# Persistence of random polynomials

Sumit Mukherjee, Columbia University

Random Polynomials and their Applications, 2025

#### Outline

- 1 Introduction
- 2 Lower bound
- 3 Upper bound
- 4 Conclusion

• Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).

- Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).
- For  $x \in \mathbb{R}$ , define the polynomial

$$Q_n(x) := \sum_{i=0}^n a_i x^i.$$

- Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).
- For  $x \in \mathbb{R}$ , define the polynomial

$$Q_n(x) := \sum_{i=0}^n a_i x^i.$$

• In the particular case the coefficients are IID, roots of  $Q_n(\cdot)$  have been extensively studied, beginning with the pioneering work of (Kac, Bull. Amer.-43).

- Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).
- For  $x \in \mathbb{R}$ , define the polynomial

$$Q_n(x) := \sum_{i=0}^n a_i x^i.$$

• In the particular case the coefficients are IID, roots of  $Q_n(\cdot)$  have been extensively studied, beginning with the pioneering work of (Kac, Bull. Amer.-43). Hence this special case is often referred to as Kac's polynomials.

- Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).
- For  $x \in \mathbb{R}$ , define the polynomial

$$Q_n(x) := \sum_{i=0}^n a_i x^i.$$

- In the particular case the coefficients are IID, roots of  $Q_n(\cdot)$  have been extensively studied, beginning with the pioneering work of (Kac, Bull. Amer.-43). Hence this special case is often referred to as Kac's polynomials.
- Question: What is the chance that the polynomial  $Q_n(\cdot)$  has no real roots?

- Suppose  $\{a_i\}_{i\geq 0}$  are independent mean 0 random variables, and finite second moment (can change with i).
- For  $x \in \mathbb{R}$ , define the polynomial

$$Q_n(x) := \sum_{i=0}^n a_i x^i.$$

- In the particular case the coefficients are IID, roots of  $Q_n(\cdot)$  have been extensively studied, beginning with the pioneering work of (Kac, Bull. Amer.-43). Hence this special case is often referred to as Kac's polynomials.
- Question: What is the chance that the polynomial  $Q_n(\cdot)$  has no real roots?
- More precisely, setting

$$p_n := \mathbb{P}(Q_n(x) \neq 0, \text{ for all } x \in \mathbb{R}),$$

we want to study asymptotics of  $p_n$ .

• A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.

- A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.
- This implies that  $p_n = 0$  for n odd.

- A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.
- This implies that  $p_n = 0$  for n odd.
- $\bullet$  For the rest of the talk we will assume that n is even.

- A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.
- This implies that  $p_n = 0$  for n odd.
- $\bullet$  For the rest of the talk we will assume that n is even.
- Note that

$$p_n = \mathbb{P}(\sup_{x \in \mathbb{R}} Q_n(x) < 0) + \mathbb{P}(\inf_{x \in \mathbb{R}} Q_n(x) > 0).$$

- A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.
- This implies that  $p_n = 0$  for n odd.
- $\bullet$  For the rest of the talk we will assume that n is even.
- Note that

$$p_n = \mathbb{P}(\sup_{x \in \mathbb{R}} Q_n(x) < 0) + \mathbb{P}(\inf_{x \in \mathbb{R}} Q_n(x) > 0).$$

• Henceforth, we will focus on analyzing

$$q_n = \mathbb{P}(\sup_{x \in \mathbb{R}} Q_n(x) < 0).$$

- A polynomial of odd degree must have at least one real root, as complex roots occurs in pairs.
- This implies that  $p_n = 0$  for n odd.
- $\bullet$  For the rest of the talk we will assume that n is even.
- Note that

$$p_n = \mathbb{P}(\sup_{x \in \mathbb{R}} Q_n(x) < 0) + \mathbb{P}(\inf_{x \in \mathbb{R}} Q_n(x) > 0).$$

• Henceforth, we will focus on analyzing

$$q_n = \mathbb{P}(\sup_{x \in \mathbb{R}} Q_n(x) < 0).$$

•  $q_n$  is the probability that  $Q_n(\cdot)$  persists below the origin.

• Suppose now that the coefficients  $\{a_i\}_{i\geq 0}$  are IID from a distribution F with mean 0 and variance 1, and all moments bounded.

- Suppose now that the coefficients  $\{a_i\}_{i\geq 0}$  are IID from a distribution F with mean 0 and variance 1, and all moments bounded.
- In this case, the seminal work of Dembo-Poonen-Shao-Zeitouni, JAMS-02 shows that the asymptotics of  $q_n$  is universal.

- Suppose now that the coefficients  $\{a_i\}_{i\geq 0}$  are IID from a distribution F with mean 0 and variance 1, and all moments bounded.
- In this case, the seminal work of Dembo-Poonen-Shao-Zeitouni, JAMS-02 shows that the asymptotics of  $q_n$  is universal.
- More precisely, they show that

$$q_n = n^{-4b_0 + o(1)},$$

where the persistence exponent  $b_0 \in (0, \infty)$ .

- Suppose now that the coefficients  $\{a_i\}_{i\geq 0}$  are IID from a distribution F with mean 0 and variance 1, and all moments bounded.
- In this case, the seminal work of Dembo-Poonen-Shao-Zeitouni, JAMS-02 shows that the asymptotics of  $q_n$  is universal.
- More precisely, they show that

$$q_n = n^{-4b_0 + o(1)},$$

where the persistence exponent  $b_0 \in (0, \infty)$ .

• Here  $b_0$  is the persistence exponent of a centered Gaussian stationary process with covariance  $\operatorname{sech}\left(\frac{t-s}{2}\right)$ .

- Suppose now that the coefficients  $\{a_i\}_{i\geq 0}$  are IID from a distribution F with mean 0 and variance 1, and all moments bounded.
- In this case, the seminal work of Dembo-Poonen-Shao-Zeitouni, JAMS-02 shows that the asymptotics of  $q_n$  is universal.
- More precisely, they show that

$$q_n = n^{-4b_0 + o(1)},$$

where the persistence exponent  $b_0 \in (0, \infty)$ .

- Here  $b_0$  is the persistence exponent of a centered Gaussian stationary process with covariance  $\operatorname{sech}\left(\frac{t-s}{2}\right)$ .
- More precisely,

$$b_0 = -\lim_{T \to \infty} \frac{1}{T} \log \mathbb{P}(\sup_{t \in [0,T[} \frac{Y^{(0)}(t)}{t}) < 0),$$

where  $\{Y^{(0)}(t), t \geq 0\}$  is a centered GSP with the above covariance function.

• In the same paper, Dembo-Poonen-Shao-Zeitouni, JAMS-02 also showed that

$$.4 \le b_0 \le 2.$$

• In the same paper, Dembo-Poonen-Shao-Zeitouni, JAMS-02 also showed that

$$.4 \le b_0 \le 2.$$

 Currently, the best known rigorous bounds are (Li-Shao, PTRF-02; Molchan, IJSA-12)

$$0.144 \approx \frac{1}{4\sqrt{3}} \le b_0 \le \frac{1}{4} = 0.25.$$

• In the same paper, Dembo-Poonen-Shao-Zeitouni, JAMS-02 also showed that

$$.4 \le b_0 \le 2.$$

 Currently, the best known rigorous bounds are (Li-Shao, PTRF-02; Molchan, IJSA-12)

$$0.144 \approx \frac{1}{4\sqrt{3}} \le b_0 \le \frac{1}{4} = 0.25.$$

• In Poplavskyi-Schehr, PRL-18 the authors showed using a physics argument that  $b_0 = \frac{3}{16} = 0.1875$ .

• In the same paper, Dembo-Poonen-Shao-Zeitouni, JAMS-02 also showed that

$$.4 \le b_0 \le 2.$$

 Currently, the best known rigorous bounds are (Li-Shao, PTRF-02; Molchan, IJSA-12)

$$0.144 \approx \frac{1}{4\sqrt{3}} \le b_0 \le \frac{1}{4} = 0.25.$$

- In Poplavskyi-Schehr, PRL-18 the authors showed using a physics argument that  $b_0 = \frac{3}{16} = 0.1875$ .
- This value agrees with the above rigorous bounds, and all existing simulation results.

