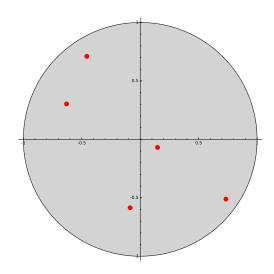
An asymptotic refinement of the Gauss–Lucas theorem for random polynomials with i.i.d. roots

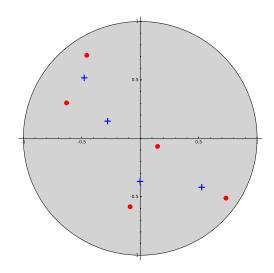
Noah Williams (williamsnn@appstate.edu)

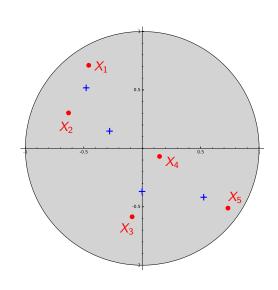
Appalachian State University

In collaboration with Sean O'Rourke University of Colorado Boulder

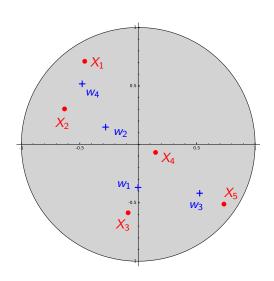
ICERM Workshop: "Random Polynomials and Their Applications," August 8, 2025







Let $p_n(z) = \prod_{j=1}^5 (z - \frac{X_j}{z})$.

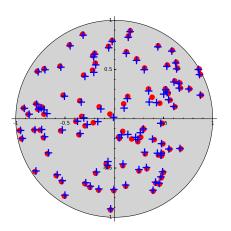


Let
$$p_n(z) = \prod_{j=1}^5 (z - \frac{X_j}{z})$$
.

Then, w_1, w_2, w_3, w_4 are the critical points of $p_n(z)$.

Polynomials with random roots

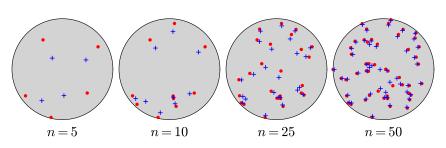
Roots and critical points of
$$p_{100}(z) = \prod_{i=1}^{100} (z - X_i)$$
.



 X_j are i.i.d. uniform on the unit disk

Polynomials with random roots

Roots and critical points of $p_n(z) = \prod_{j=1}^n (z - X_j)$ for growing n.



 X_j are i.i.d. uniform on the unit disk

Common models:

• Polynomials with random coefficients

$$p_n(z) = A_0 + A_1 z + A_2 z^2 + \dots + A_n z^n = \sum_{j=0}^n A_j z^j$$

Common models:

• Polynomials with random coefficients

$$p_n(z) = A_0 + A_1 z + A_2 z^2 + \dots + A_n z^n = \sum_{j=0}^n A_j z^j$$

Characteristic polynomials of random matrices

$$p_n(z) = \det\left(zI - M_n\right)$$

Common models:

• Polynomials with random coefficients

$$p_n(z) = A_0 + A_1 z + A_2 z^2 + \dots + A_n z^n = \sum_{j=0}^n A_j z^j$$

Characteristic polynomials of random matrices

$$p_n(z) = \det\left(zI - M_n\right)$$

Polynomials with random roots

$$p_n(z) = (z - X_1)(z - X_2) \cdots (z - X_n) = \prod_{j=1}^n (z - X_j)$$

Common models:

• Polynomials with random coefficients

$$p_n(z) = A_0 + A_1 z + A_2 z^2 + \dots + A_n z^n = \sum_{j=0}^n A_j z^j$$

Characteristic polynomials of random matrices

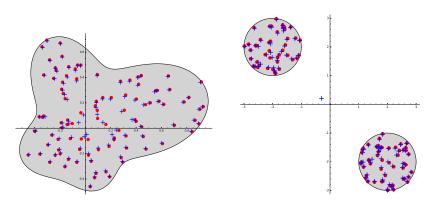
$$p_n(z) = \det\left(zI - M_n\right)$$

Polynomials with i.i.d. roots

$$p_n(z) = (z - X_1)(z - X_2) \cdots (z - X_n) = \prod_{j=1}^n (z - X_j)$$

Polynomials with random roots - examples

Roots and critical points of
$$p_{100}(z) = \prod_{i=1}^{100} (z - X_i)$$
.

