

Quantum loop algebras and simple modules

Andrei Neguț

ÉPFL

10/20/2025

Quantum affine / loop algebras

- Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} . We associate to it

- the quantum affine algebra

$$U_q(\widehat{\mathfrak{g}})|_{c=1} = \mathbb{C} \left\langle e_i, f_i, h_i \right\rangle_{i \in I \sqcup \{0\}} / \left(\text{relations} \right)$$

by cleverly adding a vertex 0 to the Dynkin diagram of \mathfrak{g} .

- the quantum loop algebra

$$U_q(L\mathfrak{g}) = \mathbb{C} \left\langle e_{i,k}, f_{i,k}, h_{i,k} \right\rangle_{i \in I, k \in \mathbb{Z}} / \left(\text{relations} \right)$$

by Drinfeld's "new realization".

Quantum affine / loop algebras

- Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} . We associate to it

- the quantum affine algebra

$$U_q(\widehat{\mathfrak{g}})|_{c=1} = \mathbb{C} \left\langle e_i, f_i, h_i \right\rangle_{i \in I \sqcup \{0\}} / \left(\text{relations} \right)$$

by cleverly adding a vertex 0 to the Dynkin diagram of \mathfrak{g} .

- the quantum loop algebra

$$U_q(L\mathfrak{g}) = \mathbb{C} \left\langle e_{i,k}, f_{i,k}, h_{i,k} \right\rangle_{i \in I, k \in \mathbb{Z}} / \left(\text{relations} \right)$$

by Drinfeld's "new realization".

- The two algebras are isomorphic (Drinfeld and Beck, Damiani).

Quantum affine / loop algebras

- Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} . We associate to it

- the quantum affine algebra

$$U_q(\widehat{\mathfrak{g}})|_{c=1} = \mathbb{C} \left\langle e_i, f_i, h_i \right\rangle_{i \in I \sqcup \{0\}} / \left(\text{relations} \right)$$

by cleverly adding a vertex 0 to the Dynkin diagram of \mathfrak{g} .

- the quantum loop algebra

$$U_q(L\mathfrak{g}) = \mathbb{C} \left\langle e_{i,k}, f_{i,k}, h_{i,k} \right\rangle_{i \in I, k \in \mathbb{Z}} / \left(\text{relations} \right)$$

by Drinfeld's "new realization".

- The two algebras are isomorphic (Drinfeld and Beck, Damiani).
- But only $U_q(L\mathfrak{g})$ is defined when \mathfrak{g} is a Kac-Moody Lie algebra.

Representations of quantum affine algebras

- People have long been interested in finite-dim representations of

$$U_q(\widehat{\mathfrak{g}})|_{c=1} \cong U_q(L\mathfrak{g})$$

Representations of quantum affine algebras

- People have long been interested in finite-dim representations of

$$U_q(\widehat{\mathfrak{g}})|_{c=1} \cong U_q(L\mathfrak{g})$$

- Chari-Pressley indexed finite-dim irreducibles by “ ℓ -weights”

$$\psi = \left(\psi_i(z) = \sum_{k=0}^{\infty} \frac{\psi_{i,k}}{z^k} \right)_{i \in I} \in \mathcal{R}^I$$

where \mathcal{R} is the set of power series expansions of rational functions (over \mathbb{C}) that are regular and non-zero at $z = 0$ and ∞ .

Representations of quantum affine algebras

- People have long been interested in finite-dim representations of

$$U_q(\widehat{\mathfrak{g}})|_{c=1} \cong U_q(L\mathfrak{g})$$

- Chari-Pressley indexed finite-dim irreducibles by “ ℓ -weights”

$$\psi = \left(\psi_i(z) = \sum_{k=0}^{\infty} \frac{\psi_{i,k}}{z^k} \right)_{i \in I} \in \mathcal{R}^I$$

where \mathcal{R} is the set of power series expansions of rational functions (over \mathbb{C}) that are regular and non-zero at $z = 0$ and ∞ .

- Hernandez-Jimbo generalized this by defining an irreducible

$$U_q(L\mathfrak{g}) \curvearrowright L(\psi)$$

for any $\psi \in \mathcal{R}^I$, which might be infinite-dimensional.