• In Dembo-M, AoP-15, we study the case when  $\{a_i\}_{i\geq 0}$  are independent centered gaussians, but not necessarily identically distributed.

- In Dembo-M, AoP-15, we study the case when  $\{a_i\}_{i\geq 0}$  are independent centered gaussians, but not necessarily identically distributed.
- In particular, we consider the case when  $Var(a_i) = R(i)$ , where  $\{R(i)\}_{i\geq 0}$  is a regularly varying sequence of order  $\alpha$ , for some  $\alpha \in \mathbb{R}$ .

- In Dembo-M, AoP-15, we study the case when  $\{a_i\}_{i\geq 0}$  are independent centered gaussians, but not necessarily identically distributed.
- In particular, we consider the case when  $Var(a_i) = R(i)$ , where  $\{R(i)\}_{i\geq 0}$  is a regularly varying sequence of order  $\alpha$ , for some  $\alpha \in \mathbb{R}$ .
- In this case we show that

$$q_n = n^{-2(b_0 + b_\alpha)}.$$

- In Dembo-M, AoP-15, we study the case when  $\{a_i\}_{i\geq 0}$  are independent centered gaussians, but not necessarily identically distributed.
- In particular, we consider the case when  $Var(a_i) = R(i)$ , where  $\{R(i)\}_{i\geq 0}$  is a regularly varying sequence of order  $\alpha$ , for some  $\alpha \in \mathbb{R}$ .
- In this case we show that

$$q_n = n^{-2(b_0 + b_\alpha)}.$$

• Here, for  $\alpha > -1$ ,  $b_{\alpha}$  is the persistence exponent of a centered GSP with covariance function

$$\mathbb{E}Y^{(\alpha)}(s)Y^{(\alpha)}(t) = \operatorname{sech}\left(\frac{t-s}{2}\right)^{\alpha+1}.$$

- In Dembo-M, AoP-15, we study the case when  $\{a_i\}_{i\geq 0}$  are independent centered gaussians, but not necessarily identically distributed.
- In particular, we consider the case when  $Var(a_i) = R(i)$ , where  $\{R(i)\}_{i\geq 0}$  is a regularly varying sequence of order  $\alpha$ , for some  $\alpha \in \mathbb{R}$ .
- In this case we show that

$$q_n = n^{-2(b_0 + b_\alpha)}.$$

• Here, for  $\alpha > -1$ ,  $b_{\alpha}$  is the persistence exponent of a centered GSP with covariance function

$$\mathbb{E}Y^{(\alpha)}(s)Y^{(\alpha)}(t) = \operatorname{sech}\left(\frac{t-s}{2}\right)^{\alpha+1}.$$

• For  $\alpha \leq -1$  set  $b_{\alpha} = 0$ .

• No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .

- No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .
- In Dembo-M, AoP-15, we show the following properties:

- No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .
- In Dembo-M, AoP-15, we show the following properties:
  - The function  $\alpha \mapsto b_{\alpha}$  is continuous on  $\mathbb{R}$ .

- No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .
- In Dembo-M, AoP-15, we show the following properties:
  - The function  $\alpha \mapsto b_{\alpha}$  is continuous on  $\mathbb{R}$ .

.

$$\lim_{\alpha \to -1} \frac{b_{\alpha}}{\alpha + 1} = \frac{1}{2},$$

- No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .
- In Dembo-M, AoP-15, we show the following properties:
  - The function  $\alpha \mapsto b_{\alpha}$  is continuous on  $\mathbb{R}$ .

•

$$\lim_{\alpha \to -1} \frac{b_{\alpha}}{\alpha + 1} = \frac{1}{2},$$

0

$$\lim_{\alpha \to \infty} \frac{b_{\alpha}}{\sqrt{\alpha + 1}} = \hat{b}_{\infty} \in (0, \infty).$$

- No explicit value of  $b_{\alpha}$  is known, for any  $\alpha \neq 0$ .
- In Dembo-M, AoP-15, we show the following properties:
  - The function  $\alpha \mapsto b_{\alpha}$  is continuous on  $\mathbb{R}$ .

$$\lim_{\alpha \to -1} \frac{b_{\alpha}}{\alpha + 1} = \frac{1}{2},$$

0

$$\lim_{\alpha \to \infty} \frac{b_{\alpha}}{\sqrt{\alpha + 1}} = \hat{b}_{\infty} \in (0, \infty).$$

• Here  $\hat{b}_{\infty}$  is the persistence exponent of a centered GSP with covariance  $\exp\left(-(t-s)^2/8\right)$ .

## Main question

• It was conjectured in Poonen-Stoll, AoM-99 that universality of the asymptotics of  $q_n$  should hold whenver  $\{a_i\}_{i\geq 0}$  is in the domain of attraction of N(0,1).

### Main question

- It was conjectured in Poonen-Stoll, AoM-99 that universality of the asymptotics of  $q_n$  should hold whenver  $\{a_i\}_{i\geq 0}$  is in the domain of attraction of N(0,1).
- Essentially they believed that a second moment assumption should suffice.

## Main question

- It was conjectured in Poonen-Stoll, AoM-99 that universality of the asymptotics of  $q_n$  should hold whenver  $\{a_i\}_{i\geq 0}$  is in the domain of attraction of N(0,1).
- Essentially they believed that a second moment assumption should suffice.
- Another related question is whether we can allow for non IID coefficients beyond the Gaussian case, extending the results of Dembo-M, AoP-15.

## Main question

- It was conjectured in Poonen-Stoll, AoM-99 that universality of the asymptotics of  $q_n$  should hold whenver  $\{a_i\}_{i\geq 0}$  is in the domain of attraction of N(0,1).
- Essentially they believed that a second moment assumption should suffice.
- Another related question is whether we can allow for non IID coefficients beyond the Gaussian case, extending the results of Dembo-M, AoP-15.
- To answer both these questions in a unified framework, in Ghosal-M., Arxiv-24 we set  $a_i = \sqrt{R(i)}\xi_i$  for  $i \ge 0$ .

# Main question

- It was conjectured in Poonen-Stoll, AoM-99 that universality of the asymptotics of  $q_n$  should hold whenver  $\{a_i\}_{i\geq 0}$  is in the domain of attraction of N(0,1).
- Essentially they believed that a second moment assumption should suffice.
- Another related question is whether we can allow for non IID coefficients beyond the Gaussian case, extending the results of Dembo-M, AoP-15.
- To answer both these questions in a unified framework, in Ghosal-M., Arxiv-24 we set  $a_i = \sqrt{R(i)}\xi_i$  for  $i \ge 0$ .
- Here  $\{\xi_i\}_{i\geq 0}$  is a sequence of IID random variables with finite second moment, and R(i) is a regularly varying function of order  $\alpha > -1$ .

• In particular if we let R(i) = 1, we are back in the setting of IID coefficients (Kac's polynomials) studied in Dembo-Poonen-Shao-Zeitouni, JAMS-02.

- In particular if we let R(i) = 1, we are back in the setting of IID coefficients (Kac's polynomials) studied in Dembo-Poonen-Shao-Zeitouni, JAMS-02.
- On the other hand, if we assume  $\{\xi_i\}_{i\geq 0} \stackrel{IID}{\sim} N(0,1)$  and R(i) regularly varying, we are back in the setting of Dembo-M, AoP-15.