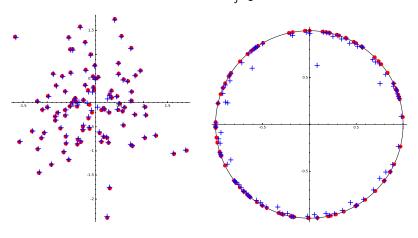


 X_i are i.i.d. uniform on the blob

 X_j are i.i.d. uniform on two disks

Polynomials with random roots - examples

Roots and critical points of
$$p_{100}(z) = \prod_{i=1}^{100} (z - X_i)$$
.

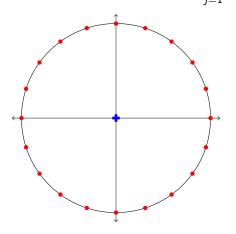


 X_j are i.i.d. complex normal

 X_j are i.i.d. uniform on the circle

A counterexample

Roots and critical points of $p_{20}(z) = z^{20} - 1 = \prod_{i=1}^{20} (z - X_i)$.



 X_j are the *n*th roots of unity

Suppose X_1, X_2, \dots, X_n are iid with distribution μ . Then,

$$\frac{p_n'(z)}{p_n(z)} = \sum_{j=1}^n \frac{1}{z - X_j}$$

Suppose X_1, X_2, \dots, X_n are iid with distribution μ . Then,

$$\frac{p'_n(z)}{p_n(z)} = \sum_{j=1}^n \frac{1}{z - X_j}$$

$$\frac{1}{n} p'_n(z) = \frac{1}{n} \sum_{j=1}^n \frac{1}{z - X_j} \cdot p_n(z).$$

Suppose X_1, X_2, \dots, X_n are iid with distribution μ . Then,

$$\frac{p'_n(z)}{p_n(z)} = \sum_{j=1}^n \frac{1}{z - X_j}$$
$$\frac{1}{n} p'_n(z) = \frac{1}{n} \sum_{j=1}^n \frac{1}{z - X_j} \cdot p_n(z).$$

So the zeros of p'_n are approximately the zeros of p_n provided that e.g.

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{z-X_{i}}\approx \mathbb{E}\left[\frac{1}{z-X_{1}}\right].$$

Suppose X_1, X_2, \dots, X_n are iid with distribution μ . Then,

$$\frac{p'_n(z)}{p_n(z)} = \sum_{j=1}^n \frac{1}{z - X_j}$$
$$\frac{1}{n} p'_n(z) = \frac{1}{n} \sum_{j=1}^n \frac{1}{z - X_j} \cdot p_n(z).$$

So the zeros of p'_n are approximately the zeros of p_n provided that e.g.

$$\frac{1}{n}\sum_{j=1}^{n}\frac{1}{z-X_{j}}\approx \mathbb{E}\left[\frac{1}{z-X_{1}}\right].$$

$$\frac{1}{m_{\mu}(z)}$$

The Cauchy–Steiltjes transform of μ is $m_{\mu}(z) := \int_{\mathbb{C}} \frac{1}{z-x} \, d\mu(x)$.