Decompositions into generalized eigenspaces

- Frenkel-Reshetikhin and Frenkel-Mukhin considered decompositions

$$L(\psi) = \bigoplus_x L(\psi)_x$$

as $x = (x_{i1}, \dots, x_{in_i})_{i \in I} \subset \mathbb{C}^*$ goes over all multisets of non-zero complex numbers, and the integers $(n_i \geq 0)_{i \in I}$ are arbitrary.

Decompositions into generalized eigenspaces

- Frenkel-Reshetikhin and Frenkel-Mukhin considered decompositions

$$L(\psi) = \bigoplus_x L(\psi)_x$$

as $x = (x_{i1}, \dots, x_{in_i})_{i \in I} \subset \mathbb{C}^*$ goes over all multisets of non-zero complex numbers, and the integers $(n_i \geq 0)_{i \in I}$ are arbitrary.

- Specifically, $L(\psi)_x$ is the generalized eigenspace of the power series

$$\left(\sum_{k=0}^{\infty} \frac{h_{i,k}}{z^k} \right)_{i \in I} \in U_q(L\mathfrak{g})[[z^{-1}]]'$$

acting on $L(\psi)$ according to the eigenvalues

$$\left(\psi_i(z) \prod_{j \in I} \prod_{a=1}^{n_j} \frac{z - x_{ja} q^{d_{ij}}}{z q^{d_{ij}} - x_{ja}} \right)_{i \in I}$$

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These ¹ form a very rich subject, involving deep connections to many fields:

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These ¹ form a very rich subject, involving deep connections to many fields:
 - ▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas via counting paths and Young tableaux in classical types;

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These ¹ form a very rich subject, involving deep connections to many fields:
 - ▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas via counting paths and Young tableaux in classical types;
 - ▶ geometry: Nakajima's t -deformed q -characters via quiver varieties;

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These ¹ form a very rich subject, involving deep connections to many fields:
 - ▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas via counting paths and Young tableaux in classical types;
 - ▶ geometry: Nakajima's t -deformed q -characters via quiver varieties;
 - ▶ integrable systems: work of Frenkel-Hernandez on Baxter's relations, XXZ-type models for $U_q(\widehat{\mathfrak{g}})$, QQ-systems etc;

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These ¹ form a very rich subject, involving deep connections to many fields:
 - ▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas via counting paths and Young tableaux in classical types;
 - ▶ geometry: Nakajima's t -deformed q -characters via quiver varieties;
 - ▶ integrable systems: work of Frenkel-Hernandez on Baxter's relations, XXZ-type models for $U_q(\widehat{\mathfrak{g}})$, QQ-systems etc;
 - ▶ cluster algebras: Hernandez-Leclerc observed that the q -characters of the various $L(\psi)$ generate a cluster algebra;

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

$L(\psi)$ and q -characters

- The generating series of $\dim L(\psi)_x$ is called a q -character. These¹ form a very rich subject, involving deep connections to many fields:
 - ▶ combinatorics: the Frenkel-Mukhin algorithm, and formulas via counting paths and Young tableaux in classical types;
 - ▶ geometry: Nakajima's t -deformed q -characters via quiver varieties;
 - ▶ integrable systems: work of Frenkel-Hernandez on Baxter's relations, XXZ-type models for $U_q(\widehat{\mathfrak{g}})$, QQ-systems etc;
 - ▶ cluster algebras: Hernandez-Leclerc observed that the q -characters of the various $L(\psi)$ generate a cluster algebra;
 - ▶ monoidal categorification that implies the above cluster algebra statement (Kang, Kashiwara, Kim, Oh, Park, Qin).

¹The list on this slide is certainly incomplete; during talks I state the works of many other people, which couldn't fit on the slide at the current font size.

A new construction

- The traditional construction of $L(\psi)$ for general ℓ -weights ψ is done via tensor products of so-called pre-fundamental modules.

²However, see Hernandez' fusion product in the analogous category of representations of shifted quantum loop algebras.

A new construction

- The traditional construction of $L(\psi)$ for general ℓ -weights ψ is done via tensor products of so-called pre-fundamental modules.
- Though elegant and useful, it is not very explicit and doesn't readily generalize ² to the case of Kac-Moody Lie algebras \mathfrak{g} .

²However, see Hernandez' fusion product in the analogous category of representations of shifted quantum loop algebras.

A new construction

- The traditional construction of $L(\psi)$ for general ℓ -weights ψ is done via tensor products of so-called pre-fundamental modules.
- Though elegant and useful, it is not very explicit and doesn't readily generalize ² to the case of Kac-Moody Lie algebras \mathfrak{g} .
- In what follows, we propose an explicit construction of $L(\psi)$, for which we will present geometric and categorical interpretations.