- In particular if we let R(i) = 1, we are back in the setting of IID coefficients (Kac's polynomials) studied in Dembo-Poonen-Shao-Zeitouni, JAMS-02.
- On the other hand, if we assume  $\{\xi_i\}_{i\geq 0} \stackrel{IID}{\sim} N(0,1)$  and R(i) regularly varying, we are back in the setting of Dembo-M, AoP-15.
- Our main (and only) theorem shows that in this general setting, we continue to have the universal asymptotics

$$q_n = n^{-2(b_\alpha + b_0)}.$$

- In particular if we let R(i) = 1, we are back in the setting of IID coefficients (Kac's polynomials) studied in Dembo-Poonen-Shao-Zeitouni, JAMS-02.
- On the other hand, if we assume  $\{\xi_i\}_{i\geq 0} \stackrel{IID}{\sim} N(0,1)$  and R(i) regularly varying, we are back in the setting of Dembo-M, AoP-15.
- Our main (and only) theorem shows that in this general setting, we continue to have the universal asymptotics

$$q_n = n^{-2(b_\alpha + b_0)}.$$

• Thus the leading order asymptotics does not depend on the distribution of  $\{\xi_i\}_{i>0}$  under the second moment assumption.

- In particular if we let R(i) = 1, we are back in the setting of IID coefficients (Kac's polynomials) studied in Dembo-Poonen-Shao-Zeitouni, JAMS-02.
- On the other hand, if we assume  $\{\xi_i\}_{i\geq 0} \stackrel{IID}{\sim} N(0,1)$  and R(i) regularly varying, we are back in the setting of Dembo-M, AoP-15.
- Our main (and only) theorem shows that in this general setting, we continue to have the universal asymptotics

$$q_n = n^{-2(b_\alpha + b_0)}.$$

- Thus the leading order asymptotics does not depend on the distribution of  $\{\xi_i\}_{i\geq 0}$  under the second moment assumption.
- Without the second moment assumption, it is expected that the exponent will change.

• Wr break the proof idea into the lower and upper bound.

- Wr break the proof idea into the lower and upper bound.
- For the lower bound, we need to show

$$\liminf_{n \to \infty} \frac{1}{n} \log q_n \ge -2(b_0 + b_\alpha).$$

- Wr break the proof idea into the lower and upper bound.
- For the lower bound, we need to show

$$\liminf_{n \to \infty} \frac{1}{n} \log q_n \ge -2(b_0 + b_\alpha).$$

• The proof requires that n is even.

- Wr break the proof idea into the lower and upper bound.
- For the lower bound, we need to show

$$\liminf_{n \to \infty} \frac{1}{n} \log q_n \ge -2(b_0 + b_\alpha).$$

- $\bullet$  The proof requires that n is even.
- The upper bound states that

$$\limsup_{n \to \infty} \frac{1}{n} \log q_n \le -2(b_0 + b_\alpha).$$

- Wr break the proof idea into the lower and upper bound.
- For the lower bound, we need to show

$$\liminf_{n \to \infty} \frac{1}{n} \log q_n \ge -2(b_0 + b_\alpha).$$

- $\bullet$  The proof requires that n is even.
- The upper bound states that

$$\limsup_{n \to \infty} \frac{1}{n} \log q_n \le -2(b_0 + b_\alpha).$$

• This works for all n (as expected).

## Outline

- Introduction
- 2 Lower bound
- 3 Upper bound
- 4 Conclusion

• Partition the domain  $\mathbb{R}$  into 5 disjoint parts

$$A_0 = \left[ -\frac{K}{n}, \frac{K}{n} \right],$$

$$A_{+1} = \left( \frac{K}{n}, \frac{h}{\log n} \right],$$

$$A_{+2} = \left( \frac{h}{\log n}, \infty \right),$$

$$A_{-1} = \left[ -\frac{h}{\log n}, -\frac{K}{n} \right),$$

$$A_{-2} = \left( -\infty, -\frac{h}{\log n} \right).$$

• Partition the domain  $\mathbb{R}$  into 5 disjoint parts

$$A_0 = \left[ -\frac{K}{n}, \frac{K}{n} \right],$$

$$A_{+1} = \left( \frac{K}{n}, \frac{h}{\log n} \right],$$

$$A_{+2} = \left( \frac{h}{\log n}, \infty \right),$$

$$A_{-1} = \left[ -\frac{h}{\log n}, -\frac{K}{n} \right),$$

$$A_{-2} = \left( -\infty, -\frac{h}{\log n} \right).$$

• Note that  $A_{-1} = -A_1$ , and  $A_{-2} = -A_{+2}$ .

• Partition the domain  $\mathbb{R}$  into 5 disjoint parts

$$A_0 = \left[ -\frac{K}{n}, \frac{K}{n} \right],$$

$$A_{+1} = \left( \frac{K}{n}, \frac{h}{\log n} \right],$$

$$A_{+2} = \left( \frac{h}{\log n}, \infty \right),$$

$$A_{-1} = \left[ -\frac{h}{\log n}, -\frac{K}{n} \right),$$

$$A_{-2} = \left( -\infty, -\frac{h}{\log n} \right).$$

- Note that  $A_{-1} = -A_1$ , and  $A_{-2} = -A_{+2}$ .
- Also,

$$\cup_{r\in\mathcal{R}}A_r=\mathbb{R},$$

where  $\mathcal{R} = \{0, \pm 1, \pm 2\}.$ 

• Similarly, partition the set of indices  $[n] := \{0, 1, 2, \dots, n\}$  into 5 parts,

$$B_{0} = [n] \cap \left[\frac{n}{D}, n - \frac{n}{D}\right],$$

$$B_{+1} = [n] \cap \left(n - \frac{n}{D}, n - L \log n\right],$$

$$B_{+2} = [n] \cap \left(n - L \log n, n\right],$$

$$B_{-1} = [n] \cap \left[L \log n, \frac{n}{D}\right),$$

$$B_{-2} = [n] \cap [0, L \log n).$$

• Similarly, partition the set of indices  $[n] := \{0, 1, 2, \dots, n\}$  into 5 parts,

$$B_{0} = [n] \cap \left[\frac{n}{D}, n - \frac{n}{D}\right],$$

$$B_{+1} = [n] \cap \left(n - \frac{n}{D}, n - L \log n\right],$$

$$B_{+2} = [n] \cap \left(n - L \log n, n\right],$$

$$B_{-1} = [n] \cap \left[L \log n, \frac{n}{D}\right),$$

$$B_{-2} = [n] \cap [0, L \log n).$$

Again note that

$$\cup_{r\in\mathcal{R}}B_r=[n].$$

• Similarly, partition the set of indices  $[n] := \{0, 1, 2, \dots, n\}$  into 5 parts,

$$B_0 = [n] \cap \left[\frac{n}{D}, n - \frac{n}{D}\right],$$

$$B_{+1} = [n] \cap \left(n - \frac{n}{D}, n - L \log n\right],$$

$$B_{+2} = [n] \cap \left(n - L \log n, n\right],$$

$$B_{-1} = [n] \cap \left[L \log n, \frac{n}{D}\right),$$

$$B_{-2} = [n] \cap [0, L \log n).$$

Again note that

$$\cup_{r\in\mathcal{R}}B_r=[n].$$

• Also we can write

$$Q_n(x) = \sum_{r \in \mathcal{R}} Q_n^{(r)}(x),$$

where the polynomials  $Q_n^{(r)}(x) = \sum_{i \in R} a_i x^i$  are independent. Sumit Mukherjee, Columbia University

Persistence of random polynomials

• Using the above decomposition, and changing variables gives (with  $\sigma_n^2(u) = Var(Q_n(\pm e^u))$ ),

$$\left\{ \sup_{x \in \mathbb{R}} Q_n(x) < 0 \right\} = \left\{ \sup_{u \in \mathbb{R}} \sum_{r \in \mathcal{R}} \frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)} < 0 \right\}.$$

• Using the above decomposition, and changing variables gives (with  $\sigma_n^2(u) = Var(Q_n(\pm e^u))$ ),

$$\left\{ \sup_{x \in \mathbb{R}} Q_n(x) < 0 \right\} = \left\{ \sup_{u \in \mathbb{R}} \sum_{r \in \mathcal{R}} \frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)} < 0 \right\}.$$

