluster
algebra statement (Kang, Kashiwara, Kim, Oh, Park, Qin).

1The list on this slide is certainly incomplete; during talks I state the works
of many other people, which couldn’t fit on the slide at the current font size.
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A new construction

• The traditional construction of L(ψ) for general ℓ-weights ψ is
done via tensor products of so-called pre-fundamental modules.

• Though elegant and useful, it is not very explicit and doesn’t
readily generalize 2 to the case of Kac-Moody Lie algebras g.

• In what follows, we propose an explicit construction of L(ψ), for
which we will present geometric and categorical interpretations.

2However, see Hernandez’ fusion product in the analogous category of
representations of shifted quantum loop algebras.

Andrei Negut, Quantum loop algebras and simple modules 6 / 13



A new construction

• The traditional construction of L(ψ) for general ℓ-weights ψ is
done via tensor products of so-called pre-fundamental modules.

• Though elegant and useful, it is not very explicit and doesn’t
readily generalize 2 to the case of Kac-Moody Lie algebras g.

• In what follows, we propose an explicit construction of L(ψ), for
which we will present geometric and categorical interpretations.

2However, see Hernandez’ fusion product in the analogous category of
representations of shifted quantum loop algebras.

Andrei Negut, Quantum loop algebras and simple modules 6 / 13



A new construction

• The traditional construction of L(ψ) for general ℓ-weights ψ is
done via tensor products of so-called pre-fundamental modules.

• Though elegant and useful, it is not very explicit and doesn’t
readily generalize 2 to the case of Kac-Moody Lie algebras g.

• In what follows, we propose an explicit construction of L(ψ), for
which we will present geometric and categorical interpretations.

2However, see Hernandez’ fusion product in the analogous category of
representations of shifted quantum loop algebras.

Andrei Negut, Quantum loop algebras and simple modules 6 / 13



Motivation: Verma modules and Shapovalov forms

• Before we jump into a direct construction of L(ψ), let us recall a
classic construction of irreducible representations

Uq(g) ↷ L(λ)

▶ Step 1: construct the Verma module with lowest weight λ,
which is isomorphic to Uq(n) as a vector space.

▶ Step 2: construct a Shapovalov form

Uq(n)⊗ Uq(n)
⟨·,·⟩λ−−−→ C

▶ Step 3: show that the following quotient is irreducible

L(λ) = Uq(n)
/
Ker ⟨·, ·⟩λ

• We will now emulate this procedure for quantum loop algebras.
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Definition of quantum loop algebras

• For a Kac-Moody algebra g with Cartan matrix
(
2dij
dii

∈ Z
)
i ,j∈I

, let

Uq(Lg) = C
〈
ei ,k , fi ,k , hi ,k

〉
i∈I ,k∈Z

/(
h’s commute and relations below

)


ei (x)ej(y)ζji

(
y
x

)
= ej(y)ei (x)ζij

(
x
y

)
ei (x)h

±
j (y)ζji

(
y
x

)
= h±j (y)ei (x)ζij

(
x
y

)
higher order relations among e’s, known for g

{
finite type (Drinfeld)

simply-laced (Negut,)

opposite relations with e’s replaced by f ’s[
ei (x), fj(y)

]
= δijδ(x/y)

(
h+i (x)− h−i (y)

)

• Above, set ζij(x) =
x−q

−dij

x−1 , δ(x) =
∑

k∈Z x
k and write ∀i ∈ I

ei (x) =
∑
k∈Z

ei ,k
xk

, fi (x) =
∑
k∈Z

fi ,k
xk
, h±i (x) = h±1

i ,0 +
∞∑
k=1

hi ,±k

x±k
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Shuffle algebras

• The subalgebra U+
q (Lg) ⊂ Uq(Lg) generated by the ei ,d ’s has a

shuffle algebra model, introduced by Feigin-Odesskii and Enriquez:

