Asymptotic root distribution and free probability

Daniel Perales University of Notre Dame

Random Polynomials and their Applications, ICERM

August 8, 2025.

- Motivation
- Pree probability
- Finite Free probability
- Applications
- Future directions

Polynomials

 \mathcal{P}_d is the of monic deterministic polynomials of degree d. $\mathcal{P}_d(K)$ if all roots contained in the set $K \subset \mathbb{C}$.

Polynomials

 \mathcal{P}_d is the of monic deterministic polynomials of degree d. $\mathcal{P}_d(K)$ if all roots contained in the set $K \subset \mathbb{C}$.

For $p \in \mathcal{P}_d$ we use the notation:

$$p(x) = \prod_{k=1}^{d} (x - \lambda_k(p)) = \sum_{k=0}^{d} x^{d-k} (-1)^k \binom{d}{k} e_k(p).$$

Roots: $\lambda_1(p), \ldots, \lambda_d(p)$.

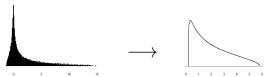
Coefficients:
$$\mathbf{e}_{k}(p) := \frac{1}{\binom{d}{k}} \sum_{1 < i_{1} < \cdots < i_{k} < d} \lambda_{i_{1}}(p) \cdots \lambda_{i_{k}}(p).$$

Empirical root distribution: $\mu \llbracket p \rrbracket := \frac{1}{d} \sum_{i=1}^d \delta_{\lambda_i(p)}$

Notice that

$$e_k\left(\frac{1}{d}p'\right) = e_k\left(p\right)$$

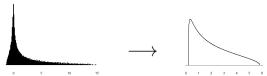
Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

• Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)

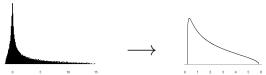
Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

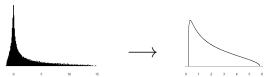
- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .

Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability
- Arizmendi, Fujie, P, Ueda '24+. Proof for unbounded maesures

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .

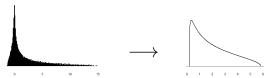


Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability
- Arizmendi, Fujie, P, Ueda '24+. Proof for unbounded maesures

Question 2. What is the limiting behaviour of $e_k(p_d)$?

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



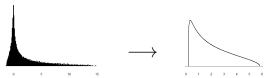
Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability
- Arizmendi, Fujie, P, Ueda '24+. Proof for unbounded maesures

Question 2. What is the limiting behaviour of $e_k(p_d)$?

• VanAssche, Fano, Ortolani '87. Assuming $p_d \in \mathcal{P}_d([a,0])$, μ has no atom at 0

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



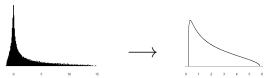
Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability
- Arizmendi, Fujie, P, Ueda '24+. Proof for unbounded maesures

Question 2. What is the limiting behaviour of $e_k(p_d)$?

- VanAssche, Fano, Ortolani '87. Assuming $p_d \in \mathcal{P}_d([a,0])$, μ has no atom at 0
- Arizmendi, Fujie, P, Ueda '24+. $p_d \in \mathcal{P}_d([0,\infty))$, equiv $\mathcal{P}_d((-\infty,0])$

Framework: $(p_d)_{d=1}^{\infty}$ is a sequence of polynomials with $p_d \in \mathcal{P}_d(\mathbb{R})$, μ is a compactly supported measure in \mathbb{R} , and $\mu \llbracket p_d \rrbracket$ converges weakly to μ .



Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor td \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor td \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

- Steinerberger '19, '23. Conjecture, (relation to Shlyakthenko, Tao '22)
- Hoskins, Kabluchko '23. Proof for compactly supported
- Arizmendi, Garza-Vargas, P '23. New proof using finite free probability
- Arizmendi, Fujie, P, Ueda '24+. Proof for unbounded maesures

Question 2. What is the limiting behaviour of $e_k(p_d)$?

- VanAssche, Fano, Ortolani '87. Assuming $p_d \in \mathcal{P}_d([a,0])$, μ has no atom at 0
- Arizmendi, Fujie, P, Ueda '24+. $p_d \in \mathcal{P}_d([0,\infty))$, equiv $\mathcal{P}_d((-\infty,0])$

Free probability is a non-commutative probability (use freeness independence). It is very useful to understand the spectrum of $N \times N$ random matrices when $N \to \infty$.

Free probability is a non-commutative probability (use freeness independence).

It is very useful to understand the spectrum of $N \times N$ random matrices when $N \to \infty$.

Independence (in the classical setting) can be viewed a universal rule to compute the mixed moments in terms of the moments of the individual variables:

E.g. if X, Y are independent random variables with finite moments, then

$$\mathbb{E}[X^3Y^4] = \mathbb{E}[X^3]\mathbb{E}[Y^4].$$

Free probability is a non-commutative probability (use freeness independence).

It is very useful to understand the spectrum of $N \times N$ random matrices when $N \to \infty$.

Independence (in the classical setting) can be viewed a universal rule to compute the mixed moments in terms of the moments of the individual variables:

E.g. if X, Y are independent random variables with finite moments, then $\mathbb{E}[X^3Y^4] = \mathbb{E}[X^3]\mathbb{E}[Y^4]$.

Freeness is a different universal rule, that takes into account non-commutativity of the space (\mathcal{A}, φ) (unital algebra with functional).

E.g. if $a, b \in \mathcal{A}$ are free random variables, then also

$$\varphi(a^3b^4) = \varphi(a^3)\varphi(b^4)$$
, but

$$\varphi(a^2bab^3) = \varphi(a^3)\varphi(b)\varphi(b^3) + \varphi(b^4)\varphi(a^2)\varphi(a) - \varphi(a^2)\varphi(b)\varphi(a)\varphi(b^3).$$

Free probability is a non-commutative probability (use freeness independence).

