Roots of random polynomials under differential flows

Brian C. Hall (Joint work with Ching Wei Ho, Jonas Jalowy, and Zakhar Kabluchko) sites.nd.edu/brian-hall

> ICERM, August 2025 Random Polynomials and their Applications

DFPARTMENT OF MATHEMATICS

August 2025 ICERM

1/44

Brian C. Hall

Basic question

- How do the roots of a polynomial change as we change the polynomial?
- Main examples in this talk: heat flow and repeated differentiation
- Will consider both operations in two cases: real roots and complex roots
- Will find a close connection to random matrix theory and partial differential equations

PART 1

POLYNOMIALS WITH ALL REAL ROOTS: HEAT FLOW

3 / 44

Heat flow: definition

Solve heat equation on real line:

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$$

with polynomial initial condition:

$$u(x,0)=p(x).$$

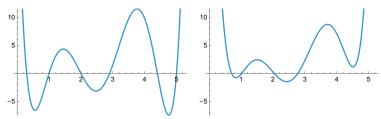
• Can solve as terminating power series in t:

$$u(x,t) = e^{\frac{t}{2}\frac{d^2}{dx^2}}p(x) := \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t}{2}\right)^k \left(\frac{d^2}{dx^2}\right)^k p(x)$$

Brian C. Hall

Heat flow: definition

- Solution is polynomial in x (same degree as p) for each t
- Roots at time t may be complex, even if roots of p are real
- Extend to complex plane to find roots



Brian C. Hall Roots of polynomials under fi

Heat flow: definition

- Extend initial condition, solution holomorphically in space variable
- Makes sense with t replaced by **arbitrary complex number** τ
- For high-degree limit, scale τ with N
- Define heat flow operator as terminating power series:

$$\exp\left\{\frac{\tau}{2N}\frac{d^2}{dz^2}\right\}p(z) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{\tau}{2N}\right)^k \left(\frac{d^2}{dz^2}\right)^k p(z), \quad z \in \mathbb{C}$$

Backward heat flow on polynomials

• Now take $\tau = -t$ and consider **backward heat operator**

$$\exp\left\{-\frac{t}{2N}\frac{d^2}{dz^2}\right\}, \quad t>0,$$

on polynomials

Theorem (Pólya-Benz 1934)

If p has all real roots, so does

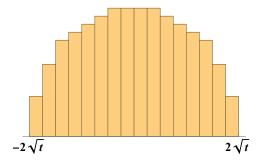
$$\exp\left\{-\frac{t}{2N}\frac{d^2}{dz^2}\right\}p(z)$$

for all t > 0.

Brian C. Hall Roots of polynomials under flows

Backward heat operator: first example

- Apply to z^N , get scaled **Hermite polynomial**
- Histogram of zeros of $e^{-\frac{t}{2N}\frac{d^2}{dz^2}}(z^N)$ with N=200



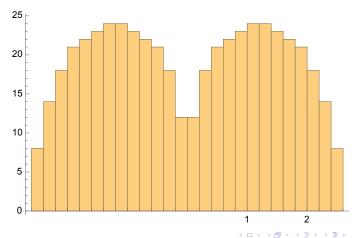
ullet Zeros have asymptotically **semicircular shape** on $[-2\sqrt{t},2\sqrt{t}]$

4 □ Þ ← 경 Þ ← 경 ▶ ← 경 ▶ ← 경 ▶ ← 경 ▶ ← 경 ▶ ← 경 ▶ ← 경 ●

8 / 44

Backward heat operator: second example

- Take $p(z) = (z-1)^{N/2}(z+1)^{N/2}$
- ullet Half zeros at 1, half at -1
- Histogram of zeros of $e^{-\frac{t}{2N}\frac{d^2}{dz^2}}p$ with N=500, t=1



Connection to random matrix theory

- GUE: Gaussian unitary ensemble
- Take N × N Hermitian random matrix X with entries on and above diagonal independent
- Complex Gaussian with mean zero and variance 1/N off diagonal
- Real Gaussian with mean zero and variance 1/N on diagonal
- ullet Eigenvalues asymptotically have **semicircular distribution** on [-2,2]

10 / 44

Connection to random matrix theory

- Take sequence of real-rooted polynomials p^N of degree N
- ullet Assume root distribution converges to prob. measure μ
- Make **Hermitian matrix** X^N (e.g., diagonal) with eigenvalues equal to roots of p^N
- Take Y^N to be GUE matrix

Claim

Roots of $e^{-\frac{t}{2N}\frac{d^2}{dz^2}}(p^N(z))$ resemble eigenvalues of $X^N+\sqrt{t}Y^N$, which can be computed using **free convolution** of μ with a semicircular distribution.