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

$$\bullet \ p_n(z) = \prod_{j=1}^n (z - X_j)$$

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

- $\bullet \ p_n(z) = \prod_{j=1}^n (z X_j)$
 - $ightharpoonup X_j$ are independently chosen complex numbers

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

- $\bullet \ p_n(z) = \prod_{j=1}^n (z X_j)$
 - $ightharpoonup X_j$ are independently chosen complex numbers
 - \blacktriangleright X_j have distribution μ

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

- $\bullet \ p_n(z) = \prod_{j=1}^n (z X_j)$
 - \triangleright X_i are independently chosen complex numbers
 - \blacktriangleright X_j have distribution μ
- w_1, \ldots, w_{n-1} denote the critical points of p_n

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

Suppose:

- $p_n(z) = \prod_{j=1}^n (z X_j)$
 - \triangleright X_j are independently chosen complex numbers
 - \triangleright X_i have distribution μ
- w_1, \ldots, w_{n-1} denote the critical points of p_n

Theorem (Kabluchko, 2015)

For a bounded, continuous function $f: \mathbb{C} \to \mathbb{R}$,

$$\left(\frac{1}{n}\sum_{j=1}^n f(X_j) - \frac{1}{n-1}\sum_{j=1}^{n-1} f(w_j)\right) \xrightarrow{prob.} 0.$$

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

Suppose:

- $\bullet \ p_n(z) = \prod_{j=1}^n (z X_j)$
 - $ightharpoonup X_j$ are independently chosen complex numbers
 - \triangleright X_i have distribution μ
- w_1, \ldots, w_{n-1} denote the critical points of p_n

Theorem (O'Rourke-W., 2020)

Suppose μ is "nice." Then, with high probability,

$$\min_{\sigma \in S_{n-1}} \frac{1}{n-1} \sum_{i=1}^{n-1} \left| X_j - w_{\sigma(j)} \right| \leq \frac{C(\ln n)^9}{n}.$$

Pemantle–Rivin (2013), Subramanian (2012), Kabluchko (2015), Reddy (2016), O'Rourke (2016), Byun–Lee–Reddy (2018), O'Rourke–W. (2018, 2020), Angst–Malicet–Poly (2023), Michelen–Vu (2024)

Suppose:

- $\bullet \ p_n(z) = \prod_{i=1}^n (z X_i)$
 - \triangleright X_i are independently chosen deterministic complex numbers
 - \blacktriangleright X_j have distribution μ $\frac{1}{n}\sum_{i=1}^n f(X_i) \to \int f d\mu$ for $f \in C_c(\mathbb{C})$
- w_1, \ldots, w_{n-1} denote the critical points of p_n

Theorem (Totik, 2019)

If $supp(\mu)$ is compact with connected complement, for $f \in C_c(\mathbb{C})$,

$$\left(\frac{1}{n}\sum_{i=1}^{n}f(X_{j})-\frac{1}{n-1}\sum_{i=1}^{n-1}f(w_{j})\right)\to 0.$$

Hanin (2015, 2017), O'Rourke–W. (2018, 2020), Kabluchko–Seidel (2019)

Hanin (2015, 2017), O'Rourke–W. (2018, 2020), Kabluchko–Seidel (2019)

•
$$p_n(z) = (z - \xi) \prod_{j=1}^n (z - X_j)$$

Hanin (2015, 2017), O'Rourke–W. (2018, 2020), Kabluchko–Seidel (2019)

- $p_n(z) = (z \xi) \prod_{j=1}^n (z X_j)$
 - $lackbox{} X_j$ are iid with distribution μ and bounded density f

Hanin (2015, 2017), O'Rourke–W. (2018, 2020), Kabluchko–Seidel (2019)

- $p_n(z) = (z \xi) \prod_{j=1}^n (z X_j)$
 - \blacktriangleright X_j are iid with distribution μ and bounded density f
 - ξ is fixed with $m_{\mu}(\xi) \neq 0$, $f(\xi) \neq 0$, f continuous at ξ

Hanin (2015, 2017), O'Rourke–W. (2018, 2020), Kabluchko–Seidel (2019)

Suppose:

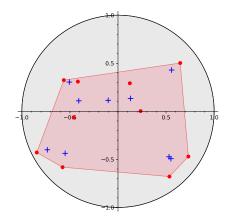
- $p_n(z) = (z \xi) \prod_{i=1}^n (z X_i)$
 - \blacktriangleright X_i are iid with distribution μ and bounded density f
 - ξ is fixed with $m_{\mu}(\xi) \neq 0$, $f(\xi) \neq 0$, f continuous at ξ