²However, see Hernandez' fusion product in the analogous category of representations of shifted quantum loop algebras.

Motivation: Verma modules and Shapovalov forms

- Before we jump into a direct construction of $L(\psi)$, let us recall a classic construction of irreducible representations

$$U_q(\mathfrak{g}) \curvearrowright L(\lambda)$$

Motivation: Verma modules and Shapovalov forms

- Before we jump into a direct construction of $L(\psi)$, let us recall a classic construction of irreducible representations

$$U_q(\mathfrak{g}) \curvearrowright L(\lambda)$$

- ▶ Step 1: construct the Verma module with lowest weight λ , which is isomorphic to $U_q(\mathfrak{n})$ as a vector space.

Motivation: Verma modules and Shapovalov forms

- Before we jump into a direct construction of $L(\psi)$, let us recall a classic construction of irreducible representations

$$U_q(\mathfrak{g}) \curvearrowright L(\lambda)$$

- ▶ Step 1: construct the Verma module with lowest weight λ , which is isomorphic to $U_q(\mathfrak{n})$ as a vector space.
- ▶ Step 2: construct a Shapovalov form

$$U_q(\mathfrak{n}) \otimes U_q(\mathfrak{n}) \xrightarrow{\langle \cdot, \cdot \rangle_\lambda} \mathbb{C}$$

Motivation: Verma modules and Shapovalov forms

- Before we jump into a direct construction of $L(\psi)$, let us recall a classic construction of irreducible representations

$$U_q(\mathfrak{g}) \curvearrowright L(\lambda)$$

- ▶ Step 1: construct the Verma module with lowest weight λ , which is isomorphic to $U_q(\mathfrak{n})$ as a vector space.
- ▶ Step 2: construct a Shapovalov form

$$U_q(\mathfrak{n}) \otimes U_q(\mathfrak{n}) \xrightarrow{\langle \cdot, \cdot \rangle_\lambda} \mathbb{C}$$

- ▶ Step 3: show that the following quotient is irreducible

$$L(\lambda) = U_q(\mathfrak{n}) \Big/ \text{Ker } \langle \cdot, \cdot \rangle_\lambda$$

Motivation: Verma modules and Shapovalov forms

- Before we jump into a direct construction of $L(\psi)$, let us recall a classic construction of irreducible representations

$$U_q(\mathfrak{g}) \curvearrowright L(\lambda)$$

- ▶ Step 1: construct the Verma module with lowest weight λ , which is isomorphic to $U_q(\mathfrak{n})$ as a vector space.
- ▶ Step 2: construct a Shapovalov form

$$U_q(\mathfrak{n}) \otimes U_q(\mathfrak{n}) \xrightarrow{\langle \cdot, \cdot \rangle_\lambda} \mathbb{C}$$

- ▶ Step 3: show that the following quotient is irreducible

$$L(\lambda) = U_q(\mathfrak{n}) \big/ \text{Ker } \langle \cdot, \cdot \rangle_\lambda$$

- We will now emulate this procedure for quantum loop algebras.

Definition of quantum loop algebras

- For a Kac-Moody algebra \mathfrak{g} with Cartan matrix $\left(\frac{2d_{ij}}{d_{ii}} \in \mathbb{Z}\right)_{i,j \in I}$, let

$$U_q(L\mathfrak{g}) = \mathbb{C} \left\langle e_{i,k}, f_{i,k}, h_{i,k} \right\rangle_{i \in I, k \in \mathbb{Z}} / \left(h \text{'s commute and relations below} \right)$$

$$\left\{ \begin{array}{l} e_i(x)e_j(y)\zeta_{ji}\left(\frac{y}{x}\right) = e_j(y)e_i(x)\zeta_{ij}\left(\frac{x}{y}\right) \\ e_i(x)h_j^\pm(y)\zeta_{ji}\left(\frac{y}{x}\right) = h_j^\pm(y)e_i(x)\zeta_{ij}\left(\frac{x}{y}\right) \\ \text{higher order relations among } e \text{'s, known for } \mathfrak{g} \left\{ \begin{array}{l} \text{finite type (Drinfeld)} \\ \text{simply-laced (Negu\c{t})} \end{array} \right. \\ \text{opposite relations with } e \text{'s replaced by } f \text{'s} \\ \left[e_i(x), f_j(y) \right] = \delta_{ij}\delta(x/y)\left(h_i^+(x) - h_i^-(y) \right) \end{array} \right.$$