It is very useful to understand the spectrum of $N \times N$ random matrices when $N \to \infty$.

Independence (in the classical setting) can be viewed a universal rule to compute the mixed moments in terms of the moments of the individual variables:

E.g. if X, Y are independent random variables with finite moments, then $\mathbb{E}[X^3Y^4] = \mathbb{E}[X^3]\mathbb{E}[Y^4]$.

Freeness is a different universal rule, that takes into account non-commutativity of the space (\mathcal{A}, φ) (unital algebra with functional).

E.g. if $a,b\in\mathcal{A}$ are free random variables, then also

$$\varphi(a^3b^4) = \varphi(a^3)\varphi(b^4)$$
, but

$$\varphi(a^2bab^3) = \varphi(a^3)\varphi(b)\varphi(b^3) + \varphi(b^4)\varphi(a^2)\varphi(a) - \varphi(a^2)\varphi(b)\varphi(a)\varphi(b^3).$$

Given free random variables $a \sim \mu$ and $b \sim \nu$.

Free multiplicative convolution (\boxtimes) corresponds to the product $ab \sim \mu \boxtimes \nu$.

Free probability is a non-commutative probability (use freeness independence).

It is very useful to understand the spectrum of $N \times N$ random matrices when $N \to \infty$.

Independence (in the classical setting) can be viewed a universal rule to compute the mixed moments in terms of the moments of the individual variables:

E.g. if X, Y are independent random variables with finite moments, then $\mathbb{E}[X^3Y^4] = \mathbb{E}[X^3]\mathbb{E}[Y^4]$.

Freeness is a different universal rule, that takes into account non-commutativity of the space (\mathcal{A}, φ) (unital algebra with functional).

E.g. if $a,b\in\mathcal{A}$ are free random variables, then also

$$\varphi(a^3b^4) = \varphi(a^3)\varphi(b^4)$$
, but

$$\varphi(a^2bab^3) = \varphi(a^3)\varphi(b)\varphi(b^3) + \varphi(b^4)\varphi(a^2)\varphi(a) - \varphi(a^2)\varphi(b)\varphi(a)\varphi(b^3).$$

Given free random variables $a \sim \mu$ and $b \sim \nu$.

Free multiplicative convolution (\boxtimes) corresponds to the product $ab \sim \mu \boxtimes \nu$.

Free additive convolution (\boxplus) corresponds to sum $a + b \sim \mu \boxplus \nu$.

 $\pi = \{V_1, \dots, V_k\}$ is a **partition** of the set $\{1, \dots, n\}$ if we have the disjoint union $V_1 \cup V_2 \cup \dots \cup V_k = \{1, \dots, n\}$, we say $\pi \in \mathcal{P}(n)$.

Example: $\pi = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \in \mathcal{P}(6).$

 $\pi = \{V_1, \dots, V_k\}$ is a **partition** of the set $\{1, \dots, n\}$ if we have the disjoint union $V_1 \cup V_2 \cup \dots \cup V_k = \{1, \dots, n\}$, we say $\pi \in \mathcal{P}(n)$.

Example: $\pi = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \in \mathcal{P}(6).$

Given a sequence $(c_k)_{k=1}^{\infty}$ in \mathbb{C} , define c_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $c_{\pi} = c_3 c_2 c_1$.

 $\pi = \{V_1, \dots, V_k\}$ is a **partition** of the set $\{1, \dots, n\}$ if we have the disjoint union $V_1 \cup V_2 \cup \dots \cup V_k = \{1, \dots, n\}$, we say $\pi \in \mathcal{P}(n)$.

Example: $\pi = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \in \mathcal{P}(6).$

Given a sequence $(c_k)_{k=1}^{\infty}$ in \mathbb{C} , define c_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $c_{\pi} = c_3 c_2 c_1$.

Let $X \sim \mu$ with moments $m_n(\mu) := \mathbb{E}[X^n]$, define the **classical cumulants** $c_n(\mu)$ by the formulas:

$$m_n(\mu) = \sum_{\pi \in \mathcal{P}(n)} c_\pi(\mu), \qquad ext{for } n = 1, 2, \dots$$

 $\pi = \{V_1, \dots, V_k\}$ is a **partition** of the set $\{1, \dots, n\}$ if we have the disjoint union $V_1 \cup V_2 \cup \dots \cup V_k = \{1, \dots, n\}$, we say $\pi \in \mathcal{P}(n)$.

Example: $\pi = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \in \mathcal{P}(6).$

Given a sequence $(c_k)_{k=1}^{\infty}$ in \mathbb{C} , define c_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $c_{\pi} = c_3 c_2 c_1$.

Let $X \sim \mu$ with moments $m_n(\mu) := \mathbb{E}[X^n]$, define the **classical cumulants** $c_n(\mu)$ by the formulas:

$$m_n(\mu) = \sum_{\pi \in \mathcal{P}(n)} c_\pi(\mu), \qquad \text{for } n = 1, 2, \dots$$

Notice that $c_1(\mu) = \mathbb{E}[X]$, and $c_2(\mu) = \text{Var}[X]$.

 $\pi = \{V_1, \dots, V_k\}$ is a **partition** of the set $\{1, \dots, n\}$ if we have the disjoint union $V_1 \cup V_2 \cup \dots \cup V_k = \{1, \dots, n\}$, we say $\pi \in \mathcal{P}(n)$.

Example: $\pi = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \in \mathcal{P}(6).$

Given a sequence $(c_k)_{k=1}^{\infty}$ in \mathbb{C} , define c_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $c_{\pi} = c_3 c_2 c_1$.