Theorem (Kabluchko-Seidel, 2019; O'Rourke-W., 2020)

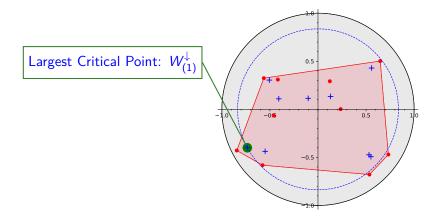
For large enough n, the nearest critical point w to ξ satisfies

$$w pprox \xi - rac{1}{m_{\mu}(\xi)} rac{1}{n} + rac{\sqrt{\pi f(\xi)}}{[m_{\mu}(\xi)]^2} rac{\sqrt{\ln n}}{n^{3/2}} \cdot N,$$

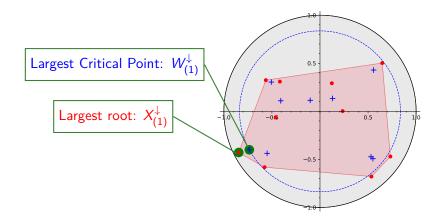
where N has a complex standard normal distribution.



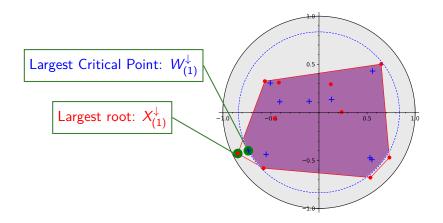
Theorem (Gauss-Lucas Theorem)



Theorem (Gauss-Lucas Theorem)

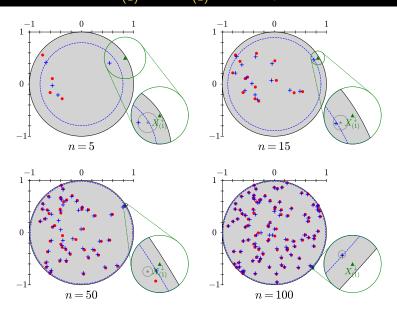


Theorem (Gauss-Lucas Theorem)



Theorem (Gauss-Lucas Theorem)

Pairing between $W_{(1)}^{\downarrow}$ and $X_{(1)}^{\downarrow}$ when X_j are uniform on disk

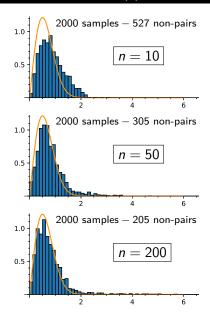


How does $W_{(1)}^{\downarrow}$ fluctuate about $(1 - n^{-1}) \cdot X_{(1)}^{\downarrow}$?

Histograms of draws from

$$\frac{n^{3/2}}{\sqrt{\ln n}} \left| W_{(1)}^{\downarrow} - \left(1 - n^{-1}\right) \cdot X_{(1)}^{\downarrow} \right|,$$

for X_j uniform in the unit disk.



How does $W_{(1)}^{\downarrow}$ fluctuate about $(1 - n^{-1}) \cdot X_{(1)}^{\downarrow}$?

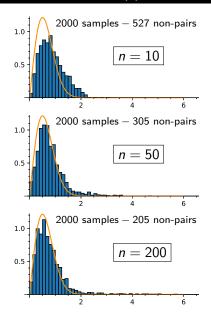
Histograms of draws from

$$\frac{n^{3/2}}{\sqrt{\ln n}} \left| W_{(1)}^{\downarrow} - \left(1 - n^{-1}\right) \cdot X_{(1)}^{\downarrow} \right|,$$

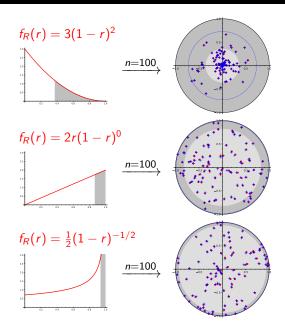
for X_j uniform in the unit disk.