• Using the above decomposition, one way to guarantee persistence is

$$\Big\{\sup_{u\in A_r}\frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)}<-\delta, \max_{s\neq r}\sup_{u\in A_s}\frac{Q_n^{(r)}}{\sigma_n(u)}<\frac{\delta}{4}\Big\}.$$

• Using the above decomposition, and changing variables gives (with  $\sigma_n^2(u) = Var(Q_n(\pm e^u))$ ),

$$\left\{ \sup_{x \in \mathbb{R}} Q_n(x) < 0 \right\} = \left\{ \sup_{u \in \mathbb{R}} \sum_{r \in \mathcal{R}} \frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)} < 0 \right\}.$$

• Using the above decomposition, one way to guarantee persistence is

$$\Big\{\sup_{u\in A_r}\frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)}<-\delta, \max_{s\neq r}\sup_{u\in A_s}\frac{Q_n^{(r)}}{\sigma_n(u)}<\frac{\delta}{4}\Big\}.$$

• Also these events are independent for different values of r, giving the lower bound

$$\prod_{r \in \mathcal{R}} \mathbb{P} \left( \sup_{u \in A_r} \frac{Q_n^{(r)}(\pm e^u)}{\sigma_n(u)} < -\delta, \max_{s \neq r} \sup_{u \in A_s} \frac{Q_n^{(r)}}{\sigma_n(u)} < \frac{\delta}{4} \right).$$

• We need to deal with each of the terms separately.

- We need to deal with each of the terms separately.
- The main contribution to the exponent comes from the terms  $r \in \{-1, 1\}$ .

- We need to deal with each of the terms separately.
- The main contribution to the exponent comes from the terms  $r \in \{-1, 1\}$ .
- In this talk we will focus on r = -1.

- We need to deal with each of the terms separately.
- The main contribution to the exponent comes from the terms  $r \in \{-1, 1\}$ .
- In this talk we will focus on r = -1.
- Thus we need to lower bound

$$\mathbb{P}\left(\sup_{u\in A_{-1}}\frac{Q_n^{(-1)}(\pm e^u)}{\sigma_n(u)}<-\delta,\sup_{u\notin A_{-1}}\frac{Q_n^{(-1)}(\pm e^u)}{\sigma_n(u)}<\frac{\delta}{4}\right).$$

- We need to deal with each of the terms separately.
- The main contribution to the exponent comes from the terms  $r \in \{-1, 1\}$ .
- In this talk we will focus on r = -1.
- Thus we need to lower bound

$$\mathbb{P}\left(\sup_{u\in A_{-1}}\frac{Q_n^{(-1)}(\pm e^u)}{\sigma_n(u)}<-\delta,\sup_{u\notin A_{-1}}\frac{Q_n^{(-1)}(\pm e^u)}{\sigma_n(u)}<\frac{\delta}{4}\right).$$

Recall that

$$-A_{-1} = \left(\frac{K}{n}, \frac{h}{\log n}\right], \quad B_{-1} = [n] \cap \left[L \log n, \frac{n}{D}\right).$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{n=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n}\log n = \frac{n}{D}$$

$$r = -1$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M}$$

$$r = -1$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[LM^{p-1}\log n, LM^p\log n\Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

$$r = -1$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

• Similarly, partition the set  $A_{-1}$  as

$$\bigcup_{q=1}^{S_n} A_{-1,q}, \text{ where } -A_{-1,q} = \left(\frac{h}{\log n} M^{-q}, \frac{h}{\log n} M^{-(q-1)}\right].$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

• Similarly, partition the set  $A_{-1}$  as

$$\bigcup_{q=1}^{S_n} A_{-1,q}, \text{ where } -A_{-1,q} = \left(\frac{h}{\log n} M^{-q}, \frac{h}{\log n} M^{-(q-1)}\right].$$

• Here the integer  $S_n$  is chosen such that

$$\frac{h}{\log n} M^{-S_n} = \frac{K}{n}$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

• Similarly, partition the set  $A_{-1}$  as

$$\bigcup_{q=1}^{S_n} A_{-1,q}, \text{ where } -A_{-1,q} = \left(\frac{h}{\log n} M^{-q}, \frac{h}{\log n} M^{-(q-1)}\right].$$

• Here the integer  $S_n$  is chosen such that

$$\frac{h}{\log n} M^{-S_n} = \frac{K}{n} \Rightarrow S_n = \frac{\log n + \log h - \log K - \log \log n}{\log M}$$

• Fix M > 0, and partition the set  $B_{-1}$  as

$$\bigcup_{p=1}^{T_n} B_{-1,p}, \text{ where } B_{-1,p} = [n] \cap \Big[ LM^{p-1} \log n, LM^p \log n \Big).$$

• Here the integer  $T_n$  is chosen such that

$$LM^{T_n} \log n = \frac{n}{D} \Rightarrow T_n = \frac{\log n - \log D - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

• Similarly, partition the set  $A_{-1}$  as

$$\bigcup_{q=1}^{S_n} A_{-1,q}, \text{ where } -A_{-1,q} = \left(\frac{h}{\log n} M^{-q}, \frac{h}{\log n} M^{-(q-1)}\right].$$

• Here the integer  $S_n$  is chosen such that

$$\frac{h}{\log n} M^{-S_n} = \frac{K}{n} \Rightarrow S_n = \frac{\log n + \log h - \log K - \log \log n}{\log M} \approx \frac{\log n}{\log M}.$$

#### r = -1

• Then we can write

$$Q_n^{(-1)}(x) = \sum_{p=1}^{S_n} Q_n^{(-1,p)}(x)$$
, where  $Q_n^{(-1,p)}(x) = \sum_{i \in B_{-1,p}} a_i x^i$ 

are mutually independent.

#### r = -1

• Then we can write

$$Q_n^{(-1)}(x) = \sum_{p=1}^{S_n} Q_n^{(-1,p)}(x)$$
, where  $Q_n^{(-1,p)}(x) = \sum_{i \in B_{-1,p}} a_i x^i$ 

are mutually independent.

• Using this, one way to guarantee persistence is to demand

$$\begin{split} \Big\{ \sup_{u \in A_{-1,p}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} & \leq -2\delta, \\ \max_{|q-p|>1} \sup_{u \in A^{-1,q}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} & < \delta \rho(|p-q|), \\ \max_{r \in \{0,1,2\}}, \sup_{u \in A_r} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} & < \delta \rho(n+1-p), \\ \sup_{u \in A_{-2}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} & < \delta \rho(p) \Big\}. \end{split}$$

 $\bullet$  In the above calculation,  $\rho(\cdot)$  is an arbitrary summable sequence satisfying

$$2\sum_{i=0}^{\infty}\rho(i)<1.$$

• In the above calculation,  $\rho(\cdot)$  is an arbitrary summable sequence satisfying

$$2\sum_{i=0}^{\infty}\rho(i)<1.$$

• A crude lower bound using  $\mathbb{P}(E_1 \cap E_2) \geq P(E_1) - \mathbb{P}(E_2^c)$  gives the lower bound

$$\begin{split} & \mathbb{P}\Big(\sup_{u \in A_{-1,p}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} \leq -2\delta, \\ & \max_{1 \leq |q-p| \leq \Gamma} \sup_{u \in A^{-1,q}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} < \delta\rho(|p-q|)\Big) \\ & - \mathbb{P}\Big(\max_{|q-p| > \Gamma} \sup_{u \in A^{-1,q}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} > \delta\rho(|p-q|)\Big) \\ & - \mathbb{P}\Big(\max_{r \in \{0,1,2\}}, \sup_{u \in A_r} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} > \delta\rho(n+1-p)\Big) \\ & - \mathbb{P}\Big(\sup_{u \in A_{-2}} \frac{Q_n^{(-1,p)}(\pm e^u)}{\sigma_n(u)} > \delta\rho(p)\Big). \end{split}$$

• As before we bound each term separately.