Let $X \sim \mu$ with moments $m_n(\mu) := \mathbb{E}[X^n]$, define the **classical cumulants** $c_n(\mu)$ by the formulas:

$$m_n(\mu) = \sum_{\pi \in \mathcal{P}(n)} c_{\pi}(\mu), \qquad \text{for } n = 1, 2, \dots$$

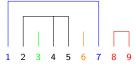
Notice that $c_1(\mu) = \mathbb{E}[X]$, and $c_2(\mu) = \text{Var}[X]$.

Cumulants linearize additive convolution: If $X \sim \mu$ and $Y \sim \nu$ are independent r.v., then for $X + Y \sim \mu * \nu$, it holds

$$c_n(\mu * \nu) = c_n(\mu) + c_n(\nu),$$
 for $n = 1, 2,$

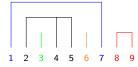
 $\pi \in \mathcal{P}(n)$ is a **non-crossing partition** if blocks do not cross.

Example: $\pi = \{\{1,7\}\{2,4,5\}\{3\}\{6\}\{8,9\}\} \in \mathcal{NC}(9).$



 $\pi \in \mathcal{P}(n)$ is a **non-crossing partition** if blocks do not cross.

Example:
$$\pi = \{\{1,7\}\{2,4,5\}\{3\}\{6\}\{8,9\}\} \in \mathcal{NC}(9).$$

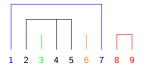


Given a sequence $(r_k)_{k=1}^{\infty}$ in \mathbb{C} , define r_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $r_{\pi} = r_2 r_3 r_1 r_1 r_2$.

Free cumulant to moment formula:
$$m_n(\mu) = \sum_{\pi \in \mathcal{NC}(n)} r_{\pi}(\mu)$$

 $\pi \in \mathcal{P}(n)$ is a **non-crossing partition** if blocks do not cross.

Example: $\pi = \{\{1,7\}\{2,4,5\}\{3\}\{6\}\{8,9\}\} \in \mathcal{NC}(9).$



Given a sequence $(r_k)_{k=1}^{\infty}$ in \mathbb{C} , define r_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $r_{\pi} = r_2 r_3 r_1 r_1 r_2$.

Free cumulant to moment formula: $m_n(\mu) = \sum r_{\pi}(\mu)$

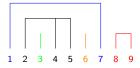
$$m_n(\mu) = \sum_{\pi \in \mathcal{NC}(n)} r_{\pi}(\mu)$$

Notice that

$$r_1(\mu) = \mathbb{E}[\mu], \qquad r_2(\mu) = \mathsf{Var}[\mu].$$

 $\pi \in \mathcal{P}(n)$ is a **non-crossing partition** if blocks do not cross.

Example:
$$\pi = \{\{1,7\}\{2,4,5\}\{3\}\{6\}\{8,9\}\} \in \mathcal{NC}(9).$$



Given a sequence $(r_k)_{k=1}^{\infty}$ in \mathbb{C} , define r_{π} for every $\pi \in \mathcal{P}(n)$. E.g. $r_{\pi} = r_2 r_3 r_1 r_1 r_2$.

Free cumulant to moment formula:
$$m_n(\mu) = \sum r_{\pi}(\mu)$$

$$m_n(\mu) = \sum_{\pi \in \mathcal{NC}(n)} r_{\pi}(\mu)$$

Notice that

$$r_1(\mu) = \mathbb{E}[\mu], \qquad r_2(\mu) = \mathsf{Var}[\mu].$$

Cumulants linearize additive convolution: If $a \sim \mu$ and $b \sim \nu$ are free r.v., then

$$r_n(\mu \boxplus \nu) = r_n(\mu) + r_n(\nu), \quad \text{for } n = 1, 2, \dots$$

$$G_{\mu}(z) := \int_{\mathbb{R}} rac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$
 Cauchy-Stieltjes transform

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$

Cauchy-Stieltjes transform

 $R_{\mu}(z) := G_{\mu}^{<-1>}(z) - \frac{1}{z} = \sum_{n=1}^{\infty} r_n(\mu) z^{n-1}$

R-transform

where ${\it G}_{\mu}^{<-1>}$ denotes inverse under composition.

$$G_{\mu}(z) := \int_{\mathbb{R}} rac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$
 Cauchy-Stieltjes transform

$$R_{\mu}(z) := G_{\mu}^{<-1>}(z) - \frac{1}{z} = \sum_{n=1}^{\infty} r_n(\mu) z^{n-1}$$

R-transform

where $G_{\mu}^{<-1>}$ denotes inverse under composition.

Then, to compute free additive convolution (\boxplus) we simply take

$$R_{\mu\boxplus\nu}(z)=R_{\mu}(z)+R_{\nu}(z).$$

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$
 Cauchy-Stieltjes transform

$$R_{\mu}(z) := G_{\mu}^{<-1>}(z) - \frac{1}{z} = \sum_{n=1}^{\infty} r_n(\mu) z^{n-1}$$

R-transform

where $G_{\mu}^{<-1>}$ denotes inverse under composition.

Then, to compute free additive convolution (\boxplus) we simply take

$$R_{\mu\boxplus\nu}(z)=R_{\mu}(z)+R_{\nu}(z).$$

$$\Psi_{\mu}(z) := \int_0^{\infty} \frac{tz}{1-tz} d\mu(t),$$

Moment Gen. Fun.

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$
 Cauchy-Stieltjes transform

$$R_{\mu}(z) := G_{\mu}^{<-1>}(z) - \frac{1}{z} = \sum_{n=1}^{\infty} r_n(\mu) z^{n-1}$$

R-transform

where $G_{\mu}^{<-1>}$ denotes inverse under composition.