Limiting fluctuations are complex normal with modulus having a Rayleigh distribution:

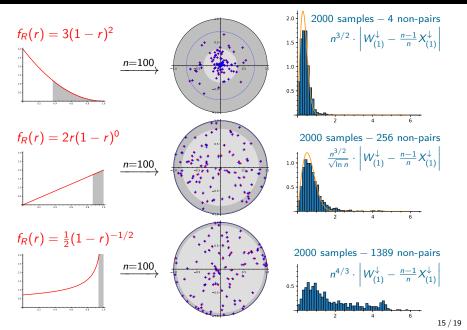
$$f(x) = 4xe^{-2x^2} \longrightarrow$$



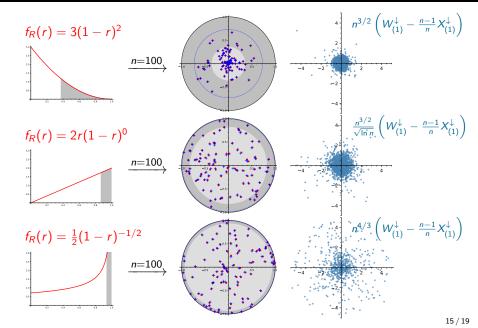
How do the fluctuations depend on the distribution of X_j ?



How do the fluctuations depend on the distribution of X_j ?



How do the fluctuations depend on the distribution of X_j ?



Suppose X_i are iid with radially symmetric distribution on unit disk

Suppose X_i are iid with radially symmetric distribution on unit disk

 \bullet \exists radial density $f_R(r)$ in a neighborhood of the disk's edge

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

There is an $\varepsilon > 0$, so that with high probability...

• if X_i is among the largest n^{ε} roots of $p_n = \prod_{j=1}^n (z - X_j)$, there is precisely one critical point W_i with

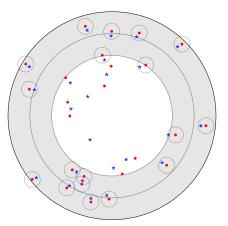
$$|W_i - (1 - n^{-1})X_i| = o(1/n);$$

② if W is among the largest n^{ε} critical points of p_n , there is precisely one one root, X_{i_W} with

$$\left|W - (1 - n^{-1})X_{i_W}\right| = o(1/n).$$

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$



Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

With high probability, every c.p. W of $p_n = \prod_{j=1}^n (z - X_j)$ satisfies

$$|W| < (1 - n^{-1}) |X_{(1)}^{\downarrow}| + o(n^{-1}) < 1 - n^{-1},$$

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

With high probability, every c.p. W of $p_n = \prod_{i=1}^n (z - X_i)$ satisfies

$$|W| < (1 - n^{-1}) |X_{(1)}^{\downarrow}| + o(n^{-1}) < 1 - n^{-1},$$

and provided $\lim_{r \to 1^-} \frac{f_R(r)}{(1-r)^{\alpha}}$ exists,

$$\frac{\mathfrak{a}_n}{e^{\sqrt{-1}\arg(X_{(1)}^\downarrow)}}\cdot\left(W_{(1)}^\downarrow-X_{(1)}^\downarrow(1-n^{-1})\right)\stackrel{d}{\to}\begin{cases}N & \text{if }\alpha\geq0\\\mathcal{H}_{2+\alpha} & \text{if }\alpha<0,\end{cases}$$

where N has a complex normal distribution, and $\mathcal{H}_{2+\alpha}$ is a complex $(2+\alpha)$ -stable random variable,