- As before we bound each term separately.
- For the main term, we have the process convergence, after parametrizing  $u = -\frac{h}{MP \log n} t$ :

$$\left\{\frac{Q_n^{(-1,p)}(\zeta e^u)}{\sigma_n(u)}\right\}_{u\in\cup_{q:|q-p|\leq\Gamma}A^{-1,q},\zeta\in\{\pm\}} \stackrel{d}{\to} \{Z_M(t,\zeta)\}_{t\in[M^{-\Gamma},M^{\Gamma+1}],\zeta\in\{\pm\}}$$

- As before we bound each term separately.
- For the main term, we have the process convergence, after parametrizing  $u = -\frac{h}{MP \log n} t$ :

$$\left\{\frac{Q_n^{(-1,p)}(\zeta e^u)}{\sigma_n(u)}\right\}_{u\in\cup_{q:|q-p|\leq\Gamma}A^{-1,q},\zeta\in\{\pm\}}\stackrel{d}{\to} \left\{Z_M(t,\zeta)\right\}_{t\in[M^{-\Gamma},M^{\Gamma+1}],\zeta\in\{\pm\}}$$

• Here  $Z_M(t,\zeta)$  is a centered (non-stationary) Gaussian process with correlation

$$C_M((t_1,\zeta_1),(t_2,\zeta_2)) = \frac{g_M(t_1+t_2)}{\sqrt{g_M(2t_1)}\sqrt{g_M(2t_2)}}$$

if  $\zeta_1 = \zeta_2$ , and 0 otherwise.

- As before we bound each term separately.
- For the main term, we have the process convergence, after parametrizing  $u = -\frac{h}{M^p \log n} t$ :

$$\left\{\frac{Q_n^{(-1,p)}(\zeta e^u)}{\sigma_n(u)}\right\}_{u\in\cup_{q:|q-p|\leq\Gamma}A^{-1,q},\zeta\in\{\pm\}} \stackrel{d}{\to} \{Z_M(t,\zeta)\}_{t\in[M^{-\Gamma},M^{\Gamma+1}],\zeta\in\{\pm\}}$$

• Here  $Z_M(t,\zeta)$  is a centered (non-stationary) Gaussian process with correlation

$$C_M\Big((t_1,\zeta_1),(t_2,\zeta_2)\Big) = \frac{g_M(t_1+t_2)}{\sqrt{g_M(2t_1)}\sqrt{g_M(2t_2)}}$$

if  $\zeta_1 = \zeta_2$ , and 0 otherwise.

Finally

$$g_M(t) = \int_{\frac{\lambda}{kT}}^{\lambda} x^{\alpha} e^{-xt} dx$$
, where  $\lambda = hL$ .

 By weak convergence of stochastic processes, the main term is approximately

$$\mathbb{P}\Big(\sup_{t\in[1,M]}Z_M(t)<-2\delta,\sup_{t\in[M^{\ell},M^{\ell+1}]}Z_M(t)<\rho(|\ell|)\delta, \text{ for } \ell=\pm 1,\cdots,\pm\Gamma\Big)^2.$$

 By weak convergence of stochastic processes, the main term is approximately

$$\mathbb{P}\Big(\sup_{t\in[1,M]}Z_M(t)<-2\delta,\sup_{t\in[M^\ell,M^{\ell+1}]}Z_M(t)<\rho(|\ell|)\delta, \text{ for } \ell=\pm 1,\cdots,\pm\Gamma\Big)^2.$$

• By Slepian's inequality, a further lower bound is

$$\begin{split} & \mathbb{P}\Big(\sup_{t\in[1,M]} Z_M(t) < -2\delta\Big)^2 \\ & \times \mathbb{P}\big(\sup_{t\in[M^\ell,M^{\ell+1}]} Z_M(t) < \rho(|\ell|)\delta, \text{ for } \ell = \pm 1,\cdots, \pm \Gamma\Big)^2 \\ & \geq & \mathbb{P}\Big(\sup_{t\in[M^\delta,M^{1-\delta}]} Z_M(t) < -2\delta\Big)^2 \mathbb{P}\big(\sup_{t\in[1,M^\delta]\cup[M^{1-\delta},M]} Z_M(t) < -2\delta\Big)^2 \\ & \times \mathbb{P}\big(\sup_{t\in[M^\ell,M^{\ell+1}]} Z_M(t) < \rho(|\ell|)\delta, \text{ for } \ell = \pm 1,\cdots, \pm \Gamma\Big)^2. \end{split}$$

• In the domain  $t \in [M^{\delta}, M^{1-\delta}]$ , the correlations of the process  $Y_M(t)$  are well approximated by that of  $Z_{\infty}(t)$ , whose correlation is

$$\frac{g_{\infty}(t_1+t_2)}{\sqrt{g_{\infty}(2t_1)}\sqrt{g_{\infty}(2t_2)}},\quad g_{\infty}(t)=\int_0^{\infty}x^{\alpha}e^{-xt}dx.$$

• In the domain  $t \in [M^{\delta}, M^{1-\delta}]$ , the correlations of the process  $Y_M(t)$  are well approximated by that of  $Z_{\infty}(t)$ , whose correlation is

$$\frac{g_{\infty}(t_1+t_2)}{\sqrt{g_{\infty}(2t_1)}\sqrt{g_{\infty}(2t_2)}}, \quad g_{\infty}(t) = \int_0^\infty x^{\alpha} e^{-xt} dx.$$

• On changing variables to  $s = \log t$ , this correlation is exactly  $\operatorname{sech}\left(\frac{s_1 - s_2}{2}\right)^{\alpha + 1}$ .

• In the domain  $t \in [M^{\delta}, M^{1-\delta}]$ , the correlations of the process  $Y_M(t)$  are well approximated by that of  $Z_{\infty}(t)$ , whose correlation is

$$\frac{g_{\infty}(t_1+t_2)}{\sqrt{g_{\infty}(2t_1)}\sqrt{g_{\infty}(2t_2)}}, \quad g_{\infty}(t) = \int_0^{\infty} x^{\alpha} e^{-xt} dx.$$

- On changing variables to  $s = \log t$ , this correlation is exactly  $\operatorname{sech}\left(\frac{s_1 s_2}{2}\right)^{\alpha + 1}$ .
- Using the continuity of persistence exponents (Dembo-M., AoP-15), one has

$$\lim_{M \to \infty} \frac{1}{M} \log \mathbb{P} \Big( \sup_{t \in [1, M]} Z_M(t) < -2\delta \Big)$$

$$= \lim_{M \to \infty} \frac{1}{\log M} \log \mathbb{P} \Big( \sup_{s \in [0, (1-2\delta)] \log M]} \underline{Y}^{(\alpha)}(s) \le -2\delta \Big).$$

• Finally one takes  $\delta \to 0$ , which on using continuity of levels of persistence gives the answer

$$\lim_{M \to \infty} \frac{1}{\log M} \log \mathbb{P}\Big(\sup_{s \in [0, \log M]} Y^{(\alpha)}(s) < 0\Big).$$

• Finally one takes  $\delta \to 0$ , which on using continuity of levels of persistence gives the answer

$$\lim_{M \to \infty} \frac{1}{\log M} \log \mathbb{P}\Big(\sup_{s \in [0, \log M]} Y^{(\alpha)}(s) < 0\Big).$$

• This is precisely the exponent  $b_{\alpha}$  defined above.

• Finally one takes  $\delta \to 0$ , which on using continuity of levels of persistence gives the answer

$$\lim_{M \to \infty} \frac{1}{\log M} \log \mathbb{P} \Big( \sup_{s \in [0, \log M]} Y^{(\alpha)}(s) < 0 \Big).$$

- This is precisely the exponent  $b_{\alpha}$  defined above.
- The other products in the main term, i.e.

$$\mathbb{P}\left(\sup_{t\in[1,M^{\delta}]\cup[M^{1-\delta},M]} Z_M(t) < -2\delta\right)^2 \times \mathbb{P}\left(\sup_{t\in[M^{\ell},M^{\ell+1}]} Z_M(t) < \rho(|\ell|)\delta, \text{ for } \ell = \pm 1,\cdots, \pm \Gamma\right)^2.$$

can be lower bounded by first using Slepian to decouple the terms, then bounding each term using Borel-TIS inequality.