Then, to compute free additive convolution (\boxplus) we simply take

$$R_{\mu\boxplus\nu}(z)=R_{\mu}(z)+R_{\nu}(z).$$

$$\Psi_{\mu}(z) := \int_0^{\infty} \frac{tz}{1-tz} d\mu(t),$$

Moment Gen. Fun.

$$S_{\mu}(z) := \frac{z+1}{z} \Psi_{\mu}^{<-1>}(z)$$

S-transform

where $\Psi_{\mu}^{<-1>}$ denotes inverse under composition.

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{1}{z-t} d\mu(t) = \sum_{n=0}^{\infty} z^{-n-1} m_n(\mu)$$
 Cauchy-Stieltjes transform

$$R_{\mu}(z) := G_{\mu}^{<-1>}(z) - \frac{1}{z} = \sum_{n=1}^{\infty} r_n(\mu) z^{n-1}$$

R-transform

where $G_{\mu}^{<-1>}$ denotes inverse under composition.

Then, to compute free additive convolution (\boxplus) we simply take

$$R_{\mu\boxplus\nu}(z)=R_{\mu}(z)+R_{\nu}(z).$$

$$\Psi_{\mu}(z) := \int_0^{\infty} \frac{tz}{1-tz} d\mu(t),$$

Moment Gen. Fun.

$$S_{\mu}(z) := \frac{z+1}{z} \Psi_{\mu}^{<-1>}(z)$$

S-transform

where $\Psi_{\mu}^{<-1>}$ denotes inverse under composition.

To compute free multiplicative convolution (\boxtimes) satisfies

$$S_{\mu\boxtimes\nu}(z)=S_{\mu}(z)S_{\nu}(z).$$

Finite Free Probability

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$e_k(p \boxtimes_d q) = e_k(p) e_k(q)$$

for
$$k = 1, 2, ..., d$$
,

$$e_{k}\left(p \boxplus_{d} q\right) = \sum_{i+j=k} {k \choose i} e_{i}\left(p\right) e_{j}\left(q\right),$$

for
$$k = 1, 2, \dots, d$$

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$e_k(p \boxtimes_d q) = e_k(p) e_k(q)$$

for
$$k = 1, 2, \ldots, d$$
,

$$e_{k}\left(p \boxplus_{d} q\right) = \sum_{i+j=k} {k \choose i} e_{i}\left(p\right) e_{j}\left(q\right),$$

for
$$k = 1, 2, \dots, d$$
.

 \boxplus_d preserves real roots (Walsh 1922) If $p, q \in \mathcal{P}_d(\mathbb{R})$ then $p \boxplus_d q \in \mathcal{P}_d(\mathbb{R})$.

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$e_k(p \boxtimes_d q) = e_k(p) e_k(q),$$

for
$$k = 1, 2, \ldots, d$$
,

$$e_{k}\left(p \boxplus_{d} q\right) = \sum_{i+j=k} {k \choose i} e_{i}\left(p\right) e_{j}\left(q\right),$$

for
$$k = 1, 2, ..., d$$
.

 \boxplus_d preserves real roots (Walsh 1922) If $p, q \in \mathcal{P}_d(\mathbb{R})$ then $p \boxplus_d q \in \mathcal{P}_d(\mathbb{R})$.

 \boxtimes_d preserves positive real roots (Szegő 1922) If

$$p, q \in \mathcal{P}_d(\mathbb{R}_{>0}) \quad \Rightarrow \quad p \boxtimes_d q \in \mathcal{P}_d(\mathbb{R}_{>0}).$$

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$e_k(p \boxtimes_d q) = e_k(p) e_k(q)$$

for
$$k = 1, 2, ..., d$$
,

$$e_{k}\left(p \boxplus_{d} q\right) = \sum_{i+j=k} {k \choose i} e_{i}\left(p\right) e_{j}\left(q\right),$$

for
$$k = 1, 2, ..., d$$
.

 \boxplus_d preserves real roots (Walsh 1922) If $p, q \in \mathcal{P}_d(\mathbb{R})$ then $p \boxplus_d q \in \mathcal{P}_d(\mathbb{R})$.

 \boxtimes_d preserves positive real roots (Szegő 1922) If $p, q \in \mathcal{P}_d(\mathbb{R}_{>0}) \Rightarrow p \boxtimes_d q \in \mathcal{P}_d(\mathbb{R}_{>0})$.

Basic properties: interpretation in terms of differential operators, bilinear, commutative, associative, identity $(x^d \text{ for } \boxplus_d, (x-1)^d \text{ for } \boxtimes_d)$, preserve interlacing, preserve root separation.

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$e_k(p \boxtimes_d q) = e_k(p) e_k(q),$$

for
$$k = 1, 2, ..., d$$
,

$$e_{k}\left(p \boxplus_{d} q\right) = \sum_{i+j=k} {k \choose i} e_{i}\left(p\right) e_{j}\left(q\right),$$

for
$$k = 1, 2, ..., d$$
.

 \boxplus_d preserves real roots (Walsh 1922) If $p, q \in \mathcal{P}_d(\mathbb{R})$ then $p \boxplus_d q \in \mathcal{P}_d(\mathbb{R})$.

 \boxtimes_d preserves positive real roots (Szegő 1922) If

$$p, q \in \mathcal{P}_d(\mathbb{R}_{>0}) \quad \Rightarrow \quad p \boxtimes_d q \in \mathcal{P}_d(\mathbb{R}_{>0}).$$

Basic properties: interpretation in terms of differential operators, bilinear, commutative, associative, identity $(x^d \text{ for } \boxplus_d, (x-1)^d \text{ for } \boxtimes_d)$, preserve interlacing, preserve root separation.

Since $e_i(p') = de_i(p)$, then

$$d(p \boxplus_d a)' = p' \boxplus_{d-1} a'$$

and
$$d(p \boxtimes_d q)' = p' \boxtimes_{d-1} q'$$

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim \mathsf{Haar}$ measure over unitary matrices.

