

Network Coding Lecture 3

Felice Manganiello Clemson University

ICERM
Graduate Workshop on Linear Algebra
over Finite Fields & Applications

F.R. Kschischang, FM, A. Ravagnani, and K. Savary, External codes for multiple unicast networks via interference alignment, Designs, Codes and Cryptography, 2024

 network coding consists of one or multiple sources of information attempting to communicate to multiple terminals through a network of intermediate nodes

- network coding consists of one or multiple sources of information attempting to communicate to multiple terminals through a network of intermediate nodes
- users are allowed to freely design both the network code (i.e., how the intermediate vertices process information packets) and the outer codes of the sources.

- network coding consists of one or multiple sources of information attempting to communicate to multiple terminals through a network of intermediate nodes
- users are allowed to freely design both the network code (i.e., how the intermediate vertices process information packets) and the outer codes of the sources.
- we initiate the study of the scenario where the network code is linear and fixed, and only the outer codes can be freely designed by the source-receiver pairs. source-receiver pairs compete for the network resources and act as interference to each other.

- network coding consists of one or multiple sources of information attempting to communicate to multiple terminals through a network of intermediate nodes
- users are allowed to freely design both the *network code* (i.e., how the intermediate vertices process information packets) and the *outer codes* of the sources.
- we initiate the study of the scenario where the network code is linear and fixed, and only the outer codes can be freely designed by the source-receiver pairs. source-receiver pairs compete for the network resources and act as interference to each other.
- Inspired by Interference Alignment.

√ Communication Model and Problem Formulation

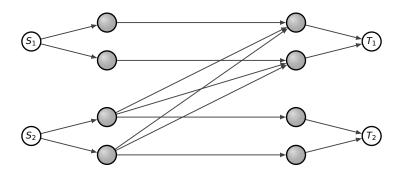
√ Achievable Rate Regions and Their Properties

 \checkmark An Outer Bound for the Achievable Rate Region

√ The Role of the Field Characteristic

Network example

- Network Alphabet: \mathbb{F}_q .
- Linear network coding with fixed channel gains.
- Terminal T_i is interested in decoding only the symbols emitted by source S_i .



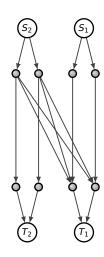
Multiple unicast network

Definition

A multiple unicast network is a 4-tuple

$$\mathcal{N} = (\mathcal{V}, \mathcal{E}, (S_1, \dots, S_n), (T_1, \dots, T_n))$$
, where:

- $(\mathcal{V}, \mathcal{E})$ is a finite, directed, acyclic multigraph;
- $n \ge 1$ is an integer;
- $S_1, \ldots, S_n \in \mathcal{V}$ are distinct vertices called **sources**;
- $T_1, \ldots, T_n \in \mathcal{V}$ are distinct vertices called **terminals**.
- $\overline{\{S_1,\ldots,S_n\}} \cap \{T_1,\ldots,T_n\} = \emptyset;$
- for any $i \in [n]$, there exists a directed path in $(\mathcal{V}, \mathcal{E})$ connecting S_i to T_i ;
- sources no incoming edges and terminals no outgoing edges;
- For all $V \in \mathcal{V}$, there exists a directed path S_i -V and V- T_j , for some $i, j \in [n]$.



(Fixed) Network code

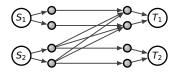
A **network code** for $\mathcal N$ is a tuple of matrices

$$\mathcal{F} = \left(\mathcal{F}_V \in \mathbb{F}_q^{\partial^-(V) \times \partial^+(V)} \mid V \in \mathcal{V} \setminus (\{S_1, \dots, S_n\} \cup \{T_1, \dots, T_n\})\right).$$