• To handle the error terms, we repeatedly use the following simple lemma, which is a version of Kolmogorov-Chentsov (or Kolmogorov continuity) lemma.

• To handle the error terms, we repeatedly use the following simple lemma, which is a version of Kolmogorov-Chentsov (or Kolmogorov continuity) lemma.

#### Lemma

Suppose  $\{X(t)\}_{t\in[c,d]}$  is any mean zero stochastic process with continuous sample paths, such that

$$\mathbb{E}\Big[X(s) - X(t)\Big]^2 \le C(s-t)^2.$$

• To handle the error terms, we repeatedly use the following simple lemma, which is a version of Kolmogorov-Chentsov (or Kolmogorov continuity) lemma.

#### Lemma

Suppose  $\{X(t)\}_{t\in[c,d]}$  is any mean zero stochastic process with continuous sample paths, such that

$$\mathbb{E}\Big[X(s) - X(t)\Big]^2 \le C(s-t)^2.$$

Then there is a universal constant K such that

$$\mathbb{P}\left(\sup_{t\in[c,d]}|X(t)-X(d)|>\lambda\right)\leq \frac{CK(c-d)^2}{\lambda^2}.$$

• To handle the error terms, we repeatedly use the following simple lemma, which is a version of Kolmogorov-Chentsov (or Kolmogorov continuity) lemma.

#### Lemma

Suppose  $\{X(t)\}_{t\in[c,d]}$  is any mean zero stochastic process with continuous sample paths, such that

$$\mathbb{E}\Big[X(s) - X(t)\Big]^2 \le C(s-t)^2.$$

Then there is a universal constant K such that

$$\mathbb{P}\left(\sup_{t\in[c,d]}|X(t)-X(d)|>\lambda\right)\leq \frac{CK(c-d)^2}{\lambda^2}.$$

• To utilize this lemma, we need the second moment bound.

• To handle the error terms, we repeatedly use the following simple lemma, which is a version of Kolmogorov-Chentsov (or Kolmogorov continuity) lemma.

#### Lemma

Suppose  $\{X(t)\}_{t\in[c,d]}$  is any mean zero stochastic process with continuous sample paths, such that

$$\mathbb{E}\Big[X(s) - X(t)\Big]^2 \le C(s - t)^2.$$

Then there is a universal constant K such that

$$\mathbb{P}\left(\sup_{t\in[c,d]}|X(t)-X(d)|>\lambda\right)\leq \frac{CK(c-d)^2}{\lambda^2}.$$

- To utilize this lemma, we need the second moment bound.
- The only other case where we need the second moment bound is the process convergence, which utilizes the Lindeberg-Feller CLT.

### Outline

- 1 Introduction
- 2 Lower bound
- 3 Upper bound
- 4 Conclusion

• For the upper bound, we can start by ignoring most of the domain, focusing on just two parts:

• For the upper bound, we can start by ignoring most of the domain, focusing on just two parts:

$$A_{+} = -\left[\frac{1}{n^{1-\delta}}, \frac{1}{n^{\delta}}\right], \quad A_{-} = -A_{+}.$$

• For the upper bound, we can start by ignoring most of the domain, focusing on just two parts:

$$A_{+} = -\left[\frac{1}{n^{1-\delta}}, \frac{1}{n^{\delta}}\right], \quad A_{-} = -A_{+}.$$

• Correspondingly, we set

$$B_+ = [n] \cap \left(n - n^{1-\delta}, n - n^{\delta}\right], \quad B_- = [n] \cap \left[n^{\delta}, n^{1-\delta}\right).$$

 For the upper bound, we can start by ignoring most of the domain, focusing on just two parts:

$$A_{+} = -\left[\frac{1}{n^{1-\delta}}, \frac{1}{n^{\delta}}\right], \quad A_{-} = -A_{+}.$$

• Correspondingly, we set

$$B_+ = [n] \cap \left(n - n^{1-\delta}, n - n^{\delta}\right], \quad B_- = [n] \cap \left[n^{\delta}, n^{1-\delta}\right).$$

Partition

$$B_{-} = \bigcup_{p=1}^{T_n} B_{-,p}, \quad B_{-,p} = [n] \cap [n^{\delta} M^{p-1}, n^{\delta} M^p),$$

where  $T_n$  is an integer chosen such that

$$n^{\delta} M^{T_n} = n^{1-\delta} \Rightarrow T_n = \frac{(1-2\delta)\log n}{\log M}.$$

 For the upper bound, we can start by ignoring most of the domain, focusing on just two parts:

$$A_{+} = -\left[\frac{1}{n^{1-\delta}}, \frac{1}{n^{\delta}}\right], \quad A_{-} = -A_{+}.$$

• Correspondingly, we set

$$B_+ = [n] \cap \left(n - n^{1-\delta}, n - n^{\delta}\right], \quad B_- = [n] \cap \left[n^{\delta}, n^{1-\delta}\right).$$

Partition

$$B_{-} = \bigcup_{p=1}^{T_n} B_{-,p}, \quad B_{-,p} = [n] \cap [n^{\delta} M^{p-1}, n^{\delta} M^p),$$

where  $T_n$  is an integer chosen such that

$$n^{\delta} M^{T_n} = n^{1-\delta} \Rightarrow T_n = \frac{(1-2\delta)\log n}{\log M}.$$

• Similarly partition  $B_+$ .

- Similarly partition  $B_+$ .
- Now partition a subset of  $A_{-}$  as

$$\bigcup_{q=1}^{T_n} A_{-,q}, \quad A_{-,q} = \Big[\frac{1}{n^\delta M^{q-\delta}}, \frac{1}{n^\delta M^{q-1+\delta}}\Big],$$

where  $T_n$  is an integer chosen such that

$$n^{\delta} M^{T_n} = n^{1-\delta} \Rightarrow T_n = \frac{(1-2\delta)\log n}{\log M}.$$

- Similarly partition  $B_+$ .
- Now partition a subset of  $A_{-}$  as

$$\bigcup_{q=1}^{T_n} A_{-,q}, \quad A_{-,q} = \Big[\frac{1}{n^\delta M^{q-\delta}}, \frac{1}{n^\delta M^{q-1+\delta}}\Big],$$

where  $T_n$  is an integer chosen such that

$$n^{\delta} M^{T_n} = n^{1-\delta} \Rightarrow T_n = \frac{(1-2\delta)\log n}{\log M}.$$

 Thus the intervals are disjoint, and the total union of intervals is contained in

$$\left[\frac{M^{\delta}}{n^{1-\delta}}, \frac{1}{n^{\delta}M^{\delta}}\right] \subseteq A_{-1}.$$

- Similarly partition  $B_+$ .
- Now partition a subset of  $A_{-}$  as

$$\bigcup_{q=1}^{T_n} A_{-,q}, \quad A_{-,q} = \Big[\frac{1}{n^\delta M^{q-\delta}}, \frac{1}{n^\delta M^{q-1+\delta}}\Big],$$

where  $T_n$  is an integer chosen such that

$$n^{\delta} M^{T_n} = n^{1-\delta} \Rightarrow T_n = \frac{(1-2\delta)\log n}{\log M}.$$

 Thus the intervals are disjoint, and the total union of intervals is contained in

$$\left[\frac{M^{\delta}}{n^{1-\delta}}, \frac{1}{n^{\delta}M^{\delta}}\right] \subseteq A_{-1}.$$

• Since we cannot through away coefficients (unlike the intervals), set

$$B_0 = [n]/(B_+ \cup B_-).$$

• An upper bound to  $q_n$  is thus given by ignoring part of the domain, to get the bound

$$\mathbb{P}\left(\max_{\zeta\in\{-1,1\}}\sup_{u\in\bigcup_{q\in[\varepsilon T_n,(1-\varepsilon)T_n]}A_{\zeta,q}}\frac{Q_n(\pm_2e^{\zeta_1u})}{\sigma_n(u)}\sigma_n(u)<0\right).$$

• An upper bound to  $q_n$  is thus given by ignoring part of the domain, to get the bound

$$\mathbb{P}\left(\max_{\zeta\in\{-1,1\}}\sup_{u\in\bigcup_{q\in[\varepsilon T_n,(1-\varepsilon)T_n]}A_{\zeta,q}}\frac{Q_n(\pm_2e^{\zeta_1u})}{\sigma_n(u)}\sigma_n(u)<0\right).$$

• As in the lower bound, we can write

$$Q_n(x) = \sum_{r=-1}^{1} Q_n^{(r)}(x)$$
, where  $Q_n^{(r)}(x) = \sum_{i \in B_r} a_i x^i$ .

are independent.