• So: backward heat flow is like adding a GUE

Free convolution with semicircular distribution

Theorem (Voit-Woerner 2022, Kabluchko 2025)

If polynomials p^N has real roots and the distribution of roots converges as $N \to \infty$ to μ , then the distribution of roots of $\mathrm{e}^{-\frac{t}{2N}\frac{d^2}{dz^2}}p^N$ converges to $\mu \boxplus \mathrm{sc}_t$.

- $\mu \boxplus \operatorname{sc}_t$ is **free convolution** \boxplus of μ with semicircular measure of variance t
- Free convolution with sct was studied by Biane

12 / 44

A PDE perspective

ullet Define **Cauchy transform** of measure μ on ${\mathbb R}$ by

$$C_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{z-x} d\mu(x), \quad \operatorname{Im} z > 0.$$

- Holomorphic on upper half-plane
- ullet Can recover μ from \mathcal{C}_{μ} by Stieltjes inversion formula

$$d\mu(x) = -\frac{1}{2\pi} \lim_{\varepsilon \to 0^+} \left(\operatorname{Im} C_{\mu}(x + i\varepsilon) \ dx \right)$$

A PDE perspective

Theorem (Voiculescu)

Cauchy transform C(z,t) of $\mu \boxplus \operatorname{sc}_t$ satisfies the "inviscid complex Burger's equation"

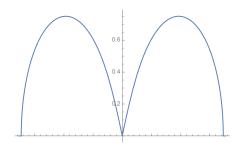
$$\frac{\partial C}{\partial t} = -C \frac{\partial C}{\partial z}, \quad \text{Im } z > 0,$$

- Can solve PDE using the method of characteristics
- Gives semi-explicit way to compute $\mu \boxplus \operatorname{sc}_t$

Brian C. Hall Roots of polynomials under flows

Roots at ± 1

- ullet Take μ to have mass 1/2 at 1 and mass 1/2 at -1
- ullet Describe polynomial p with zeros at ± 1
- Compute $\mu \boxplus \operatorname{sc}_t$ at, say, t = 1



 \bullet This gives limiting distribution of zeros of $e^{-\frac{1}{2N}\frac{d^2}{dz^2}}p(z)$

Brian C. Hall Roots of polynomials under flows

POLYNOMIALS WITH COMPLEX ROOTS: HEAT FLOW

Cauchy transform for measures in plane

- ullet Compactly supported prob. measure μ with bounded density
- Define Cauchy transform as before:

$$C(z) = \int_{\mathbb{C}} \frac{1}{z - w} d\mu(w), \quad z \in \mathbb{C}$$

- But C will be **non-holomorphic** inside its support
- Ex: μ uniform on unit disk: $C(z) = \bar{z}$ in disk; 1/z outside
- ullet Recover density of measure μ as

$$\frac{1}{\pi} \frac{\partial}{\partial \bar{z}} C(z)$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

General conjecture

Conjecture (Hall-Ho, 2025)

Let μ_t be limiting empirical measure of zeros of

$$\exp\left\{-rac{t}{2N}rac{d^2}{dz^2}
ight\}p^N(z),\quad t\in\mathbb{R}.$$

Then Cauchy transform C(z, t) satisfies PDE

$$\frac{\partial C}{\partial t} = -C \frac{\partial C}{\partial z} - \bar{C} \frac{\partial \bar{C}}{\partial z} \quad (t \text{ small}). \tag{1}$$

- $\partial/\partial z$ means the Cauchy–Riemann operator
- Second term on RHS vanishes in region where C is holomorphic
- Essentially same PDE as in the real-rooted case!

<ロト < 回 > < 巨 > < 巨 > 、 豆 ・ り < @ ・

18 / 44

Heuristic argument for conjecture

Define Cauchy transform of zeros of polynomial

$$C^{N}(z,t) := \frac{1}{N} \sum_{j=1}^{N} \frac{1}{z - z_{j}(t)}$$

where $z_j(t)$ are zeros of heat-evolved polynomials

Theorem

The function C^N satisfies the PDE

$$\frac{\partial C^{N}}{\partial t} = -C^{N} \frac{\partial C^{N}}{\partial z} - \bar{C}^{N} \frac{\partial \bar{C}^{N}}{\partial z} - \frac{1}{2N} \left(\frac{\partial^{2} C^{N}}{\partial z^{2}} + \frac{\partial^{2} \bar{C}^{N}}{\partial z \partial \bar{z}} \right),$$

which **formally** converges to the PDE in the conjecture as $N \to \infty$.