(Fixed) Network code

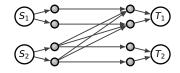
A **network code** for \mathcal{N} is a tuple of matrices

$$\mathcal{F} = \left(\mathcal{F}_V \in \mathbb{F}_q^{\partial^-(V) \times \partial^+(V)} \mid V \in \mathcal{V} \setminus (\{S_1, \dots, S_n\} \cup \{T_1, \dots, T_n\})\right).$$



$$\begin{split} \mathcal{F}_1 = & \left(\begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1$$

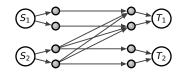
Transfer Matrices



$$\mathcal{F}_1$$
: $F_{1,1} = F_{2,2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $F_{1,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and $F_{2,1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

$$\mathcal{F}_2$$
: $F_{1,1} = F_{2,2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $F_{1,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and $F_{2,1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

Transfer Matrices



$$F_1$$
: $F_{1,1} = F_{2,2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $F_{1,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and $F_{2,1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 F_2 : $F_{1,1} = F_{2,2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $F_{1,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and $F_{2,1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

$$\mathcal{F}_1: \quad F_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathcal{F}_2: \quad F_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

q-ary Linear Multiple Uncast Channel

Definition (q-LMUC)

A q-ary linear multiple unicast channel (in short, q-LMUC) is a 4-tuple $\mathcal{L}=(n, s, t, F)$, where $n \in \mathbb{N}$ is a positive integer, $\mathbf{s}=(s_1,\ldots,s_n)$, $\mathbf{t}=(t_1,\ldots,t_n) \in \mathbb{N}^n$, and $F \in \mathbb{F}_q^{s \times t}$, where $s = \sum_{i=1}^n s_i$ and $t = \sum_{i=1}^n t_i$. F is the transfer matrix

$$F = \begin{pmatrix} F_{1,1} & \cdots & F_{1,n} \\ \vdots & \ddots & \vdots \\ F_{n,1} & \cdots & F_{n,n} \end{pmatrix},$$

where block $F_{i,j}$ has size $S_i \times t_j$.

q-ary Linear Multiple Uncast Channel

Definition (q-LMUC)

A q-ary linear multiple unicast channel (in short, q-LMUC) is a 4-tuple $\mathcal{L}=(n, \boldsymbol{s}, \boldsymbol{t}, F)$, where $n \in \mathbb{N}$ is a positive integer, $\boldsymbol{s}=(s_1,\ldots,s_n)$, $\boldsymbol{t}=(t_1,\ldots,t_n) \in \mathbb{N}^n$, and $F \in \mathbb{F}_q^{s \times t}$, where $s = \sum_{i=1}^n s_i$ and $t = \sum_{i=1}^n t_i$. F is the transfer matrix

$$F = \begin{pmatrix} F_{1,1} & \cdots & F_{1,n} \\ \vdots & \ddots & \vdots \\ F_{n,1} & \cdots & F_{n,n} \end{pmatrix},$$

where block $F_{i,j}$ has size $S_i \times t_j$.

Channel input:
$$X = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^{s_1} \times \dots \times \mathbb{F}_{q^m}^{s_n} = \mathbb{F}_{q^m}^{s}$$
.

q-ary Linear Multiple Uncast Channel

Definition (q-LMUC)

A q-ary linear multiple unicast channel (in short, q-LMUC) is a 4-tuple $\mathcal{L}=(n, \boldsymbol{s}, \boldsymbol{t}, F)$, where $n \in \mathbb{N}$ is a positive integer, $\boldsymbol{s}=(s_1,\ldots,s_n)$, $\boldsymbol{t}=(t_1,\ldots,t_n) \in \mathbb{N}^n$, and $F \in \mathbb{F}_q^{s \times t}$, where $s = \sum_{i=1}^n s_i$ and $t = \sum_{i=1}^n t_i$. F is the transfer matrix

$$F = \begin{pmatrix} F_{1,1} & \cdots & F_{1,n} \\ \vdots & \ddots & \vdots \\ F_{n,1} & \cdots & F_{n,n} \end{pmatrix},$$

where block $F_{i,j}$ has size $S_i \times t_j$.