• An upper bound to  $q_n$  is thus given by ignoring part of the domain, to get the bound

$$\mathbb{P}\left(\max_{\zeta\in\{-1,1\}}\sup_{u\in\bigcup_{q\in[\varepsilon T_n,(1-\varepsilon)T_n]}A_{\zeta,q}}\frac{Q_n(\pm_2e^{\zeta_1u})}{\sigma_n(u)}\sigma_n(u)<0\right).$$

• As in the lower bound, we can write

$$Q_n(x) = \sum_{r=-1}^{1} Q_n^{(r)}(x)$$
, where  $Q_n^{(r)}(x) = \sum_{i \in B_r} a_i x^i$ .

are independent.

Further we have

$$Q_n^{(-1)}(x) = \sum_{p=1}^{T_n} Q_n^{(-1,p)}(x), \text{ and } Q_n^{(+1)}(x) = \sum_{p=1}^{T_n} Q_n^{(+1,p)}(x).$$

• Fixing  $q \in [\varepsilon T_n, (1-\varepsilon)T_n]$  and  $\zeta = -1$ , if  $\sup_{u \in A^{-1,q}} Q_n\left(\frac{\pm e^u}{\sigma_n(u)}\right) < 0$ , then one of the following must hold:

$$E_{q} = \left\{ \sup_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,q)}(\pm e^{u})}{\sigma_{n}(u)} < 2\delta \right\},$$

$$F_{p,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,p)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta\rho(|p-q|) \right\},$$

$$F_{0,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(0)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta \right\}.$$

• Fixing  $q \in [\varepsilon T_n, (1-\varepsilon)T_n]$  and  $\zeta = -1$ , if  $\sup_{u \in A^{-1,q}} Q_n\left(\frac{\pm e^u}{\sigma_n(u)}\right) < 0$ , then one of the following must hold:

$$E_{q} = \left\{ \sup_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,q)}(\pm e^{u})}{\sigma_{n}(u)} < 2\delta \right\},$$

$$F_{p,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,p)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta\rho(|p-q|) \right\},$$

$$F_{0,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(0)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta \right\}.$$

• Here  $\rho(\ell) = \frac{\kappa}{\ell^2}$ , where  $\kappa$  is chosen such that

$$2\sum_{\ell=1}^{\infty}\rho(\ell)<1.$$

• Fixing  $q \in [\varepsilon T_n, (1-\varepsilon)T_n]$  and  $\zeta = -1$ , if  $\sup_{u \in A^{-1,q}} Q_n\left(\frac{\pm e^u}{\sigma_n(u)}\right) < 0$ , then one of the following must hold:

$$E_{q} = \left\{ \sup_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,q)}(\pm e^{u})}{\sigma_{n}(u)} < 2\delta \right\},$$

$$F_{p,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(-1,p)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta\rho(|p-q|) \right\},$$

$$F_{0,q} = \left\{ \inf_{u \in A^{(-1,q)}} \frac{Q_{n}^{(0)}(\pm e^{u})}{\sigma_{n}(u)} < -\delta \right\}.$$

• Here  $\rho(\ell) = \frac{\kappa}{\ell^2}$ , where  $\kappa$  is chosen such that

$$2\sum_{\ell=1}^{\infty}\rho(\ell)<1.$$

• If the first event  $E_q$  happens for most q's, then we are happy.

• We need to show that  $F_q = \bigcup_{p \neq q} F_{p,q}$  doesn't happen for many q's, and  $F_{0,q}$  doesn't happen for many q's.

- We need to show that  $F_q = \bigcup_{p \neq q} F_{p,q}$  doesn't happen for many q's, and  $F_{0,q}$  doesn't happen for many q's.
- The events  $F_{0,q}$  happen with pretty small probability (using our Kolmogorov continuity lemma), and so can safely be ignored.

- We need to show that  $F_q = \bigcup_{p \neq q} F_{p,q}$  doesn't happen for many q's, and  $F_{0,q}$  doesn't happen for many q's.
- The events  $F_{0,q}$  happen with pretty small probability (using our Kolmogorov continuity lemma), and so can safely be ignored.
- The challenge here comes from the fact that the events

$$\{F_q\}_{\varepsilon T_n \le q \le (1-\varepsilon)T_n}$$

have dependence across themselves, and also with

$${E_q}_{\varepsilon T_n \leq q \leq (1-\varepsilon)T_n}$$
.

• To control this, we need a quantitive bound on events of the form

$$\mathbb{P}\Big(\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\Big),$$

• To control this, we need a quantitive bound on events of the form

$$\mathbb{P}\Big(\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\Big),$$

where S is a subset of  $[\varepsilon T_n, (1-\varepsilon)T_n]$  which is not too small.

• The key idea behind this bound is the following construction.

To control this, we need a quantitive bound on events of the form

$$\mathbb{P}\Big(\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\Big),$$

- The key idea behind this bound is the following construction.
- ullet Suppose there are a lot of indices in S, which means a lot of bad events have happened.

• To control this, we need a quantitive bound on events of the form

$$\mathbb{P}\Big(\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\Big),$$

- The key idea behind this bound is the following construction.
- ullet Suppose there are a lot of indices in S, which means a lot of bad events have happened.
- Since  $F_q = \bigcup_{s \neq q} F_{q,s}$ , for every  $q \in S$  there exists  $s_q \neq q$  such that  $F_{q,s}$  happens.

• To control this, we need a quantitive bound on events of the form

$$\mathbb{P}\Big(\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\Big),$$

- The key idea behind this bound is the following construction.
- ullet Suppose there are a lot of indices in S, which means a lot of bad events have happened.
- Since  $F_q = \bigcup_{s \neq q} F_{q,s}$ , for every  $q \in S$  there exists  $s_q \neq q$  such that  $F_{q,s}$  happens.
- By a union bound, focus on one such event of the form

$$\left\{ \cap_{q \in S} F_{q,s_q} \bigcap \cap_{r \in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r \right\}.$$

• By symmetry, without loss of generality, assume that for many co-ordinates we have  $s_q > q$ .

- By symmetry, without loss of generality, assume that for many co-ordinates we have  $s_q > q$ .
- Do an greedy inductive construction to get a subsequence of strictly increasing indices  $\widetilde{S}$  of the above indices S, which guarantees

 $q \mapsto s_q$  is strictly increasing on  $\widetilde{S}$ .

- By symmetry, without loss of generality, assume that for many co-ordinates we have  $s_q > q$ .
- Do an greedy inductive construction to get a subsequence of strictly increasing indices  $\widetilde{S}$  of the above indices S, which guarantees

 $q \mapsto s_q$  is strictly increasing on  $\widetilde{S}$ .