Definition of quantum loop algebras

- For a Kac-Moody algebra \mathfrak{g} with Cartan matrix $\left(\frac{2d_{ij}}{d_{ii}} \in \mathbb{Z}\right)_{i,j \in I}$, let

$$U_q(L\mathfrak{g}) = \mathbb{C} \left\langle e_{i,k}, f_{i,k}, h_{i,k} \right\rangle_{i \in I, k \in \mathbb{Z}} / \left(h \text{'s commute and relations below} \right)$$

$$\left\{ \begin{array}{l} e_i(x)e_j(y)\zeta_{ji}\left(\frac{y}{x}\right) = e_j(y)e_i(x)\zeta_{ij}\left(\frac{x}{y}\right) \\ e_i(x)h_j^\pm(y)\zeta_{ji}\left(\frac{y}{x}\right) = h_j^\pm(y)e_i(x)\zeta_{ij}\left(\frac{x}{y}\right) \\ \text{higher order relations among } e \text{'s, known for } \mathfrak{g} \begin{cases} \text{finite type (Drinfeld)} \\ \text{simply-laced (Neguț)} \end{cases} \\ \text{opposite relations with } e \text{'s replaced by } f \text{'s} \\ [e_i(x), f_j(y)] = \delta_{ij}\delta(x/y)(h_i^+(x) - h_i^-(y)) \end{array} \right.$$

- Above, set $\zeta_{ij}(x) = \frac{x-q^{-d_{ij}}}{x-1}$, $\delta(x) = \sum_{k \in \mathbb{Z}} x^k$ and write $\forall i \in I$

$$e_i(x) = \sum_{k \in \mathbb{Z}} \frac{e_{i,k}}{x^k}, \quad f_i(x) = \sum_{k \in \mathbb{Z}} \frac{f_{i,k}}{x^k}, \quad h_i^\pm(x) = h_{i,0}^{\pm 1} + \sum_{k=1}^{\infty} \frac{h_{i,\pm k}}{x^{\pm k}}$$

Shuffle algebras

- The subalgebra $U_q^+(L\mathfrak{g}) \subset U_q(L\mathfrak{g})$ generated by the $e_{i,d}$'s has a shuffle algebra model, introduced by Feigin-Odesskii and Enriquez:

$$\mathcal{V} = \bigoplus_{(n_i \geq 0)_{i \in I}} \frac{\mathbb{C}[z_{i1}^{\pm 1}, z_{i2}^{\pm 1}, \dots, z_{in_i}^{\pm 1}]_{i \in I}^{\text{symmetric}}}{\prod_{\substack{\text{unordered pairs} \\ (i,a), (j,b) \text{ with } i \neq j}} (z_{ia} - z_{jb})}$$

Shuffle algebras

- The subalgebra $U_q^+(L\mathfrak{g}) \subset U_q(L\mathfrak{g})$ generated by the $e_{i,d}$'s has a shuffle algebra model, introduced by Feigin-Odesskii and Enriquez:

$$\mathcal{V} = \bigoplus_{(n_i \geq 0)_{i \in I}} \frac{\mathbb{C}[z_{i1}^{\pm 1}, z_{i2}^{\pm 1}, \dots, z_{in_i}^{\pm 1}]_{i \in I}^{\text{symmetric}}}{\prod_{\substack{\text{unordered pairs} \\ (i,a), (j,b) \text{ with } i \neq j}} (z_{ia} - z_{jb})}$$

- The algebra structure on \mathcal{V} is given by the shuffle product

$$E(z_{i1}, \dots, z_{in_i})_{i \in I} * E'(z_{i1}, \dots, z_{in'_i})_{i \in I} =$$

$$\text{Sym} \left[E(z_{i1}, \dots, z_{in_i})_{i \in I} E'(z_{i,n_i+1}, \dots, z_{i,n_i+n'_i})_{i \in I} \prod_{\substack{i,j \in I \\ a \leq n_i, b > n_j}}^{i,j \in I} \zeta_{ij} \left(\frac{z_{ia}}{z_{jb}} \right) \right]$$