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim$ Haar measure over unitary matrices. Or $Q \sim$ Haar measure over orthogonal matrices.

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim$ Haar measure over unitary matrices.

Or $Q \sim$ Haar measure over orthogonal matrices.

Or $Q \sim$ uniformly distributed over signed permutation matrices:

$$p \boxplus_d q = rac{1}{d!} \sum_{\sigma \in \mathcal{S}_d} \prod_{i=1}^d [x - (\lambda_i(p) + \lambda_{\sigma(i)}(q))]$$
 and

$$p \boxtimes_d q = \frac{1}{d!} \sum_{\sigma \in S_d} \prod_{i=1}^d [x - \lambda_i(p) \lambda_{\sigma(i)}(q)]$$

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim$ Haar measure over unitary matrices.

Or $Q \sim$ Haar measure over orthogonal matrices.

Or $Q \sim$ uniformly distributed over signed permutation matrices:

$$\rho \boxplus_d q = \frac{1}{d!} \sum_{\sigma \in \mathcal{S}_d} \prod_{i=1}^d [x - (\lambda_i(\rho) + \lambda_{\sigma(i)}(q))]$$
 and

$$p \boxtimes_d q = \frac{1}{d!} \sum_{\sigma \in S_d} \prod_{i=1}^d [x - \lambda_i(p) \lambda_{\sigma(i)}(q)]$$

Note: This was part of a larger project on interlacing families of polynomials where MSS solved the Kadison-Singer conjecture and the existence of Ramanujan graphs of all sizes.

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim$ Haar measure over unitary matrices.

Or $Q \sim$ Haar measure over orthogonal matrices.

Or $Q \sim$ uniformly distributed over signed permutation matrices:

$$p \boxplus_d q = rac{1}{d!} \sum_{\sigma \in S_d} \prod_{i=1}^d [x - (\lambda_i(p) + \lambda_{\sigma(i)}(q))]$$
 and

$$p \boxtimes_d q = \frac{1}{d!} \sum_{\sigma \in S_d} \prod_{i=1}^d [x - \lambda_i(p) \lambda_{\sigma(i)}(q)]$$

Note: This was part of a larger project on interlacing families of polynomials where MSS solved the Kadison-Singer conjecture and the existence of Ramanujan graphs of all sizes.

[Marcus '16] Establishes a connection with free probability:

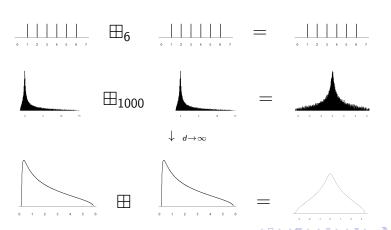
When $d \to \infty$, finite free convolutions should tend to free convolutions $(\boxplus_d \to \boxplus)$.

Studies Finite Free Probability and gives basic examples like LLN, CLT, Poisson limit.

Finite free convolutions tend to free convolutions

Consider sequences $\mathfrak{p}=(p_d)_{d=1}^\infty$ and $\mathfrak{q}=(q_d)_{d=1}^\infty$ with $p_d,q_d\in\mathcal{P}_d(\mathbb{R})$ and limiting measures $\mu,\nu\in\mathcal{M}_c(\mathbb{R})$: $\mu\,\llbracket p_d\rrbracket\longrightarrow\mu$ and $\mu\,\llbracket q_d\rrbracket\longrightarrow\nu$.

[Marcus '16, Arizmendi, P '16] Then $\mu \llbracket p_d \boxplus_d q_d \rrbracket \longrightarrow \mu \boxplus \nu$ [Arizmendi, Garza-Vargas, P '21] Then $\mu \llbracket p_d \boxtimes_d q_d \rrbracket \longrightarrow \mu \boxtimes \nu$.



Define finite free cumulants

$$\kappa_n^{(d)}(\rho) := \frac{(-d)^{n-1}}{(n-1)!} \sum_{\pi \in P(n)} (-1)^{\#\pi-1} (\#\pi-1)! \, e_\pi(\rho) \qquad \text{ for } n=1,2,\ldots,d,$$

Define finite free cumulants

$$\kappa_n^{(d)}(p) := \frac{(-d)^{n-1}}{(n-1)!} \sum_{\pi \in P(n)} (-1)^{\#\pi-1} (\#\pi-1)! \; \mathsf{e}_\pi(p) \qquad \text{ for } n=1,2,\ldots,d,$$

• Provide a moment-cumulant formula (using Newton formulas)

Define finite free cumulants

$$\kappa_n^{(d)}(p) := \frac{(-d)^{n-1}}{(n-1)!} \sum_{\pi \in P(n)} (-1)^{\#\pi-1} (\#\pi-1)! \; \mathsf{e}_\pi(p) \qquad \text{ for } n=1,2,\ldots,d,$$

- Provide a moment-cumulant formula (using Newton formulas)
- Show that if $\mu \llbracket p_d \rrbracket \longrightarrow \mu$ then

$$\lim_{d\to\infty}\kappa_n^{(d)}(p_d)=r_n(\mu).$$

Define finite free cumulants

$$\kappa_n^{(d)}(p) := \frac{(-d)^{n-1}}{(n-1)!} \sum_{\pi \in P(n)} (-1)^{\#\pi-1} (\#\pi-1)! \; \mathrm{e}_\pi\left(p\right) \qquad \text{ for } n=1,2,\ldots,d,$$

- Provide a moment-cumulant formula (using Newton formulas)
- Show that if $\mu \llbracket p_d \rrbracket \longrightarrow \mu$ then

$$\lim_{d\to\infty}\kappa_n^{(d)}(p_d)=r_n(\mu).$$

• This gives a proof of $\mu \llbracket p_d \boxplus_d q_d \rrbracket \longrightarrow \mu \boxplus \nu$.