Channel input:
$$x = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^{s_1} \times \dots \times \mathbb{F}_{q^m}^{s_n} = \mathbb{F}_{q^m}^{s}$$
.

Channel output: $y=(y_1,\ldots,y_n)\in \mathbb{F}_{q^m}^{t_1}\times\cdots\times \mathbb{F}_{q^m}^{t_n}=\mathbb{F}_{q^m}^t$, where

$$y_i = x_i F_{i,i} + \sum_{j \neq i} x_j F_{j,i} \tag{1}$$

From q-LMUC to multiple unicast network ${\mathcal N}$

Given any q-LMUC, it is always possible to construct a multiple unicast network $\mathcal N$ and a network code $\mathcal F$ for $\mathcal N$ that induces the given transfer matrix.

Example

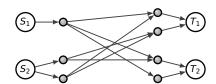
11-LMUC
$$\mathcal{L} = \left(2, (1, 2), (2, 2), \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 4 & 5 & 0 \\ 6 & 7 & 0 & 0 \end{pmatrix}\right)$$

From q-LMUC to multiple unicast network ${\mathcal N}$

Given any q-LMUC, it is always possible to construct a multiple unicast network $\mathcal N$ and a network code $\mathcal F$ for $\mathcal N$ that induces the given transfer matrix.

Example

11-LMUC
$$\mathcal{L} = \left(2, (1, 2), (2, 2), \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 4 & 5 & 0 \\ 6 & 7 & 0 & 0 \end{pmatrix}\right)$$



A network code that induces these matrices is

$$\mathcal{F} = \left(\begin{pmatrix}1&1&1\end{pmatrix},\begin{pmatrix}1&1\end{pmatrix},\begin{pmatrix}1&1\end{pmatrix},\begin{pmatrix}1\\6\end{pmatrix},\begin{pmatrix}4\\7\end{pmatrix},\begin{pmatrix}2\\5\end{pmatrix},\begin{pmatrix}3\end{pmatrix}\right), or$$

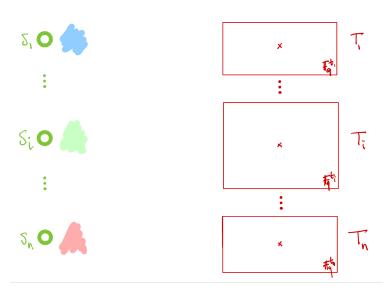
$$\mathcal{F} = \left(\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 5 \end{pmatrix}, \begin{pmatrix} 6 & 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\$$

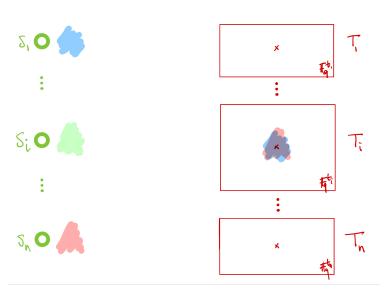
√ Communication Model and Problem Formulation

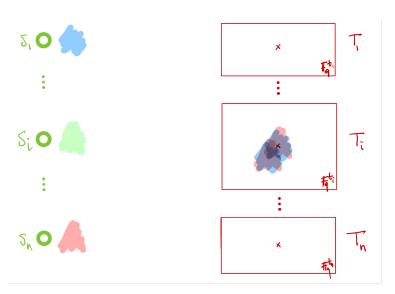
√ Achievable Rate Regions and Their Properties

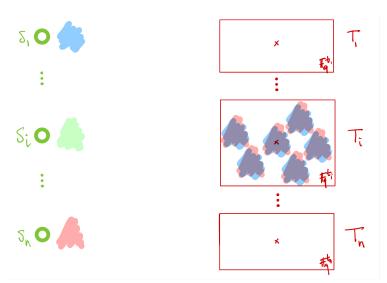
√ An Outer Bound for the Achievable Rate Region