• Then an upper bound is the larger event

$$\left\{ \cap_{q \in \widetilde{S}} F_{q,s_q} \bigcap \cap_{r \in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r \right\}.$$

- By symmetry, without loss of generality, assume that for many co-ordinates we have  $s_q > q$ .
- Do an greedy inductive construction to get a subsequence of strictly increasing indices  $\widetilde{S}$  of the above indices S, which guarantees

 $q \mapsto s_q$  is strictly increasing on  $\widetilde{S}$ .

• Then an upper bound is the larger event

$$\left\{ \bigcap_{q \in \widetilde{S}} F_{q, s_q} \bigcap \bigcap_{r \in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r \right\}.$$

• These events are finally independent, and so decouple.

• For each  $E_r$ , we can upper bound the probability by weak convergence of stochastic processes.

- For each  $E_r$ , we can upper bound the probability by weak convergence of stochastic processes.
- For  $F_{q,s}$  with |q-s| small, we can again upper bound the probability by weak convergence of stochastic processes.

- For each  $E_r$ , we can upper bound the probability by weak convergence of stochastic processes.
- For  $F_{q,s}$  with |q-s| small, we can again upper bound the probability by weak convergence of stochastic processes.
- For  $F_{q,s}$  with |q-s| large, we use our Kolmogorov-continuity lemma.

- For each  $E_r$ , we can upper bound the probability by weak convergence of stochastic processes.
- For  $F_{q,s}$  with |q-s| small, we can again upper bound the probability by weak convergence of stochastic processes.
- For  $F_{q,s}$  with |q-s| large, we use our Kolmogorov-continuity lemma.
- Combining and summing over, we get the desired quantitative bound, allowing us to ignore sets of the form

$$\{\cap_{q\in S} F_q \bigcap \cap_{r\in [\varepsilon T_n, (1-\varepsilon)T_n]/S} E_r\}$$

whenever |S| is not too small.

• Finally, we can focus on the term where |S| is small, i.e. most of the  $E_q$ 's happen.

- Finally, we can focus on the term where |S| is small, i.e. most of the  $E_q$ 's happen.
- Also the events  $\{E_q\}_{\varepsilon T_n \leq q \leq (1-\varepsilon)T_n}$  are mutually independent.

- Finally, we can focus on the term where |S| is small, i.e. most of the  $E_q$ 's happen.
- Also the events  $\{E_q\}_{\varepsilon T_n \leq q \leq (1-\varepsilon)T_n}$  are mutually independent.
- On each  $E_q$  we have weak convergence of stochastic processes, giving us a Gaussian process  $Z_M(t)$  on a block of the form  $t \in [M^{\delta}, M^{1-\delta}]$ .

- Finally, we can focus on the term where |S| is small, i.e. most of the  $E_q$ 's happen.
- Also the events  $\{E_q\}_{\varepsilon T_n \leq q \leq (1-\varepsilon)T_n}$  are mutually independent.
- On each  $E_q$  we have weak convergence of stochastic processes, giving us a Gaussian process  $Z_M(t)$  on a block of the form  $t \in [M^{\delta}, M^{1-\delta}]$ .
- Changing to stationary scale  $s = \log t$  and taking limits as  $M \to \infty$ , we again get the limiting Gaussian process with covariance  $\operatorname{sech}\left(\frac{s_1-s_2}{2}\right)^{\alpha+1}$ .

- Finally, we can focus on the term where |S| is small, i.e. most of the  $E_q$ 's happen.
- Also the events  $\{E_q\}_{\varepsilon T_n \leq q \leq (1-\varepsilon)T_n}$  are mutually independent.
- On each  $E_q$  we have weak convergence of stochastic processes, giving us a Gaussian process  $Z_M(t)$  on a block of the form  $t \in [M^{\delta}, M^{1-\delta}]$ .
- Changing to stationary scale  $s = \log t$  and taking limits as  $M \to \infty$ , we again get the limiting Gaussian process with covariance  $\operatorname{sech}\left(\frac{s_1-s_2}{2}\right)^{\alpha+1}$ .
- The fact that this convergence allows the exponents to converge again follows form Dembo-M., AoP-15, as in the lower bound.

• For the lower bound proof, the asymptotics depend on  $\alpha$  if  $x \in [-1, 1]$ , and do not depend on  $\alpha$  outside.

- For the lower bound proof, the asymptotics depend on  $\alpha$  if  $x \in [-1, 1]$ , and do not depend on  $\alpha$  outside.
- Our proof should go through if  $\xi_i^2 = \frac{a_i^2}{R(i)}$  are uniformly integrable, instead of requiring them to be IID.

- For the lower bound proof, the asymptotics depend on  $\alpha$  if  $x \in [-1, 1]$ , and do not depend on  $\alpha$  outside.
- Our proof should go through if  $\xi_i^2 = \frac{a_i^2}{R(i)}$  are uniformly integrable, instead of requiring them to be IID.
- In that case we will need either of the following assumptions:

$$\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [-\rho', 0]) \ge c, \text{ for some } 0 < \rho' < \rho,$$
 or  $\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [0, \rho]) \ge c \text{ for some } \rho > 0.$ 

- For the lower bound proof, the asymptotics depend on  $\alpha$  if  $x \in [-1, 1]$ , and do not depend on  $\alpha$  outside.
- Our proof should go through if  $\xi_i^2 = \frac{a_i^2}{R(i)}$  are uniformly integrable, instead of requiring them to be IID.
- In that case we will need either of the following assumptions:

$$\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [-\rho', 0]) \ge c, \text{ for some } 0 < \rho' < \rho,$$
 or  $\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [0, \rho]) \ge c \text{ for some } \rho > 0.$ 

• For IID coefficients, these conclusions follow from mean 0 and variance 1 (for either  $\xi_i$  or  $-\xi_i$ , which is enough for us).

- For the lower bound proof, the asymptotics depend on  $\alpha$  if  $x \in [-1, 1]$ , and do not depend on  $\alpha$  outside.
- Our proof should go through if  $\xi_i^2 = \frac{a_i^2}{R(i)}$  are uniformly integrable, instead of requiring them to be IID.
- In that case we will need either of the following assumptions:

$$\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [-\rho', 0]) \ge c, \text{ for some } 0 < \rho' < \rho,$$
 or  $\mathbb{P}(\xi_i \le -\rho) \ge c, \qquad \mathbb{P}(\xi_i \in [0, \rho]) \ge c \text{ for some } \rho > 0.$ 

- For IID coefficients, these conclusions follow from mean 0 and variance 1 (for either  $\xi_i$  or  $-\xi_i$ , which is enough for us).
- If one wants to only consider no roots in the domain [0,1] or  $[1,\infty)$  or  $[0,\infty)$ , n even is not needed.

### Outline

- 1 Introduction
- 2 Lower bound
- 3 Upper bound
- 4 Conclusion

• What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients?

• What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .

- What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .
- What about computing  $b_0 (= \frac{3}{16})$ ?

- What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .
- What about computing  $b_0 (= \frac{3}{16})$ ? What about  $b_\alpha$  for  $\alpha \neq 0$ ?

- What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .
- What about computing  $b_0 (= \frac{3}{16})$ ? What about  $b_\alpha$  for  $\alpha \neq 0$ ?
- If we change the polynomial (Kostlan, Weyl), can we repeat all the steps?

- What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .
- What about computing  $b_0 (= \frac{3}{16})$ ? What about  $b_\alpha$  for  $\alpha \neq 0$ ?
- If we change the polynomial (Kostlan, Weyl), can we repeat all the steps? Seems easier than the other two questions.

- What if we drop the second moment assumption, and consider  $\alpha$  stable coefficients? The answer is expected to depend on  $\alpha$ .
- What about computing  $b_0 (= \frac{3}{16})$ ? What about  $b_\alpha$  for  $\alpha \neq 0$ ?
- If we change the polynomial (Kostlan, Weyl), can we repeat all the steps? Seems easier than the other two questions.
- Generalize to higher dimensions?