Define finite free cumulants

$$\kappa_n^{(d)}(p) := \frac{(-d)^{n-1}}{(n-1)!} \sum_{\pi \in P(n)} (-1)^{\#\pi-1} (\#\pi-1)! \, e_\pi(p)$$
 for $n = 1, 2, \dots, d$,

- Provide a moment-cumulant formula (using Newton formulas)
- Show that if $\mu \llbracket p_d \rrbracket \longrightarrow \mu$ then

$$\lim_{d\to\infty}\kappa_n^{(d)}(p_d)=r_n(\mu).$$

- This gives a proof of $\mu \llbracket p_d \boxplus_d q_d \rrbracket \longrightarrow \mu \boxplus \nu$.
- For the multiplicative case one can use formulas for the multiplicative convolution in terms of cumulants.

Probability vs Free Probability vs Finite Free Probability

Classic Probability	Free Probability	Finite Free
*	Ħ	\boxplus_d
$\log \mathbb{E}\left[\mathrm{e}^{tX} ight]$	R-transform	finite R-transform
δ_a	δ_a	$(x-a)^d$
Normal/Gaussian	Semicircular	Hermitte polynomials
Poisson	Marchenko-Pastur	Laguerre polynomials
Beta	Free Beta	Jacobi polynomials

Applications

Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor (1-t)d \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor (1-t)d \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor (1-t)d \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor (1-t)d \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

For m a positive integer, $\mu^{\boxplus m}=\mu\boxplus\cdots\boxplus\mu$ is the free convolution of m copies of μ . (Nica, Speicher '96) There is a continuous interpolation: for every real $s\geq 1$ there exists a probability measure $\mu^{\boxplus s}$ determined by

$$r_n(\mu^{\boxplus s}) := sr_n(\mu).$$

Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor (1-t)d \rfloor$ times each polynomial, $q_d := p_d^{(\lfloor (1-t)d \rfloor)}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

For m a positive integer, $\mu^{\boxplus m}=\mu\boxplus\cdots\boxplus\mu$ is the free convolution of m copies of μ . (Nica, Speicher '96) There is a continuous interpolation: for every real $s\geq 1$ there exists a probability measure $\mu^{\boxplus s}$ determined by

$$r_n(\mu^{\boxplus s}) := sr_n(\mu).$$

Theorem (Hoskins-Kabluchko '23, Arizmendi-GarzaVargas-P '23)

$$\mu \llbracket q_d \rrbracket \longrightarrow \mathrm{Dil}_t \mu^{\boxplus \frac{1}{t}}.$$

Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Question 1. Fix $t \in (0,1)$ and differentiate $\lfloor (1-t)d \rfloor$ times each polynomial, $q_d := p_d^{\lfloor \lfloor (1-t)d \rfloor \rfloor}$. What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

For m a positive integer, $\mu^{\boxplus m}=\mu\boxplus\cdots\boxplus\mu$ is the free convolution of m copies of μ . (Nica, Speicher '96) There is a continuous interpolation: for every real $s\geq 1$ there exists a probability measure $\mu^{\boxplus s}$ determined by

$$r_n(\mu^{\boxplus s}) := sr_n(\mu).$$

Theorem (Hoskins-Kabluchko '23, Arizmendi-GarzaVargas-P '23)

$$\mu \llbracket q_d \rrbracket \longrightarrow \mathrm{Dil}_t \mu^{\boxplus \frac{1}{t}}.$$

Proof. For $j \approx td$, we have

$$\kappa_n^{(j)}(p^{(d-j)}) = j^{n-1} \sum_{\pi \in P(n)} c(\pi) e_{\pi}(p) = \left(\frac{j}{d}\right)^{n-1} \kappa_n^{(d)}(p) = \left(\frac{j}{d}\right)^n \left(\frac{d}{j}\right) \kappa_n^{(d)}(p).$$

Q2. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d([0,\infty))$. What is the limiting behavior of $e_k(p_d)$?

Q2. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d([0,\infty))$. What is the limiting behavior of $e_k(p_d)$?

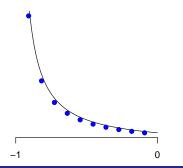
Theorem (Arizmendi, Fujie, P, Ueda '24)

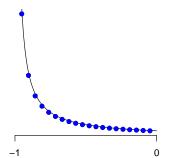
 $(p_d)_{d\in\mathbb{N}}$ sequence with $p_d\in\mathcal{P}_d([0,\infty))$ and $\nu\in\mathcal{M}([0,\infty))$. Then

$$\mu \, \llbracket p_d
rbracket o
onumber \lim_{\substack{d o \infty \ rac{k}{d} o t}} rac{\mathrm{e}_{k-1}(p_d)}{\mathrm{e}_k(p_d)} = S_
u(-t). \qquad ext{for } t \in (0, 1 - \mu(\{0\}))$$

Corollary. Assume $e_1(p_d) \to m_1(\mu) \in (0, \infty)$, then

$$\frac{1}{d}\log\left(\mathrm{e}_{k}\left(p_{d}\right)\right)\quad\longrightarrow\quad-\int_{0}^{t}\log S_{\nu}(-x)dx$$





Intuition: Multiplicative LLN

Given $\mu \in \mathcal{M}(\mathbb{R}_{>0})$, the *(shifted) T-transform* is the function $T_{\mu}:(0,1) \to \mathbb{R}_{\geq 0}$ with

$$\mathcal{T}_{\mu}(t)=rac{1}{\mathcal{S}_{\mu}(t-1)} \qquad ext{for } t\in(0,1).$$