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

With high probability, every c.p. W of $p_n = \prod_{i=1}^n (z - X_i)$ satisfies

$$|W| < (1 - n^{-1}) |X_{(1)}^{\downarrow}| + o(n^{-1}) < 1 - n^{-1},$$

and provided $\lim_{r\to 1^-} \frac{f_R(r)}{(1-r)^{\alpha}}$ exists,

$$\frac{\mathfrak{a}_n}{e^{\sqrt{-1}\arg(X_{(1)}^\downarrow)}}\cdot \left(W_{(1)}^\downarrow-X_{(1)}^\downarrow(1-n^{-1})\right) \xrightarrow{d} \begin{cases} N & \text{if } \alpha \geq 0 \\ \mathcal{H}_{2+\alpha} & \text{if } \alpha < 0, \end{cases}$$

where
$$a_n := \begin{cases} n^{\frac{3}{2}} & \text{if } \alpha > 0\\ n^{\frac{3}{2}}/\log n & \text{if } \alpha = 0\\ n^{\frac{3+2\alpha}{2+\alpha}} & \text{if } \alpha < 0. \end{cases}$$

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

With high probability, every c.p. W of $p_n = \prod_{i=1}^n (z - X_i)$ satisfies

$$|W| < (1 - n^{-1}) |X_{(1)}^{\downarrow}| + o(n^{-1}) < 1 - n^{-1},$$

and provided $\lim_{r\to 1^-} \frac{f_R(r)}{(1-r)^{\alpha}}$ exists,

$$\frac{\mathfrak{a}_{\boldsymbol{n}}}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}}\cdot\left(W_{(1)}^{\downarrow}-X_{(1)}^{\downarrow}(1-\boldsymbol{n}^{-1})\right)\overset{d}{\to}\begin{cases}N & \text{if }\alpha\geq0\\ \mathcal{H}_{2+\alpha} & \text{if }\alpha<0,\end{cases}$$

where
$$\mathfrak{a}_n := \begin{cases} n^{\frac{3}{2}} & \text{if } \alpha > 0\\ n^{\frac{3}{2}}/\log n & \text{if } \alpha = 0\\ n^{\frac{3+2\alpha}{2+\alpha}} & \text{if } \alpha < 0. \end{cases}$$

Suppose X_i are iid with radially symmetric distribution on unit disk

- \exists radial density $f_R(r)$ in a neighborhood of the disk's edge
- $c_{\mu} \leq \frac{f_R(r)}{(1-r)^{\alpha}} \leq C_{\mu}$ for some $\alpha > -0.095$ and $c_{\mu}, C_{\mu} > 0$

Theorem (O'Rourke-W.)

With high probability, every c.p. W of $p_n = \prod_{i=1}^n (z - X_i)$ satisfies

$$|W| < (1 - n^{-1}) |X_{(1)}^{\downarrow}| + o(n^{-1}) < 1 - n^{-1},$$

and provided $\lim_{r\to 1^-} \frac{f_R(r)}{(1-r)^{\alpha}}$ exists,

$$\frac{\mathfrak{a}_n}{e^{\sqrt{-1}\arg(X_{(1)}^\downarrow)}}\cdot \left(W_{(1)}^\downarrow-X_{(1)}^\downarrow(1-n^{-1})\right) \xrightarrow{d} \begin{cases} N & \text{if } \alpha \geq 0 \\ \mathcal{H}_{2+\alpha} & \text{if } \alpha < 0, \end{cases}$$

where
$$a_n := \begin{cases} n^{\frac{3}{2}} & \text{if } \alpha > 0\\ n^{\frac{3}{2}}/\log n & \text{if } \alpha = 0\\ n^{\frac{3+2\alpha}{2+\alpha}} & \text{if } \alpha < 0. \end{cases}$$

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{\sum_{j \neq i} \frac{1}{W - X_i}} \text{ for any i.}$$
 (2)

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p_n'(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p_n'(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

We have three tasks:

1 Show $z \mapsto \frac{1}{n} \sum_{j \neq i_z} \frac{1}{z - X_j}$ is Lipschitz and $\approx m_{\mu}(z)$ at disk edge.

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

- Show $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_i}$ is Lipschitz and $\approx m_\mu(z)$ at disk edge.
- ② Use step ④ to "identify" and "isolate" $\frac{1}{n} \sum_{j=1}^{n} \frac{X_j}{1-X_i}$ in (2).