Shuffle algebras

- The subalgebra $U_q^+(L\mathfrak{g}) \subset U_q(L\mathfrak{g})$ generated by the $e_{i,d}$'s has a shuffle algebra model, introduced by Feigin-Odesskii and Enriquez:

$$\mathcal{V} = \bigoplus_{(n_i \geq 0)_{i \in I}} \frac{\mathbb{C}[z_{i1}^{\pm 1}, z_{i2}^{\pm 1}, \dots, z_{in_i}^{\pm 1}]_{i \in I}^{\text{symmetric}}}{\prod_{\substack{\text{unordered pairs} \\ (i,a), (j,b) \text{ with } i \neq j}} (z_{ia} - z_{jb})}$$

- The algebra structure on \mathcal{V} is given by the shuffle product

$$E(z_{i1}, \dots, z_{in_i})_{i \in I} * E'(z_{i1}, \dots, z_{in'_i})_{i \in I} =$$

$$\text{Sym} \left[E(z_{i1}, \dots, z_{in_i})_{i \in I} E'(z_{i,n_i+1}, \dots, z_{i,n_i+n'_i})_{i \in I} \prod_{\substack{i,j \in I \\ a \leq n_i, b > n_j}}^{i,j \in I} \zeta_{ij} \left(\frac{z_{ia}}{z_{jb}} \right) \right]$$

- Sending $e_{i,k} \rightsquigarrow z_{i1}^k$ yields a monomorphism $\Upsilon : U_q^+(L\mathfrak{g}) \hookrightarrow \mathcal{V}$. Let

$$\text{Im } \Upsilon =: \boxed{\mathcal{S} \cong U_q^+(L\mathfrak{g})}$$

The construction of $L(\psi)$

- To construct $L(\psi)$, we first interpret \mathcal{S} as a “Verma” module (we know explicit descriptions of \mathcal{S} for \mathfrak{g} finite type and simply-laced).

The construction of $L(\psi)$

- To construct $L(\psi)$, we first interpret \mathcal{S} as a “Verma” module (we know explicit descriptions of \mathcal{S} for \mathfrak{g} finite type and simply-laced).
- Then we show that the following yields a “Shapovalov form”

$$\mathcal{S} \otimes \mathcal{S} \xrightarrow{\langle \cdot, \cdot \rangle_\psi} \mathbb{C}$$

$$\left\langle E, E' \right\rangle_\psi = \oint \frac{E(z_{i1}, \dots, z_{in_i})_{i \in I} E'(z_{i1}, \dots, z_{in_i})_{i \in I}}{\prod_{(i,a) \neq (j,b)} \zeta_{ij} \left(\frac{z_{ia}}{z_{jb}} \right)} \prod_{(i,a)} \psi_i(z_{ia})$$

where \oint denotes a certain explicit contour integral.

The construction of $L(\psi)$

- To construct $L(\psi)$, we first interpret \mathcal{S} as a “Verma” module (we know explicit descriptions of \mathcal{S} for \mathfrak{g} finite type and simply-laced).
- Then we show that the following yields a “Shapovalov form”

$$\mathcal{S} \otimes \mathcal{S} \xrightarrow{\langle \cdot, \cdot \rangle_\psi} \mathbb{C}$$

$$\left\langle E, E' \right\rangle_\psi = \oint \frac{E(z_{i1}, \dots, z_{in_i})_{i \in I} E'(z_{i1}, \dots, z_{in_i})_{i \in I}}{\prod_{(i,a) \neq (j,b)} \zeta_{ij} \left(\frac{z_{ia}}{z_{jb}} \right)} \prod_{(i,a)} \psi_i(z_{ia})$$

where \oint denotes a certain explicit contour integral.

- **Theorem** (Neguț): For any ℓ -weight ψ ,

$$L(\psi) = \mathcal{S} / \text{Ker } \langle \cdot, \cdot \rangle_\psi$$

is an irreducible representation of $U_q(L\mathfrak{g})$.

Connection with geometry, following Hernandez-Leclerc

- The formula $L(\psi) = \mathcal{S} / \text{Ker } \langle \cdot, \cdot \rangle_\psi$ has a geometric explanation.

Connection with geometry, following Hernandez-Leclerc

- The formula $L(\psi) = \mathcal{S} / \text{Ker } \langle \cdot, \cdot \rangle_\psi$ has a geometric explanation.
- Specifically, the graded summands of

$$L(\psi) = \bigoplus_x L(\psi)_x$$

admit explicit descriptions in terms of shuffle algebras and residues.