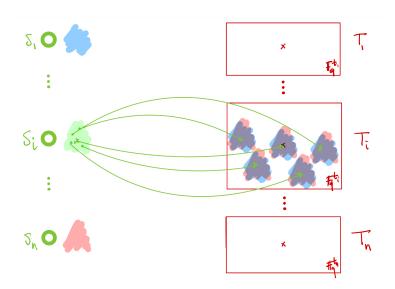
√ The Role of the Field Characteristic











Codes and codewords and fan-out sets for a *q*-LMUC

Definition

Let $\mathcal{L}=(n, \mathbf{s}, \mathbf{t}, F)$ be a q-LMUC and let $m\geq 1$ be an integer. An m-code for \mathcal{L} is a Cartesian product $C=C_1\times\cdots\times C_n$, where $C_i\subseteq\mathbb{F}_{q^m}^{s_i}$ for all $i\in\{1,\ldots,n\}$. The elements of each C_i are called **codewords**.

Definition

Let $\mathcal{L} = (n, \mathbf{s}, \mathbf{t}, F)$ be a q-LMUC, $i \in \{1, ..., n\}$, C an m-code for \mathcal{L} , and $x \in C_i$. We denote by

$$Fan_i(x, C) := \{ \pi_i((x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)F) \mid x_j \in C_j \text{ for all } j \neq i \}$$

the *i*-th fan-out set of *X* with respect to terminal *i* and the code *C*. The *i*-th fan-out set of *C* is $\mathsf{Fan}_i(C) = \cup_{X \in C_i} \mathsf{Fan}_i(X, C) \subseteq \mathbb{F}_{q^m}^{t_i}$, for all $i \in \{1, \dots, n\}$.

Interference and Successful Communication

Definition

Let \mathcal{L} , m, and C. We define the **interference set** of C at terminal T_i as

$$IS_i(C) = Fan_i(0, C) = \left\{ \sum_{j \neq i} x_j F_{j,i} \mid x_j \in C_j \right\}.$$

$$Fan_i(x, C) = xF_{i,i} + IS_i(C) = \{xF_{i,i} + y \mid y \in IS_i(C)\}.$$

Unambiguous Codes

Definition

Let \mathcal{L} , m, and C. We say that C is **unambiguous** for \mathcal{L} if for all $i \in \{1, ..., n\}$ and for all codewords $x_1, x_2 \in C_i$ with $x_1 \neq x_2$, we have

$$\operatorname{\mathsf{Fan}}_i(x_1,C) \cap \operatorname{\mathsf{Fan}}_i(x_2,C) = \emptyset.$$

Achievable Rate Region

Definition

The m-shot achievable rate region of a q-LMUC $\mathcal L$ is the set

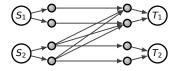
$$\mathcal{R}_m(\mathcal{L}) = \{ \alpha \in \log_{q^m}(\mathbb{N}^n) \mid \exists \ C = C_1 \times \cdots \times C_n \text{ unambiguous } m\text{-code for } \mathcal{L}$$
 with $\log_{q^m}(|C_i|) = \alpha_i \ \forall \ 1 \leq i \leq n \} \subseteq \mathbb{R}^n_{>0}.$

The achievable rate region of \mathcal{L} is the set

$$\mathcal{R}(\mathcal{L}) = \overline{\bigcup_{m \geq 1} \mathcal{R}_m(\mathcal{L})},$$

where the overline indicates the closure operator with respect to the Euclidean topology on \mathbb{R}^n . The elements of $\mathcal{R}(\mathcal{L})$ elements are called **achievable rates**.