V =
⊕

(ni≥0)i∈I

C[z±1
i1 , z

±1
i2 , . . . , z

±1
ini

]symmetric
i∈I∏unordered pairs

(i ,a),(j ,b) with i ̸=j(zia − zjb)

• The algebra structure on V is given by the shuffle product

E (zi1, . . . , zini )i∈I ∗ E
′(zi1, . . . , zin′i )i∈I =

Sym

E (zi1, . . . , zini )i∈IE ′(zi ,ni+1, . . . , zi ,ni+n′i
)i∈I

i ,j∈I∏
a≤ni ,b>nj

ζij

(
zia
zjb

)
• Sending ei ,k ⇝ zki1 yields a monomorphism Υ : U+

q (Lg) ↪→ V. Let

Im Υ =: S ∼= U+
q (Lg)
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The construction of L(ψ)

• To construct L(ψ), we first interpret S as a “Verma” module (we
know explicit descriptions of S for g finite type and simply-laced).

• Then we show that the following yields a “Shapovalov form”

S ⊗ S
⟨·,·⟩ψ−−−→ C〈

E ,E ′
〉
ψ
=

∮
E (zi1, . . . , zini )i∈IE

′(zi1, . . . , zini )i∈I∏
(i ,a)̸=(j ,b) ζij

(
zia
zjb

) ∏
(i ,a)

ψi (zia)

where
∮

denotes a certain explicit contour integral.

• Theorem (Negut,): For any ℓ-weight ψ,

L(ψ) = S
/
Ker ⟨·, ·⟩ψ

is an irreducible representation of Uq(Lg).
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Connection with geometry, following Hernandez-Leclerc

• The formula L(ψ) = S
/
Ker ⟨·, ·⟩ψ has a geometric explanation.

• Specifically, the graded summands of

L(ψ) =
⊕
x

L(ψ)x

admit explicit descriptions in terms of shuffle algebras and residues.

• In a seminal result, Hernandez-Leclerc proved that for so-called
Kirillov-Reshetikhin modules L(ψ), we have for all x

dim L(ψ)x =
(
Euler characteristic of a quiver variety Nstab

x ,ψ

)
• Nstab

x ,ψ is defined using the quiver with vertex set I × C∗ and arrows

(i , z) 7→ (j , zq−dij ), ∀i , j ∈ I , z ∈ C∗
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Critical K -theory

• We may consider the smooth quasi-projective variety Mstab
x ,ψ of

stable representations of the above quiver, with dimension
depending on x and framing depending on ψ in a certain way.

• We have the function f : Mstab
x ,ψ → C obtained by summing the

traces of the compositions of quiver arrows (∀i ̸= j ∈ I , z ∈ C∗)

(j , zqdij )

**
(i , zq2dij )

33

(i , zq2dij+dii )oo . . .oo (i , zq−dii )oo (i , z)oo

• Conjecture (Negut,): for any ℓ-weight ψ and all x , we have

L(ψ)x ∼=
(
Critical K -theory of (Mstab

x ,ψ , f )
)

• This is inspired by the case of Kirillov-Reshetikhin L(ψ) studied by
Varagnolo-Vasserot, plus the fact that Crit(Mstab

x ,ψ , f ) = Nstab
x ,ψ .
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Connection with categorification

• The conjecture above suggests that L(ψ)x is categorified by(
the derived factorization category of (Mstab

x ,ψ , f )
)

(1)

• Following Varagnolo-Vasserot, Uq(Lg) is also similarly categorified
(the so-called derived Hall algebra, introduced by Pădurariu).

• If one developed an explicit (ideally diagrammatic) presentation of
these categories, one would accomplish for Uq(Lg) what Khovanov,
Lauda, Rouquier and Webster did for Uq(g) and its representations.

• As shown above, the Grothendieck groups of the categories (1)
admit explicit descriptions as shuffle algebras. This is one of our
main motivations for wanting to understand the latter explicitly.
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