

Network Coding Lecture 1

Felice Manganiello Clemson University

ICERM
Graduate Workshop on Linear
Algebra over Finite Fields &
Applications

Facts about Finite Fields.

From Channels to Networks

- One Source Networks
 - ★ The Unicast Network
 - ★ The Multicast Network

A field is a nonempty set \mathbb{F} with two operations, addition (+) and multiplication (\cdot) such that for all $a, b, c \in \mathbb{F}$:

- (F, +) is an abelian group + is associative: a + (b + c) = (a + b) + c

 - there is an additive unit element: a + 0 = 0 + a = a
 - there is an additive inverse element: a + (-a) = (-a) + a = 0
 - + is commutative: a + b = b + a

A field is a nonempty set \mathbb{F} with two operations, addition (+) and multiplication (•) such that for all $a, b, c \in \mathbb{F}$:

- \checkmark (\mathbb{F} , +) is an abelian group
 - \blacksquare + is associative: a + (b + c) = (a + b) + c
 - there is an additive unit element: a + 0 = 0 + a = a
 - there is an additive inverse element: a + (-a) = (-a) + a = 0
 - \blacksquare + is commutative: a + b = b + a
- \checkmark is associative: a(bc) = (ab)c
- \checkmark · is commutative: ab = ba
- \checkmark there is a multiplicative unit element: a1 = 1a = a
- \checkmark there is a multiplicative inverse element: $aa^{-1} = a^{-1}a = 1$ if $a \neq 0$

A field is a nonempty set \mathbb{F} with two operations, addition (+) and multiplication (•) such that for all $a, b, c \in \mathbb{F}$:

- \checkmark (\mathbb{F} , +) is an abelian group
 - \blacksquare + is associative: a + (b + c) = (a + b) + c
 - there is an additive unit element: a + 0 = 0 + a = a
 - there is an additive inverse element: a + (-a) = (-a) + a = 0
 - \blacksquare + is commutative: a + b = b + a
- \checkmark is associative: a(bc) = (ab)c
- \checkmark is commutative: ab = ba
- \checkmark there is a multiplicative unit element: a1 = 1a = a
- \checkmark there is a multiplicative inverse element: $aa^{-1} = a^{-1}a = 1$ if $a \neq 0$
- ✓ Distributivity holds: (a + b)c = ac + bc

A field is a nonempty set \mathbb{F} with two operations, addition (+) and multiplication (•) such that for all $a, b, c \in \mathbb{F}$:

- \checkmark (\mathbb{F} , +) is an abelian group
 - \blacksquare + is associative: a + (b + c) = (a + b) + c
 - there is an additive unit element: a + 0 = 0 + a = a
 - there is an additive inverse element: a + (-a) = (-a) + a = 0
 - \blacksquare + is commutative: a + b = b + a
- \checkmark is associative: a(bc) = (ab)c
- \checkmark is commutative: ab = ba
- \checkmark there is a multiplicative unit element: a1 = 1a = a
- \checkmark there is a multiplicative inverse element: $aa^{-1} = a^{-1}a = 1$ if $a \neq 0$
- ✓ Distributivity holds: (a + b)c = ac + bc

Finite Fields

Definition

A finite field is a field with a finite number of elements.

The cardinality of a finite field is a power of a prime, meaning that if \mathbb{F}_q is a finite field with q elements, then $q = p^t$ for some prime p.

Why?

If p is a prime, then $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$ and is called **prime field.**

Example:
$$\mathbb{F}_3 = \{0, 1, 2\}$$

If $q = p^t$ with p prime, then $\mathbb{F}_q \simeq \mathbb{F}_p[x]/(\mu)$ where $\mu \in \mathbb{F}_p[x]$ is irreducible of degree t.

Example: \mathbb{F}_9 $\chi^2_{+}\chi_{-1}$ χ^2_{+1} χ^2_{+1}

Finite Fields

- Let \mathbb{F} be a finite field containing a subfield \mathbb{K} with q elements. Then \mathbb{F} has q^m elements, where m = [F : K]. Moreover, for all $\mu \in \mathbb{K}[x]$ irreducible with degree m such that $\mathbb{F} \simeq \mathbb{K}[x]/(\mu)$.
- If \mathbb{F} is a finite field with q elements, then $a^q = a$ for all $a \in \mathbb{F}$.
- If \mathbb{F} is a finite field with q elements and \mathbb{K} is a subfield of \mathbb{F} , then the polynomial $x^q x \in \mathbb{K}[x]$ factors in F[x] as

$$x^q - x = \prod_{a \in \mathbb{F}} (x - a)$$

and F is a splitting field of $x^q - x$ over \mathbb{K} . Example: $x^9 - x \in \mathbb{F}_3$

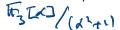
Finite Fields

Subfield Criterion. Let \mathbb{F}_q be the finite field with $q = p^t$ elements. Then every subfield of \mathbb{F}_q has order p^m , where m is a positive divisor of t. Conversely, if m is a positive divisor of t, then there is exactly one subfield of \mathbb{F}_q with p^m elements.

50= 2.3.5 Example: Diagram of F₂30

For every finite field \mathbb{F}_q the multiplicative group \mathbb{F}_q^* of nonzero elements of \mathbb{F}_q is cyclic. A generator of \mathbb{F}_q^* is called a primitive element of \mathbb{F}_q .

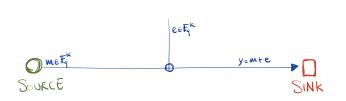
ample \mathbb{F}_q^* \mathbb{F}_q^*



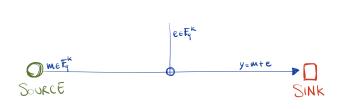
Facts about Finite Fields.