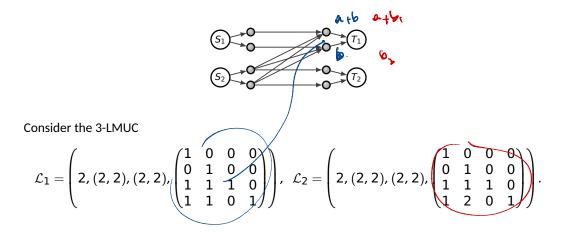
Network Code Dependency of the Achievable Rate Region



Consider the 3-LMUC

$$\mathcal{L}_1 = \left(2, (2, 2), (2, 2), \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}\right), \quad \mathcal{L}_2 = \left(2, (2, 2), (2, 2), \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}\right).$$

Network Code Dependency of the Achievable Rate Region



$$(1,2) \in \mathcal{R}_1(\mathcal{L}) \text{ since } \langle (1,2) \rangle_{\mathbb{F}_3} \times \mathbb{F}_3^2$$

$$\blacksquare$$
 (1, 2) $\notin \mathcal{R}_1(\mathcal{L})$

Made with Goodnotes

√ Communication Model and Problem Formulation

√ Achievable Rate Regions and Their Properties

√ An Outer Bound for the Achievable Rate Region

√ The Role of the Field Characteristic

√ Communication Model and Problem Formulation

√ Achievable Rate Regions and Their Properties

√ An Outer Bound for the Achievable Rate Region

√ The Role of the Field Characteristic

The Outer Bound

Proposition (Unicast Bound - tight)

Let $\mathcal{L} = (n, \mathbf{s}, \mathbf{t}, F)$ be a q-LMUC and let $m \ge 1$ be an integer. If n = 1, then $\mathcal{R}_m(\mathcal{L}) = \{\alpha \in \log_q(\mathbb{N}) \mid 0 \le \alpha \le \operatorname{rank} F\}$.

The Outer Bound

Proposition (Unicast Bound - tight)

Let $\mathcal{L} = (n, \mathbf{s}, \mathbf{t}, F)$ be a q-LMUC and let $m \ge 1$ be an integer. If n = 1, then $\mathcal{R}_m(\mathcal{L}) = \{\alpha \in \log_q(\mathbb{N}) \mid 0 \le \alpha \le \operatorname{rank} F\}$.

Theorem

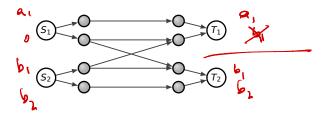
Let \mathcal{L} be a q-LMUC, $m \geq 1$, and $(\alpha_1, ..., \alpha_n) \in \mathcal{R}_m(\mathcal{L})$. Then for all non-empty $I \subseteq \{1, ..., n\}$ and $j \in I$, we have $\sum_{i \in I} \alpha_i \leq \operatorname{rank}(F_{I,j}) - \operatorname{rank}(F_{I \setminus \{j\}, j}) + \sum_{\substack{k \in I \\ k \neq j}} S_k.$ Therefore, for all non-empty $I \subseteq \{1, ..., n\}$, we have

$$\sum_{i \in I} \alpha_i \leq \min_{j \in I} \left\{ \operatorname{rank}(F_{I,j}) - \operatorname{rank}(F_{I \setminus \{j\},j}) + \sum_{\substack{k \in I \\ k \neq j}} s_k \right\}.$$

Examples

Let q be arbitrary and consider the q-LMUC $\mathcal{L} = (2, (2, 2), (2, 2), F)$, where

$$F = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$



Examples

Let q be arbitrary and consider the q-LMUC $\mathcal{L} = (2, (2, 2), (2, 2), F)$, where

$$F = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\operatorname{rank}\binom{F_{11}}{F_{21}} - \operatorname{rank}F_{21} + S_2 = \operatorname{rank}\binom{F_{12}}{F_{22}} - \operatorname{rank}F_{12} + S_1 = 2 - 1 + 2 = 3$$

Other bound: for all $m \ge 1$ and for all $(\alpha_1, \alpha_2) \in \mathcal{R}_m(\mathcal{L})$ we have $\alpha_1 + \alpha_2 \le 3$.

