Multivariate Cryptography and MinRank Attacks

ICERM Graduate Workshop on Linear Algebra over Finite Fields & Applications

Ryann Cartor

Clemson University

August 21, 2025

Recall: Multivariate Cryptography

Problem (MQ: Multivariate Quadratic)

Given a system of multivariate quadratic equations over a finite field, find a solution.

General Public Key Structure:

$$P(x) = T(F(S(x)))$$

- Linear, Quadratic (Easy to invert),
- Quadratic (hopefully, difficult to invert)

MinRank Problem

Problem (MinRank)

Given $\mathbf{M}_1, \dots, \mathbf{M}_k \in \mathbb{F}_q^{m \times n}$ and a positive integer r, find $a_1, \dots, a_k \in \mathbb{F}_q$ (not all zero) such that

$$\operatorname{rank}\left(\sum_{i=1}^k a_i\mathbf{M}_i\right) \leq r.$$

Complexity depends on choice of algorithm:

Exhaustive search, Combinatorial method/linear, Kipnis-Shamir, **Support Minors**, ...

Solving MinRank Using Exhaustive Search

- Given $\mathbf{M}_1, \dots, \mathbf{M}_k \in \mathbb{F}_q^{m \times n}$:
 - **①** Choose random $a_1, \ldots, a_k \in \mathbb{F}_q$
 - Q: How many ways can we choose $a_1, \ldots, a_k \in \mathbb{F}_q$?
 - A: There are q^k many ways
 - **2** Compute $\widehat{\mathbf{M}} := \sum_{i=1}^k a_i \mathbf{M}_i$
 - This is just scalar multiplication and matrix addition— not computationally expensive
 - - Q: What is the complexity of checking the rank of $\hat{\mathbf{M}}$?
 - A: This is the same as the complexity of multiplying two $n\times n$ matrices, which can be estimated as n^ω where $2\le\omega<3$
- We estimate the complexity of solving an instance of MinRank using Exhaustive Search as:

$$q^k n^\omega$$
, $\omega \approx 2.37$

Support Minors Modeling

- Introduced by Bardet et. al. at Asiacrypt 2020
- Algebraic approach to solve MinRank
- Things to remember:
 - $\mathsf{Rank}(\mathbf{M}) = \dim(\mathsf{Col}(\mathbf{M})) = \dim(\mathsf{Row}(\mathbf{M}))$
 - ullet Minor of ${f M}$ is determinant of submatrix of ${f M}$

Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray A. Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, Javier A. Verbel, "Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems," ASIACRYPT (2020).

Support Minors Modeling

Given $\mathbf{M}_1, \dots, \mathbf{M}_k \in \mathbb{F}_q^{n \times m}$:

- Consider $\widehat{\mathbf{M}} := \sum_{i=1}^k x_i \mathbf{M}_i$, where $\mathrm{rank}(\widehat{\mathbf{M}}) \leq r$.
- We know there exists $\mathbf{S} \in \mathbb{F}_q^{n \times r}$ and $\mathbf{C} \in \mathbb{F}_q^{r \times m}$ such that

$$\mathbf{SC} = \widehat{\mathbf{M}}$$

• Let \mathbf{r}_i be the *j*th row of $\widehat{\mathbf{M}}$ and create *n* new matrices \mathbf{C}_i :

$$\mathbf{C}_j = \begin{pmatrix} \mathbf{r}_j \\ \mathbf{C} \end{pmatrix} \in \mathbb{F}_q^{(r+1) \times m} \leftarrow \mathsf{Q}$$
: What is $\mathsf{rank}(\mathbf{C}_j)$?

- All maximal minors of C_i are zero! This gives us:

 - $k + {m \choose r}$ many variables $\leftarrow (\# x_i \text{'s}) + (\# r \times r \text{ minors of } \mathbf{C})$ $(n){m \choose r+1}$ many bilinear equations $\leftarrow (\# \mathbf{C}_j \text{'s})(\# \text{ max minors})$

Support Minors Modeling

- Q1: How do we solve a bilinear system of $(n)\binom{m}{r+1}$ many equations in $k + \binom{m}{r}$ many variables?
- A1: One way: XL algorithm (use Macaulay matrices, reduce)

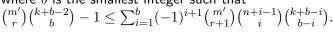
(monomials up to degree b)

(polynomials in the system)
$$ightarrow$$

- Q2: What is the complexity of solving this system with XL?
- A2: $3(\# \text{ cols in Mac Mat when rank is high enough})^2(r+1)k$

$$\min_{m' \le m} 3 \binom{m'}{r}^2 \binom{k+b-2}{b}^2 (k-1)(r+1)$$

where b is the smallest integer such that



7/23

Complexity Comparisons

Consider the MinRank Instance with...