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

- Show $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_i}$ is Lipschitz and $\approx m_\mu(z)$ at disk edge.
- ② Use step ④ to "identify" and "isolate" $\frac{1}{n} \sum_{j=1}^{n} \frac{X_j}{1-X_i}$ in (2).
- **1** Determine limiting behavior of $\frac{1}{n} \sum_{j=1}^{n} \frac{X_{j}}{1-X_{j}}$.

Suppose $W \neq X_j$ is a critical point of $p_n(z) = \prod_{j=1}^n (z - X_j)$. Then,

$$0 = \frac{p'_n(W)}{p_n(W)} = \sum_{i=1}^n \frac{1}{W - X_i}$$
 (1)

which implies

$$W = X_i - \frac{1}{n} \frac{1}{\frac{1}{n} \sum_{j \neq i} \frac{1}{W - X_i}}$$
 for any i. (2)

- Show $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_i}$ is Lipschitz and $\approx m_\mu(z)$ at disk edge.
- Use step to "identify" and "isolate" $\frac{1}{n} \sum_{j=1}^{n} \frac{X_j}{1-X_i}$ in (2).
- **1** Determine limiting behavior of $\frac{1}{n} \sum_{j=1}^{n} \frac{X_j}{1-X_j}$.

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}}$$
(3)

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}}$$
(3)

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\left[\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}\right]}$$
(3)

$$\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}} \approx \frac{1}{n} \sum_{j=2}^{n} \frac{1}{e^{\sqrt{-1} \arg(X_{(1)}^{\downarrow})} - X_{(j)}^{\downarrow}}$$

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}}$$
(3)

$$\begin{split} \frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}} &\approx \frac{1}{n} \sum_{j=2}^{n} \frac{1}{e^{\sqrt{-1} \arg(X_{(1)}^{\downarrow})} - X_{(j)}^{\downarrow}} \\ &= e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})}} \end{split}$$

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}}$$
(3)

$$\begin{split} \frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}} &\approx \frac{1}{n} \sum_{j=2}^{n} \frac{1}{e^{\sqrt{-1} \arg(X_{(1)}^{\downarrow})} - X_{(j)}^{\downarrow}} \\ &= e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})}} \\ &\stackrel{\text{d}}{=} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow}} \end{split}$$

$$W_{(1)}^{\downarrow} = X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{\frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}}}$$
(3)

$$\begin{split} \frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}} &\approx \frac{1}{n} \sum_{j=2}^{n} \frac{1}{e^{\sqrt{-1} \arg(X_{(1)}^{\downarrow})} - X_{(j)}^{\downarrow}} \\ &= e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})}} \\ &\stackrel{\text{d}}{=} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow}} \\ &\approx e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{j}} \end{split}$$

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{j}}}$$
(3)

$$\begin{split} \frac{1}{n} \sum_{j=2}^{n} \frac{1}{W_{(1)}^{\downarrow} - X_{(j)}^{\downarrow}} &\approx \frac{1}{n} \sum_{j=2}^{n} \frac{1}{e^{\sqrt{-1} \arg(X_{(1)}^{\downarrow})} - X_{(j)}^{\downarrow}} \\ &= e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})}} \\ &\stackrel{\text{d}}{=} e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=2}^{n} \frac{1}{1 - X_{(j)}^{\downarrow}} \\ &\approx e^{-\sqrt{-1} \arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{j}} \end{split}$$

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{i}}}$$
(3)

Suppose $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_j}$ is Lipschitz, and $W_{(1)}^\downarrow$ pairs to $X_{(1)}^\downarrow\dots$

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 - X_i}}$$
(3)

Subtract $(1-1/n)\cdot X_{(1)}^\downarrow$ and multiply by $ne^{-\sqrt{-1}\arg(X_{(1)}^\downarrow)}$ to obtain