Connection to "arbitrary plus elliptic" RM model

- Let X and Y be independent GUEs and t with -1 < t < 1
- Take

$$Z_t = \frac{1}{\sqrt{2}} \left(\sqrt{1+t} \ X + i \sqrt{1-t} \ Y \right)$$

- ullet Eigenvalues uniform on ellipse with semi-axes $1\pm t$
- t = 0 gives circular law
- **Model**: $X_0 + Z_t$ where X_0 is indep. of Z_t

Theorem (Hall–Ho)

Cauchy transform C(z, t) of limiting e.v. distribution of $X_0 + Z_t$ satisfies PDE in conjecture.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

20 / 44

Example: Circular to elliptic

- Theorem provides natural examples for conjecture
- Start from char. poly. p^N of model with parameter t_0
- Conjecture says: roots of $e^{-\frac{t}{2N}\frac{d^2}{dz^2}}p^N$ should resemble e.v. of model with parameter $t+t_0$
- Running heat flow should be "same" as changing value of t

Example: Characteristic polynomial of Ginibre matrix

- **Example**: Start from Z_0 : model with $X_0 = 0$ and $t_0 = 0$
- Z_0 is Ginibre matrix, eigenvalues uniform on disk
- ullet Heat-evolved char. poly. of Z_0 should resemble char. poly. of Z_t
- Roots of heat-evolved char. poly. of Z_0 should be uniform on ellipse

Example: Characteristic polynomial of Ginibre matrix

Rigorous results for random polynomials

 Kabluchko–Zaporozhets: large class of random polynomials with independent coefficients

$$p^{N}(z) = \sum_{j=0}^{N} \xi_{j} c_{j}^{N} z^{j}$$

- \bullet ξ_j : indep. and identically distributed random var.
- ullet c_j^N are deterministic constants (with nice behavior as $N o \infty$)
- Limiting distribution of zeros is rotationally invariant on a disk
- ullet Essentially **any** rot. invariant measure on disk occurs for some c_j^N

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Example: Weyl polynomials

Take

$$W_N(z) = \sum_{j=0}^N \xi_j \frac{N^{j/2}}{\sqrt{j!}} z^j$$

- Limiting distribution of zeros uniform on unit disk
- Circular law for random polynomials!

Brian C. Hall Roots of polynomials under flows

Rigorous results for random polynomials

Theorem (Hall-Ho-Jalowy-Kabluchko, 2023a)

The heat-evolved Kabluchko–Zaporozhets polynomials satisfy the Hall–Ho conjecture.

That is, the Cauchy transform of the limiting root distribution satisfies the claimed PDE, for sufficiently small t.

Example: Weyl case

- For -1 < t < 1, limiting root distribution of heat-evolved Weyl polynomial is **uniform on ellipse** with semi-axes 1 + t and 1 t
- For $t \geq 1$, limiting root dist. is **semicircular on** $\mathbb R$ with variance t
- Case t = 1 is "random orthogonal polynomial" with Gaussian weight, matches result of Pritsker–Xie [2015]

Evolution of zeros of Weyl polynomials, $0 \le t \le 1$

Transport behavior

- **Next question**: How do zeros move with *t*?
- Zeros should evolve approximately in straight lines with constant velocity
- Velocity given by the value of Cauchy transform at time 0
- These are characteristic curves of the relevant PDE

Theorem (Hall-Ho-Jalowy-Kabluchko, 2023a)

This behavior holds "at the bulk level" for heat-evolved KZ polynomials. That is, for sufficiently small t, the measure μ_t is the push-forward of μ_0 by map obtained by evolving along straight lines.

29 / 44

Straight-line motion

- Motion of sample of zeros of Weyl polynomial under heat flow
- Plotted against predicted straight-line motion

30 / 44

POLYNOMIALS WITH ALL REAL ROOTS: REPEATED DIFFERENTIATION

Repeated differentiation of polynomials with real roots

- Start with polynomial P^N of degree N with real roots
- Then differentiate $\lfloor Nt \rfloor$ times, $0 \le t < 1$
- Number of deriv. proportional to N
- Roots remain real!
- Assume root dist. of P^N converges to μ_0
- Try to find limiting root dist. μ_t of $\lfloor Nt \rfloor$ -th derivative

32 / 44

Connection to random matrix theory

- Assume (at first) that t = 1 1/k with $k \in \mathbb{N}$
- Then $\mu_t = \mu_0^{\boxplus k} := \mu_0 \boxplus \cdots \boxplus \mu_0$, rescaled by a factor of 1-t
- $\mu_0^{\boxplus k}$ is like adding k indep.Hermitian matrices with e.v. distribution μ
- Then extend definition to arbitrary t (i.e., fractional k)
- "Fractional free convolution" introduced by Bercovici–Voiculescu $(k\gg 1)$ and Nica–Speicher $(k\geq 1)$
- Equivalently: take corner of size $\lfloor (1-t)N \rfloor$ of $N \times N$ matrix with e.v. distribution μ

Connection to random matrix theory

Theorem (Hoskins-Kabluchko, '21; Arizmendi-Garza-Vargas-Perales, '23)

If polynomials P^N have limiting root distribution μ_0 then $\lfloor Nt \rfloor$ -th derivative of P^N has limiting root distribution equal to

$$\mu_0^{\boxplus k}$$
, $k = \frac{1}{1-t}$,

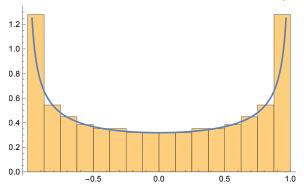
rescaled by a factor of 1 - t, for $0 \le t < 1$.