- **1** $\mathbf{M}_1, \dots, \mathbf{M}_{15} \in \mathbb{F}_2^{25 \times 25}$, r = 12.
 - Complexity of solving with exhaustive search:

$$q^k n^\omega \approx 2^{26}$$

• Complexity of solving with support minors:

$$m' = 15, b = 7 \rightarrow \approx 2^{60}$$

- **2** $\mathbf{M}_1, \dots, \mathbf{M}_{15} \in \mathbb{F}_{256}^{25 \times 25}, r = 8.$
 - Complexity of solving with exhaustive search:

$$q^k n^\omega \approx 2^{131}$$

• Complexity of solving with support minors:

$$m' = 12, b = 2 \rightarrow \approx 2^{40}$$

MinRank: ZK-protocols

Digitial Signatures Round 2: Mirath (Merger of MIRA and MiRitH)

MIRA: a Digital Signature Scheme based on the MinRank problem and the MPC-in-the-Head paradigm

Nicola Arages¹, Loic Bidons², Arada-Javier Cali-Domingue², Tabhaald Foonil^{3,4}, Philippe Gaborit³, Romethe Newei³, and Matthiel Rivant⁴

1 Nogola Carer. Takene, Pinner

1 Tabhables Brownian Institute, 1024

2 Scholauser of Tabhables Brownian Institute, 1024

3 Scholauser of Heading Brownian Palis, Pinner

1 Opposition, Palis, Pinner

1 Opposition, Palis, Pinner

1 University of Basegan, Pinner

Name of the Proposal:

MiRitH (MinRank in the Head)

June 2023

Inventors of the Scheme:

Gora $\mathrm{Adj}^1,$ Luis Rivera-Zamarripa 1, Javier Verbel 1

Additional Designers:

Emanuele Bellini¹, Stefano Barbero², Andre Esser¹, Carlo Sanna^{2†}, Flovd Zweydinger¹

MinRank Attacks Against Rank-Metric CB Cryptosystems

Problem (Rank Decoding Problem)

Given a matrix $\mathbf{G} \in \mathbb{F}_{q^m}^{k \times n}$, a vector $\mathbf{y} \in \mathbb{F}_{q^m}^n$, and a positive integer r, find vectors $\mathbf{e} \in \mathbb{F}_{q^m}^n$, $\mathbf{x} \in \mathbb{F}_{q^m}^k$ such that

$$y = e + xG$$
, and $wt_{\mathsf{rank}}(e) \le r$

$$wt_{\mathsf{rank}}(\mathbf{e}) = wt_{\mathsf{rank}}(\mathbf{y} - \mathbf{xG}) \le r$$

= $\mathsf{rank}(\widehat{\mathbf{Y}} - x_i\widehat{\mathbf{G_i}}) \le r$

[&]quot;Cryptanalysis of MinRank," Jean-Charles Faugére, Francoise Levy-dit-Vehel, and Ludovic Perret (CRYPTO 2008)

MinRank Attacks Against Rank-Metric CB Cryptosystems

Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems

Magali Bardet^{4,5}, Maxime Bros¹, Daniel Cabarcas⁶, Philippe Gaborit¹, Rav Perlner², Daniel Smith-Tone^{2,3}, Jean-Pierre Tillich⁴, and Javier Verbel⁶

¹ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

maxime.bros@unilim.fr National Institute of Standards and Technology, USA ³ University of Louisville, USA

Inria, 2 rue Simone Iff, 75012 Paris, France ⁵ LITIS, University of Rouen Normandie, France

⁶ Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia

Abstract. In this paper, we show how to significantly improve algebraic techniques for solving the MinRank problem, which is ubiquitous in multivariate and rank metric code based cryptography. In the case of the structured MinRank instances arising in the latter, we build upon a recent breakthrough [11] showing that algebraic attacks outperform the combinatorial ones that were considered state of the art up until now.

MinRank Attacks against Multivariate Cryptosystems

Breaking Rainbow Takes a Weekend on a Laptop

Ward Brailess **

Abstract. This work introduces new key recovery attacks against the Rainbow signature scheme, which is one of the three finalist signature

Improved Key Recovery of the HFEv- Signature Scheme

Chengdong Tao², Altrecht Petaolite³, Jianai Ding^{1,3,4}

³ Yan Mathematical Center, Thinghua University, Beijing, China

² Ding Eab, Beijing Indrins of Mathematical Sci. and Applications, Beijing, China.

⁸ PAU Beinger-Neuersleep, Neuroleng, Germany.

tased englong 0 bins a.c., albereit petrold t 0 googlemal.com, jintal.ding 0 gmail.com

Abstract. The HFTEr-signature scheme is a twenty year old mathinariate public key signature scheme. It sees the Missus and the Visigue motifier on the original HFE scheme. As induced of the HFTEr-signature scheme called GARSS is one of the abstractive candidates for eignature schemes in the third round of the METP root Quantum Crypto (PQC) Standardlantian Project. In this paper, we propose a new key seconcy saturck on the HFPs, schemers wishore. We when that the Hern scalification for

Improving Support-Minors rank attacks: applications to GeMSS and Rainbow

John Basma¹, Pierre Beissel^{1,0}, Daniel Cabaccas¹, Ray Perlner⁴, Daniel Smith-Tone^{4,0} and Jarier Verbel⁶

¹ Ceivensidad Nacional de Colombia, Colombia

Surbusan Universitée, EPMC Univ Paris 66
Inris, Toam COSSING, Paris, Prance
pierre, Actaotheris, Er
National Institute of Standards and Technology, USA.
Université of Learning USA.