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^\downarrow)}}\cdot\left(W_{(1)}^\downarrow-\frac{n-1}{n}\cdot X_{(1)}^\downarrow\right)\approx\left|X_{(1)}^\downarrow\right|-\frac{1}{\frac{1}{n}\sum_{j=1}^n\frac{1}{1-X_j}}$$

Suppose $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_j}$ is Lipschitz, and $W_{(1)}^{\downarrow}$ pairs to $X_{(1)}^{\downarrow}\dots$

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{i}}}$$
(3)

Subtract $(1-1/n)\cdot X_{(1)}^\downarrow$ and multiply by $ne^{-\sqrt{-1}\arg(X_{(1)}^\downarrow)}$ to obtain

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}}\cdot\left(W_{(1)}^{\downarrow}-\frac{n-1}{n}\cdot X_{(1)}^{\downarrow}\right)\approx\underbrace{\left|X_{(1)}^{\downarrow}\right|}_{\downarrow \mathbf{d}}-\frac{1}{\frac{1}{n}\sum_{j=1}^{n}\frac{1}{1-X_{j}}}$$

Suppose $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_j}$ is Lipschitz, and $W_{(1)}^{\downarrow}$ pairs to $X_{(1)}^{\downarrow}$...

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 - X_i}}$$
(3)

Subtract $(1-1/n)\cdot X_{(1)}^\downarrow$ and multiply by $ne^{-\sqrt{-1}\arg(X_{(1)}^\downarrow)}$ to obtain

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}}\cdot\left(W_{(1)}^{\downarrow}-\frac{n-1}{n}\cdot X_{(1)}^{\downarrow}\right)\approx\underbrace{\left|X_{(1)}^{\downarrow}\right|}_{\substack{\downarrow d\\1}}-\frac{1}{\frac{1}{n}\sum_{j=1}^{n}\frac{1}{1-X_{j}}}$$

For large n, we have

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}} \cdot \left(W_{(1)}^{\downarrow} - \frac{n-1}{n} \cdot X_{(1)}^{\downarrow}\right) \approx \frac{\frac{1}{n} \sum_{j=1}^{n} \frac{X_{j}}{1 - X_{j}}}{\frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{j}}}$$

Suppose $z\mapsto \frac{1}{n}\sum_{j\neq i_z}\frac{1}{z-X_j}$ is Lipschitz, and $W_{(1)}^{\downarrow}$ pairs to $X_{(1)}^{\downarrow}$...

$$W_{(1)}^{\downarrow} \approx X_{(1)}^{\downarrow} - \frac{1}{n} \cdot \frac{1}{e^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})} \cdot \frac{1}{n} \sum_{j=1}^{n} \frac{1}{1 - X_{j}}}$$
(3)

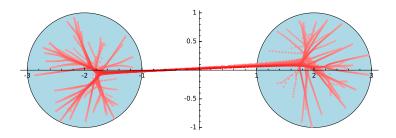
Subtract $(1-1/n) \cdot X_{(1)}^{\downarrow}$ and multiply by $ne^{-\sqrt{-1}\arg(X_{(1)}^{\downarrow})}$ to obtain

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}}\cdot\left(W_{(1)}^{\downarrow}-\frac{n-1}{n}\cdot X_{(1)}^{\downarrow}\right)\approx\underbrace{\left|X_{(1)}^{\downarrow}\right|}_{\substack{\downarrow d\\1}}-\frac{1}{\frac{1}{n}\sum_{j=1}^{n}\frac{1}{1-X_{j}}}$$

For large n, we have

$$\frac{n}{e^{\sqrt{-1}\arg(X_{(1)}^{\downarrow})}} \cdot \left(W_{(1)}^{\downarrow} - \frac{n-1}{n} \cdot X_{(1)}^{\downarrow}\right) \approx \frac{\frac{1}{n}\sum_{j=1}^{n}\frac{\lambda_{j}}{1-X_{j}}}{\frac{1}{n}\sum_{j=1}^{n}\frac{1}{1-X_{j}}} \stackrel{d}{\to} m_{\mu}(1) = 1$$

Thank you!



Thank you!