• Results motivated by work of Steinerberger, 2019

Brian C. Hall Roots of polynomials under flows

Example: Roots at ± 1

- Take $P^N(z) = (z-1)^{N/2}(z+1)^{N/2}$; i.e. $\mu_0 = \frac{1}{2}(\delta_1 + \delta_{-1})$
- Take t = 1/2—i.e., take N/2 derivatives—so k = 2
- Then $\mu_0^{\boxplus k} = \mu_0 \boxplus \mu_0$ can be computed explicitly
- After rescaling, get "arcsin" distribution $d\mu_t(x) = \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx$



PDE for the Cauchy transform

- Use **rescaled** measure $(1-t)\mu_t$ of mass 1-t
- ullet Let C(z,t) be Cauchy transform of $(1-t)\mu_t$
- ullet Use PDE for Cauchy transform of $\mu^{\boxplus k}$ by Shlyakhtenko–Tao

Theorem

The Cauchy transform C(z,t) of $(1-t)\mu_t$ satisfies the PDE

$$\frac{\partial C}{\partial t} = \frac{1}{C} \frac{\partial C}{\partial z}.$$

• Compare to $\frac{\partial \mathcal{C}}{\partial t} = -\mathcal{C} \frac{\partial \mathcal{C}}{\partial z}$ for backward heat flow

Brian C. Hall

POLYNOMIALS WITH COMPLEX ROOTS: REPEATED DIFFERENTIATION

Repeated differentiation of random polynomials

- First observation: derivative of polynomial with independent (not necessarily i.i.d.) coefficients still has independent coefficients
- Feng and Yao showed that repeated differentiation of Kabluchko-Zaporozhets polynomial gives another KZ polynomial, with computable change in the deterministic coefficients

Transport behavior for random polynomials

- Next question: How do the roots evolve with t?
- Answer must recognize that differentiation kills roots!

Idea

Let μ_0 be the (radial) limiting root distribution of the initial polynomials and let $m_0(z)$ be its Cauchy transform. Then under repeated differentiation, roots evolve approximately radially with constant speed according to

$$z(t)\approx z_0-\frac{t}{m_0(z_0)}$$

until they reach the origin, at which point they die.

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Brian C. Hall Roots of polynomials under flows

Rigorous result at bulk level

- We verify idea at the level of the bulk distribution
- Let μ_t be the limiting root distribution of P_t^N .

Theorem (Hall-Ho-Jalowy-Kabluchko, 2023b)

- Restrict μ_0 to the outer annulus with mass 1-t. I.e., remove inner disk with mass t.
- 2 After normalization, μ_t is the push-forward of μ_0 restricted to this annulus by the map

$$T_t(z) = z \left(1 - \frac{t}{\alpha_0(|z|)} \right)$$

where $\alpha_0(|z|) = \mu_0(B(0,|z|))$.

4 11 1 4 12 1 4 12 1 1 2 1 2 2 2 2

40 / 44

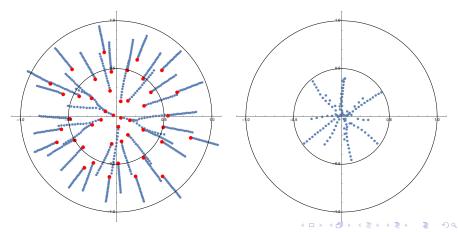
Example for Weyl case

- Example: Repeated differentiation of Weyl polynomial
- $T_t(z) = z \left(1 \frac{t}{|z|^2} \right)$
- N = 60, t = 1/4. Showing roots of all derivatives up to the 15th derivative

41 / 44

Example for Weyl case

- Red dots: roots of 15th derivative
- Blue dots: roots of all previous derivatives
- Left: roots in annulus survive to time t
- Right: roots in disk die before time t



42 / 44

Further results

- PDE for Cauchy transform
- Random matrix interpretation (Campbell–O'Rourke–Renfrew) in terms of fractional convolution of *R*-diagonal operators
- Both similar to the case of real roots

Conclusion

THANK YOU FOR YOUR ATTENTION