Intuition: Multiplicative LLN

Given $\mu \in \mathcal{M}(\mathbb{R}_{>0})$, the *(shifted) T-transform* is the function $T_{\mu}:(0,1) \to \mathbb{R}_{\geq 0}$ with

$$\mathcal{T}_{\mu}(t)=rac{1}{\mathcal{S}_{\mu}(t-1)} \qquad ext{for } t\in(0,1).$$

[Tucci '10, Haagerup and Möller '13] there exists a limiting measure

$$\Phi(\mu) := \lim_{m o \infty} (\mu^{\boxtimes m})^{\langle 1/m \rangle}, \qquad ext{char. by}$$

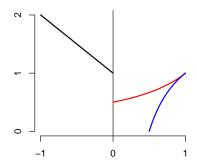
$$extstyle extstyle ext$$

[Fujie and Ueda '23]

Given $p \in \mathcal{P}_d(\mathbb{R}_{>0})$, there exists

$$\Phi_d(p) := \lim_{m \to \infty} (p^{\boxtimes_d m})^{\langle 1/m \rangle},$$

with roots
$$\lambda_k(\Phi_d(p)) = \frac{e_k(p)}{e_{k-1}(p)}$$
.



Case: compact support away from 0

Theorem

Assume the roots of the polynomials are contained in $C = [\alpha, \beta] \subset (0, \infty)$. Then

$$\lim_{\substack{d \to \infty \ rac{k}{d} o t}} rac{\mathsf{e}_{k-1}\left(p
ight)}{\mathsf{e}_{k}\left(p
ight)} = S_{\mu}(-t).$$

Case: compact support away from 0

Theorem

Assume the roots of the polynomials are contained in $C = [\alpha, \beta] \subset (0, \infty)$. Then

$$\lim_{\substack{d \to \infty \\ \frac{k}{d} \to t}} \frac{\mathsf{e}_{k-1}\left(p\right)}{\mathsf{e}_{k}\left(p\right)} = \mathcal{S}_{\mu}(-t).$$

Idea of the proof:

$$\frac{\mathsf{e}_{k-1}\left(p\right)}{\mathsf{e}_{k}\left(p\right)} = \frac{\mathsf{e}_{k-1}\left(p^{(d-k)}\right)}{\mathsf{e}_{k}\left(p^{(d-k)}\right)} = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{\lambda(p^{(d-k)})}$$

Case: compact support away from 0

Theorem

Assume the roots of the polynomials are contained in $C = [\alpha, \beta] \subset (0, \infty)$. Then

$$\lim_{\substack{d o \infty rac{k}{d} o t}} rac{\mathsf{e}_{k-1}\left(p
ight)}{\mathsf{e}_{k}\left(p
ight)} = \mathcal{S}_{\mu}(-t).$$

Idea of the proof:

$$\frac{\mathsf{e}_{k-1}\left(\boldsymbol{p}\right)}{\mathsf{e}_{k}\left(\boldsymbol{p}\right)} = \frac{\mathsf{e}_{k-1}\left(\boldsymbol{p}^{(d-k)}\right)}{\mathsf{e}_{k}\left(\boldsymbol{p}^{(d-k)}\right)} = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{\lambda\left(\boldsymbol{p}^{(d-k)}\right)}$$

Since
$$\mu \left[\!\!\left[p^{(d-k)} \right]\!\!\right] \to \mu_t := \mathrm{Dil}_t(\mu^{\boxplus 1/t})$$
, then

$$\longrightarrow \int_0^\infty x^{-1}\mu_t(dx) = -G_{\mu_t}(0) = S_{\mu}(-t)$$

Future directions

Ongoing project

Open problems

For $a \in \mathbb{C}$, the polar derivative of a polynomial is

$$D_a p(x) := dp(x) - (x - a)p'(x).$$

 D_{∞} is differentiation.

For $a \in \mathbb{C}$, the polar derivative of a polynomial is

$$D_ap(x):=dp(x)-(x-a)p'(x).$$

 D_{∞} is differentiation.

Question. Fix $t \in (0,1)$ and $a \in \mathbb{R}$. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Define

$$q_d := D_a^{(\lfloor (1-t)d \rfloor)} p_d.$$

What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

For $a \in \mathbb{C}$, the polar derivative of a polynomial is

$$D_ap(x):=dp(x)-(x-a)p'(x).$$

 D_{∞} is differentiation.

Question. Fix $t \in (0,1)$ and $a \in \mathbb{R}$. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$.

Define

$$q_d := D_a^{(\lfloor (1-t)d\rfloor)} p_d.$$

What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

Short ans:
$$\nu = F_0^s := T^{-1}(\operatorname{Dil}_{\frac{1}{t}}(T\mu)^{\boxplus t}),$$

where $T(z):=rac{1}{z-a}$ and $T\mu$ denotes the push-forward measure $T\mu(E):=\mu(T^{-1}(E))$.

For $a \in \mathbb{C}$, the polar derivative of a polynomial is

$$D_a p(x) := dp(x) - (x - a)p'(x).$$

 D_{∞} is differentiation.

Question. Fix $t \in (0,1)$ and $a \in \mathbb{R}$. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$. Define

$$q_d := D_a^{(\lfloor (1-t)d\rfloor)} p_d.$$

What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

Short ans:
$$\nu = F_0^s := T^{-1}(\operatorname{Dil}_{\frac{1}{t}}(T\mu)^{\boxplus t}),$$

where $T(z):=rac{1}{z-a}$ and $T\mu$ denotes the push-forward measure $T\mu(E):=\mu(T^{-1}(E))$.

Connection \boxtimes_d when a = 0:

$$D_0 p = p \boxtimes_d d(x-1)^{d-1}.$$

For $a \in \mathbb{C}$, the polar derivative of a polynomial is

$$D_ap(x):=dp(x)-(x-a)p'(x).$$

 D_{∞} is differentiation.