From Channels to Networks

- One Source Networks
 - ★ The Unicast Network
 - ★ The Multicast Network

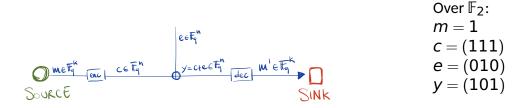


Over \mathbb{F}_2 : m=1 e=1 y=0



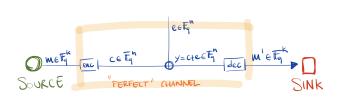
Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory, any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."



Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory, any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."



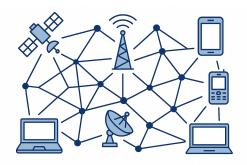
Over
$$\mathbb{F}_2$$
:
 $m = 1$
 $c = (111)$
 $e = (010)$
 $y = (101)$
 $m' = 1$

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"In communication theory, any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can, in principle, always be attained with an arbitrarily small probability of error."

Turbo codes (LTE networks), Polar & LDPC codes (5G networks)

Example of (Communication) Networks

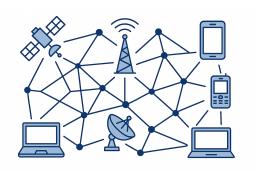


Example of (Communication) Networks

Question

Is routing the **best** communication strategy on a network?

Example of (Communication) Networks

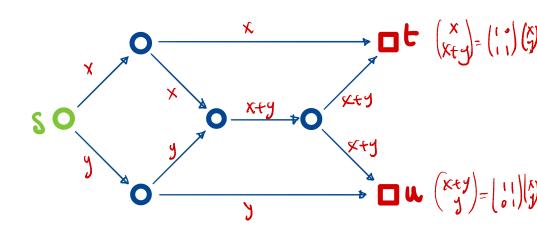


Question

Is routing the **best** communication strategy on a network?

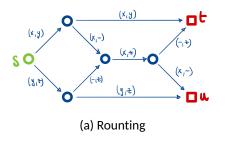
Made vNotes radapted from [1, 2].

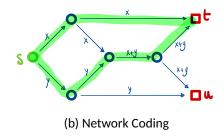
The Butterfly Network



Made with Goodnotes

The Butterfly Network





Rates (ρ):

Routing: $\frac{3}{1} = 1$

Network coding: 2 = 7

Can we do better?

Made with Goodnotes

Disclaimer: We will consider the alphabet to be \mathbb{F}_q .

- \checkmark $G = (V, \mathcal{E})$ is a a finite directed acyclic multigraph with V is the set of vertices and \mathcal{E} is the multiset of directed edges;
- \checkmark S ⊂ V is the set of sources;
- $\checkmark \mathcal{T} \subset \mathcal{V}$ is the set of sinks (receivers, terminals);

Disclaimer: We will consider the alphabet to be \mathbb{F}_q .

- \checkmark $G = (V, \mathcal{E})$ is a a finite directed acyclic multigraph with V is the set of vertices and \mathcal{E} is the multiset of directed edges;
- \checkmark S ⊂ V is the set of sources;
- $\checkmark \mathcal{T} \subset \mathcal{V}$ is the set of sinks (receivers, terminals);
- $\checkmark \mathcal{S} \cap \mathcal{T} = \emptyset;$
- $\checkmark I(s) = \emptyset \text{ for } s \in \mathcal{S};$
- $\checkmark O(t) = \emptyset \text{ for } t \in \mathcal{T};$

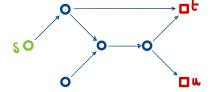
Disclaimer: We will consider the alphabet to be \mathbb{F}_q .

- \checkmark $G = (V, \mathcal{E})$ is a a finite directed acyclic multigraph with V is the set of vertices and \mathcal{E} is the multiset of directed edges;
- \checkmark S ⊂ V is the set of sources;
- $\checkmark \mathcal{T} \subset \mathcal{V}$ is the set of sinks (receivers, terminals);
- $\checkmark \mathcal{S} \cap \mathcal{T} = \emptyset;$
- $\checkmark I(s) = \emptyset \text{ for } s \in \mathcal{S};$
- $\checkmark O(t) = \emptyset \text{ for } t \in \mathcal{T};$
- For every $v \in \mathcal{V} \setminus (\mathcal{S} \cup \mathcal{T})$ there esist a path from a source $s \in \mathcal{S}$ and a sink $t \in \mathcal{T}$ going through v.

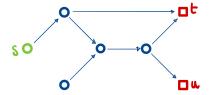
Disclaimer: We will consider the alphabet to be \mathbb{F}_q .

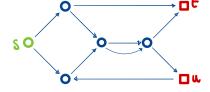
- \checkmark $G = (V, \mathcal{E})$ is a a finite directed acyclic multigraph with V is the set of vertices and \mathcal{E} is the multiset of directed edges;
- \checkmark S ⊂ V is the set of sources;
- $\checkmark \mathcal{T} \subset \mathcal{V}$ is the set of sinks (receivers, terminals);
- $\checkmark \mathcal{S} \cap \mathcal{T} = \emptyset;$
- $\checkmark I(s) = \emptyset \text{ for } s \in \mathcal{S};$
- $\checkmark O(t) = \emptyset \text{ for } t \in \mathcal{T};$
- ✓ For every $V \in V \setminus (S \cup T)$ there esist a path from a source $S \in S$ and a sink $t \in T$ going through V.
- \checkmark $(u, v) \in \mathcal{E}$ is a perfect unit capacity channel from u to v.

Examples of non networks



Examples of non networks





Examples of non networks