Connection with geometry, following Hernandez-Leclerc

- The formula $L(\psi) = \mathcal{S} / \text{Ker } \langle \cdot, \cdot \rangle_\psi$ has a geometric explanation.
- Specifically, the graded summands of

$$L(\psi) = \bigoplus_x L(\psi)_x$$

admit explicit descriptions in terms of shuffle algebras and residues.

- In a seminal result, Hernandez-Leclerc proved that for so-called Kirillov-Reshetikhin modules $L(\psi)$, we have for all x

$$\dim L(\psi)_x = \left(\text{Euler characteristic of a quiver variety } N_{x,\psi}^{\text{stab}} \right)$$

Connection with geometry, following Hernandez-Leclerc

- The formula $L(\psi) = \mathcal{S} / \text{Ker } \langle \cdot, \cdot \rangle_\psi$ has a geometric explanation.
- Specifically, the graded summands of

$$L(\psi) = \bigoplus_x L(\psi)_x$$

admit explicit descriptions in terms of shuffle algebras and residues.

- In a seminal result, Hernandez-Leclerc proved that for so-called Kirillov-Reshetikhin modules $L(\psi)$, we have for all x

$$\dim L(\psi)_x = \left(\text{Euler characteristic of a quiver variety } N_{x,\psi}^{\text{stab}} \right)$$

- $N_{x,\psi}^{\text{stab}}$ is defined using the quiver with vertex set $I \times \mathbb{C}^*$ and arrows

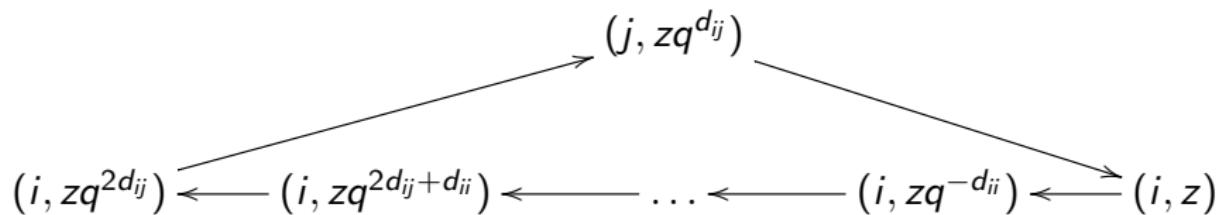
$$(i, z) \mapsto (j, zq^{-d_{ij}}), \quad \forall i, j \in I, z \in \mathbb{C}^*$$

Critical K -theory

- We may consider the smooth quasi-projective variety $M_{x,\psi}^{\text{stab}}$ of stable representations of the above quiver, with dimension depending on x and framing depending on ψ in a certain way.

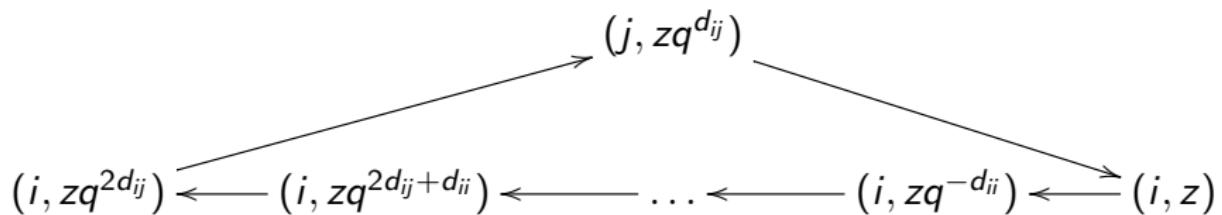
Critical K -theory

- We may consider the smooth quasi-projective variety $M_{x,\psi}^{\text{stab}}$ of stable representations of the above quiver, with dimension depending on x and framing depending on ψ in a certain way.
- We have the function $f : M_{x,\psi}^{\text{stab}} \rightarrow \mathbb{C}$ obtained by summing the traces of the compositions of quiver arrows ($\forall i \neq j \in I, z \in \mathbb{C}^*$)