Question. Fix $t \in (0,1)$ and $a \in \mathbb{R}$. Let $(p_d)_{d=1}^{\infty}$ with $p_d \in \mathcal{P}_d(\mathbb{R})$, and $\mu \llbracket p_d \rrbracket \longrightarrow \mu$. Define

$$q_d := D_a^{(\lfloor (1-t)d \rfloor)} p_d.$$

What is the limiting measure ν of the sequence $(q_d)_{d=1}^{\infty}$?

Short ans:
$$\nu = F_0^s := T^{-1}(\operatorname{Dil}_{\frac{1}{t}}(T\mu)^{\boxplus t}),$$

where $T(z):=rac{1}{z-a}$ and $T\mu$ denotes the push-forward measure $T\mu(E):=\mu(T^{-1}(E))$.

Connection \boxtimes_d when a = 0:

$$D_0 p = p \boxtimes_d d(x-1)^{d-1}.$$

Repeat this d-k times, and let $d\to\infty$ while $\frac{d}{k}\to s$, then

$$\frac{1}{s}F_0^s\mu + \frac{s-1}{s}\delta_\infty = \mu\boxtimes\left(\frac{1}{s}\delta_1 + \frac{s-1}{s}\delta_\infty\right).$$

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d + \alpha)^{\underline{k}} := (d + \alpha)(d + \alpha - 1) \dots (d + \alpha - k + 1)$.

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d + \alpha)^{\underline{k}} := (d + \alpha)(d + \alpha - 1) \dots (d + \alpha - k + 1)$.

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d+\alpha)^{\underline{k}} := (d+\alpha)(d+\alpha-1)\dots(d+\alpha-k+1)$.

Conjecture. Given $\alpha > -1$, if $p, q \in \mathcal{P}_d(\mathbb{R}_{\geq 0})$, then $p \boxplus_d^{\alpha} q \in \mathcal{P}_d(\mathbb{R}_{\geq 0})$.

• Solved in case $\alpha = 0$ by [Marcus, Spielman, and Srivastava '22].

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d + \alpha)^{\underline{k}} := (d + \alpha)(d + \alpha - 1) \dots (d + \alpha - k + 1)$.

- Solved in case $\alpha = 0$ by [Marcus, Spielman, and Srivastava '22].
- ullet Cases $lpha=1,2,\ldots$ were proved by [Gribinski and Marcus '22].

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d+\alpha)^{\underline{k}} := (d+\alpha)(d+\alpha-1)\dots(d+\alpha-k+1)$.

- Solved in case $\alpha = 0$ by [Marcus, Spielman, and Srivastava '22].
- Cases $\alpha = 1, 2, \dots$ were proved by [Gribinski and Marcus '22].
- Case $\alpha = \frac{1}{2}$ [Talk by Gribinski, and Campbell, Morales, P 25+]

Definition. Let $d \in \mathbb{N}$ and $\alpha > -1$. The (d, α) -rectangular convolution of $p, q \in \mathcal{P}_d$, is the polynomial $p \boxplus_d^\alpha q \in \mathcal{P}_d$ with

$$\frac{\mathsf{e}_{k}\left(p \boxplus_{d}^{\alpha} q\right)}{(d+\alpha)^{\underline{k}}} = \sum_{i+j=k} \binom{k}{i} \frac{\mathsf{e}_{i}\left(p\right)}{(d+\alpha)^{\underline{i}}} \frac{\mathsf{e}_{j}\left(q\right)}{(d+\alpha)^{\underline{j}}},$$

where $(d + \alpha)^{\underline{k}} := (d + \alpha)(d + \alpha - 1) \dots (d + \alpha - k + 1)$.

- Solved in case $\alpha = 0$ by [Marcus, Spielman, and Srivastava '22].
- ullet Cases $lpha=1,2,\ldots$ were proved by [Gribinski and Marcus '22].
- Case $\alpha = \frac{1}{2}$ [Talk by Gribinski, and Campbell, Morales, P 25+]
- Other cases remain open.

Finite Free Commutator

Given $p \in \mathcal{P}_d$, define $\operatorname{Sym}(p) := p \boxplus_d (\operatorname{Dil}_{-1} p)$

Definition (J. Campbell '22)

For polynomials $p, q \in \mathcal{P}_d$ define

$$p \square_d q := \operatorname{Sym}(p) \boxtimes_d \operatorname{Sym}(q) \boxtimes_d z_d,$$
 where

$$z_d(x) := \sum_{k=0}^{\lfloor d/2 \rfloor} x^{d-2k} (-1)^k \binom{d}{2k} (d)^{\underline{k}} \frac{k!}{(2k)!} \frac{d+1-k}{d+1}$$

Finite Free Commutator

Given $p \in \mathcal{P}_d$, define $\operatorname{Sym}(p) := p \boxplus_d (\operatorname{Dil}_{-1} p)$

Definition (J. Campbell '22)

For polynomials $p, q \in \mathcal{P}_d$ define

$$p \square_d q := \operatorname{Sym}(p) \boxtimes_d \operatorname{Sym}(q) \boxtimes_d z_d,$$
 where

$$z_d(x) := \sum_{k=0}^{\lfloor d/2 \rfloor} x^{d-2k} (-1)^k \binom{d}{2k} (d)^{\underline{k}} \frac{k!}{(2k)!} \frac{d+1-k}{d+1}$$

Theorem (J. Campbell)

Let A and B be $d \times d$ matrices with char pol $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \square_d q = \mathbb{E}_Q \chi [i(AQBQ^* - QBQ^*A)]$$
 where $Q \sim Haar$ unitary

Conjecture

For $p, q \in \mathcal{P}_d(\mathbb{R})$, we have $p \square_d q \in \mathcal{P}_d(\mathbb{R})$.

Thanks!