" University of Louisville, USA
" Cryptogrophy Research Center, Technology Innovation Institute, Abu Dhabi, UAE

Signature Scheme Toy Example

Quadratic Central Map Equations

Question: How could we write quadratic maps as a matrix?

Example: $F: \mathbb{F}^4_{11} \to \mathbb{F}^3_{11}$

$$F\left(\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}\right) = \begin{bmatrix} 2w_1^2 + 6w_1w_2 + 3w_1^2 \\ w_1^2 + 2w_1w_2 + 6w_2^2 \\ 8w_1^2 + 7w_1w_2 \end{bmatrix} := \begin{bmatrix} f_1(\mathbf{w}) \\ f_2(\mathbf{w}) \\ f_3(\mathbf{w}) \end{bmatrix}$$

$$f_i(U(\mathbf{x})) = f_i(\mathbf{U}\mathbf{x}) = (\mathbf{U}\mathbf{x})^{\top}\mathbf{F}_i(\mathbf{U}\mathbf{x})$$

$$\mathbf{U}^{\top} \times \mathbf{F}_i \times \mathbf{U} = z_i$$

$$= = z_i$$

$$= = z_i$$

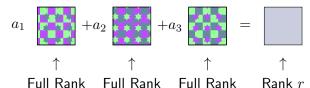
$$= = z_i$$

$$= z_i$$

$$\mathbf{U}^{\top \times} \mathbf{F}_i \times \mathbf{U} = z_i$$

$$T\left(\left[\begin{smallmatrix} \bullet \\ \bullet \\ \bullet \end{smallmatrix}\right]\right) = \left[\begin{smallmatrix} \bullet \\ \bullet \\ \bullet \end{smallmatrix}\right]$$

Question: Can we find $a_1, a_2, a_3 \in \mathbb{F}_q$ such that



If so, there exists some full rank matrix B such that

$$B^{\top}$$
 $B = \Box$

Recall: Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \leftarrow \text{vinegar variables}$$
 $\leftarrow \text{oil variables}$

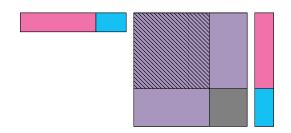
$$P: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{n-v}, \quad P = U \circ F \circ T, \quad F = (f^{(1)}, \dots, f^{(n-v)})$$
$$f^{(k)}(\mathbf{x}) = \sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ijk} x_{i} x_{j} + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ijk} x_{i} x_{j}$$

Patarin, "The Oil and Vinegar Signature Scheme." (1997) Kipnis, Shamir, "Cryptanalysis of the Oil & Vinegar Signature Scheme." (1998)

UOV Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^v \sum_{j=i}^v \alpha_{ijk} x_i x_j + \sum_{i=1}^v \sum_{j=v+1}^n \beta_{ijk} x_i x_j$.

Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^{\top} \mathbf{F}_k \mathbf{x}$.



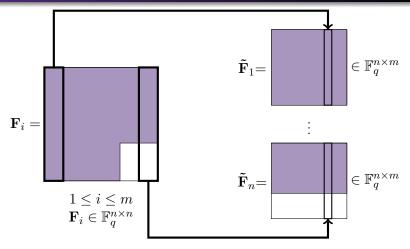


Table 2. The Rainbow parameter sets that were submitted to the second round and the finals of the NIST PQC standardization project.

Parameter set		$egin{array}{cccc} ext{Parameters} \ q & n & m & o_2 \end{array}$			$ {\sf pk} \ ({ m kB})$	$ sk \ (\mathrm{kB})$	sig (Bytes)	
Second Round	Ia IIIc Vc	16 256 256	96 140 188	64 72 96	32 36 48	149 710 1705	93 511 1227	64 156 204
Finals	Ia IIIc Vc	16 256 256	100 148 196	64 80 100	32 48 64	157 861 1885	101 611 1376	66 164 212

 ${\bf Table~5.}~{\bf Comparison~of~the~new~MinRank~instance~with~the~known~instance~of~the~MinRank~problem.$

	Known instance of MinRank problem	New instance of MinRank problem
Size of matrices	n-by- n	n-by- m
Number of matrices	$o_2 + 1$	$n - o_2 + 1$
Rank of linear combination	m	o_2
Solution	vector in W^{\perp}	vector in O_2

Table 6. The optimal attack parameters of the new MinRank attack, and the corresponding gate complexity for the Rainbow parameter sets submitted to the second round and the finals of the NIST PQC standardization project.

Parameter set		Pla	ain MinF	Rank	MinRank and $\mathcal{P}(\mathbf{y}) = 0$		
		m'	b	\log_2 gates	m'	b	\log_2 gates
Second round	Ia	51	2	131	40	6	124
	IIIc	59	2	153	52	4	151
	Vc	80	2	197	74	3	191
Finals	Ia	51	2	131	44	4	127
	IIIc	72	3	184	68	4	177
	Vc	95	4	235	87	6	226

Thank you for your attention! Questions?