Critical K -theory

- We may consider the smooth quasi-projective variety $M_{x,\psi}^{\text{stab}}$ of stable representations of the above quiver, with dimension depending on x and framing depending on ψ in a certain way.
- We have the function $f : M_{x,\psi}^{\text{stab}} \rightarrow \mathbb{C}$ obtained by summing the traces of the compositions of quiver arrows ($\forall i \neq j \in I, z \in \mathbb{C}^*$)

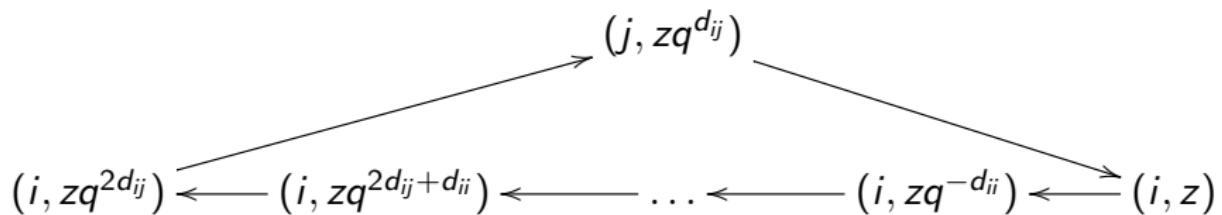


- **Conjecture** (Neguț): for any ℓ -weight ψ and all x , we have

$$L(\psi)_x \cong \left(\text{Critical } K\text{-theory of } (M_{x,\psi}^{\text{stab}}, f) \right)$$

Critical K -theory

- We may consider the smooth quasi-projective variety $M_{x,\psi}^{\text{stab}}$ of stable representations of the above quiver, with dimension depending on x and framing depending on ψ in a certain way.
- We have the function $f : M_{x,\psi}^{\text{stab}} \rightarrow \mathbb{C}$ obtained by summing the traces of the compositions of quiver arrows ($\forall i \neq j \in I, z \in \mathbb{C}^*$)



- **Conjecture** (Neguț): for any ℓ -weight ψ and all x , we have

$$L(\psi)_x \cong \left(\text{Critical } K\text{-theory of } (M_{x,\psi}^{\text{stab}}, f) \right)$$

- This is inspired by the case of Kirillov-Reshetikhin $L(\psi)$ studied by Varagnolo-Vasserot, plus the fact that $\text{Crit}(M_{x,\psi}^{\text{stab}}, f) = N_{x,\psi}^{\text{stab}}$.

Connection with categorification

- The conjecture above suggests that $L(\psi)_x$ is categorified by
$$\left(\text{the derived factorization category of } (M_{x,\psi}^{\text{stab}}, f) \right) \quad (1)$$

Connection with categorification

- The conjecture above suggests that $L(\psi)_x$ is categorified by
$$\left(\text{the derived factorization category of } (M_{x,\psi}^{\text{stab}}, f) \right) \quad (1)$$
- Following Varagnolo-Vasserot, $U_q(L\mathfrak{g})$ is also similarly categorified
(the so-called derived Hall algebra, introduced by Pădurariu).

Connection with categorification

- The conjecture above suggests that $L(\psi)_x$ is categorified by
$$\left(\text{the derived factorization category of } (M_{x,\psi}^{\text{stab}}, f) \right) \quad (1)$$
- Following Varagnolo-Vasserot, $U_q(L\mathfrak{g})$ is also similarly categorified (the so-called derived Hall algebra, introduced by Pădurariu).
- If one developed an explicit (ideally diagrammatic) presentation of these categories, one would accomplish for $U_q(L\mathfrak{g})$ what Khovanov, Lauda, Rouquier and Webster did for $U_q(\mathfrak{g})$ and its representations.

Connection with categorification

- The conjecture above suggests that $L(\psi)_x$ is categorified by
$$\left(\text{the derived factorization category of } (M_{x,\psi}^{\text{stab}}, f) \right) \quad (1)$$
- Following Varagnolo-Vasserot, $U_q(L\mathfrak{g})$ is also similarly categorified (the so-called derived Hall algebra, introduced by Pădurariu).
- If one developed an explicit (ideally diagrammatic) presentation of these categories, one would accomplish for $U_q(L\mathfrak{g})$ what Khovanov, Lauda, Rouquier and Webster did for $U_q(\mathfrak{g})$ and its representations.
- As shown above, the Grothendieck groups of the categories (1) admit explicit descriptions as shuffle algebras. This is one of our main motivations for wanting to understand the latter explicitly.