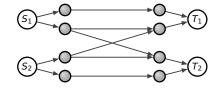


Made with Goodnotes

Examples

Let q be arbitrary and consider the q-LMUC $\mathcal{L} = (2, (2, 2), (2, 2), F)$, where

$$F = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$



$$\mathsf{rank}\binom{F_{11}}{F_{21}} - \mathsf{rank}\,F_{21} + S_2 = \mathsf{rank}\binom{F_{12}}{F_{22}} - \mathsf{rank}\,F_{12} + S_1 = 2 - 1 + 2 = 3$$

Other bound: for all $m \ge 1$ and for all $(\alpha_1, \alpha_2) \in \mathcal{R}_m(\mathcal{L})$ we have $\alpha_1 + \alpha_2 \le 3$.

For m=1, the 1-codes $C=\left(\mathbb{F}_{q'}^2\left((0,1)\right)\right)$ and $C=\left(\left((1,0)\right),\mathbb{F}_q^2\right)$ are both unambiguous, meaning that the rates (2,1) and (1,2) are achievable in one shot.

√ Communication Model and Problem Formulation

√ Achievable Rate Regions and Their Properties

√ An Outer Bound for the Achievable Rate Region

√ The Role of the Field Characteristic

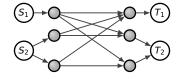
A Modified Problem

Remark

Any field contains the neutral elements for addition and multiplication and that in general those are denoted by 0 and 1. This implies that any matrix with entries only in $\{0,1\}$ can be the transfer matrix of a q-LMUC for any prime power q.

It is natural to look into the achievable rates regions across different fields for these types of q-LMUC.

A Very Specific Example



Let
$$\mathcal{L} = (2, (1, 2), (1, 2), F)$$
 be the q -LMUC with $F = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

If q is odd, then $(1,1) \in \mathcal{R}_1(\mathcal{L}) \subseteq \mathcal{R}(\mathcal{L})$. If q is even, then for any $m \geq 1$ and any $(\alpha_1,\alpha_2) \in \mathcal{R}_m(\mathcal{L})$ we have $2\alpha_1 + \alpha_2 \leq 2.$ In particular, $(1,1) \notin \mathcal{R}(\mathcal{L})$.

$$2\alpha_1 + \alpha_2 \leq 2$$

Proof

- if q is odd, then the 1-code $C = \mathbb{F}_q \times \langle (1, -1) \rangle$ is unambiguous $\Rightarrow (1, 1) \in \mathcal{R}_1(\mathcal{L})$
- lacksquare if q is even, $C = \mathbb{F}_q \times \langle (1,1) \rangle$ is the only candidate for unambiguity, but

$$F_{2,2}\langle (1,1)\rangle = \langle (1,1)\rangle = \mathsf{IS}_2(C)$$

but $\operatorname{Fan}_2(x_1, C) = \operatorname{Fan}_2(x_2, C)$ for all $x_1, x_2 \in \langle (1, 1) \rangle$, so it is not ambiguous.

Tightness

Proposition

Let $\mathcal{L} = (2, (1, 2), (1, 2), \mathbb{F}_{2^m})$ be the 2^m -LMUC from the previous theorem. Then for any $n \leq m$ we have $\left(\frac{n}{m}, 2\left(1 - \frac{n}{m}\right)\right) \in \mathcal{R}(\mathcal{L})$.

Let $\{x_1, \ldots, x_m\}$ be an ordered basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Define

- $C_1 = \langle x_1, \ldots, x_n \rangle_{\mathbb{F}_2}$, and
- $C_2 = \langle (x_i, 0), (0, x_i) | i = n + 1, ..., m \rangle_{\mathbb{F}_2}.$

Then $C = C_1 \times C_2$ is unambiguous.

Conclusion

- We introduce a formal framework for investigating multi-shot interference alignment problems over finite fields.
- We establish an outer bound for the achievable rate regions in the context outlined above and provide examples where the bound is sharp.
- We show how the field characteristic plays a crucial role in the solution to this problem.

Conclusion

- We introduce a formal framework for investigating multi-shot interference alignment problems over finite fields.
- We establish an outer bound for the achievable rate regions in the context outlined above and provide examples where the bound is sharp.
- We show how the field characteristic plays a crucial role in the solution to this problem.

Thank you.