

Leveraging External Data for Testing Experimental Therapies with Biomarker Interactions in Randomized Clinical Trials

LORENZO TRIPPA

Dana-Farber Cancer Institute &
Harvard T.H. Chan School of Public Health

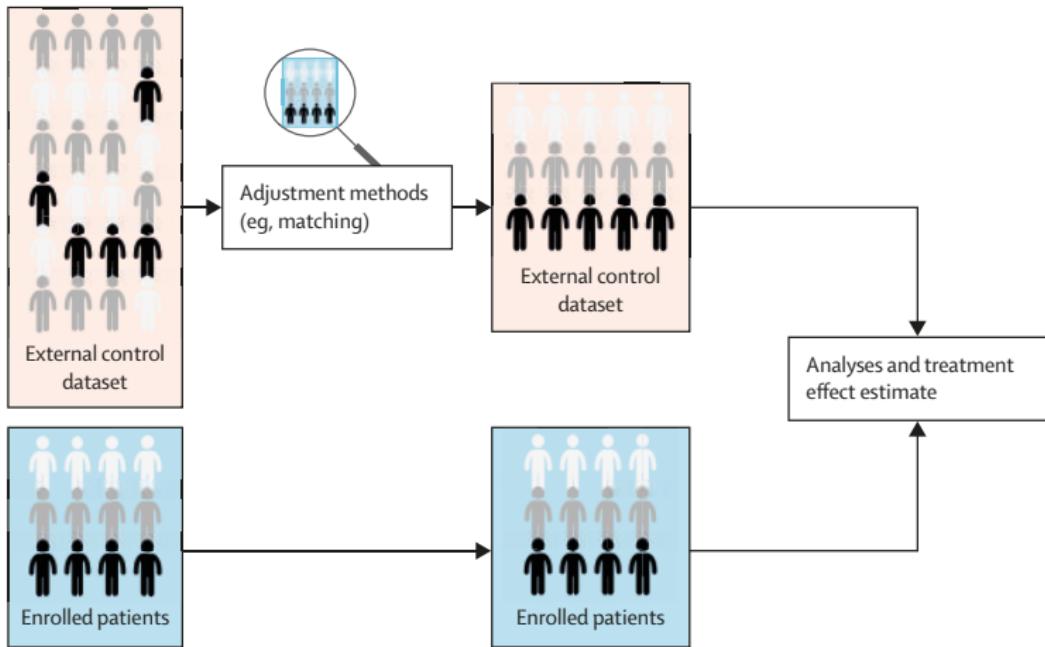
1/16/2026,
ICERM - Brown University

January 16, 2026

Dana-Farber
Cancer Institute

HARVARD T.H. CHAN
SCHOOL OF PUBLIC HEALTH

Externally Controlled Trial (ECT)

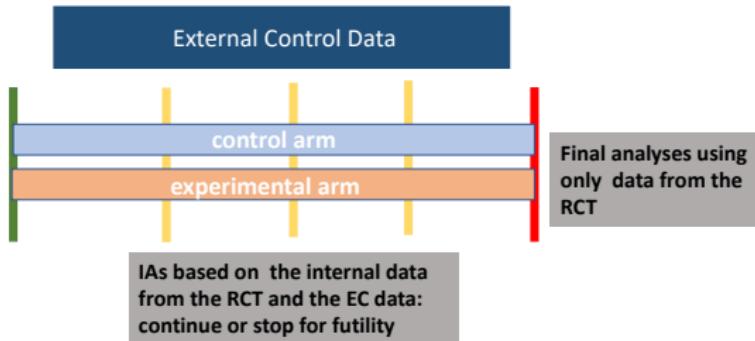


Leveraging external data in the design and analysis of clinical trials in neuro-oncology.

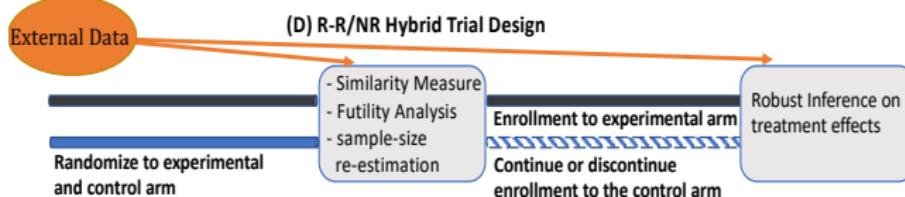
Rahman et al 2021, Lancet Onc

Integration of External Data in Clinical Trials

RCT with Futility stopping



RCT with adaptive randomization



Ventz et a. 2021 Neuro-Oncology

Ventz et a. 2021 Nature-Communications

Leveraging External Data for Testing Experimental Therapies with Biomarker Interactions in Randomized Clinical Trials

Boyu Ren¹, Federico Ferrari², Sandra Fortini³, Lorenzo Trippa^{4,5}, and Steffen Ventz⁶

¹Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA

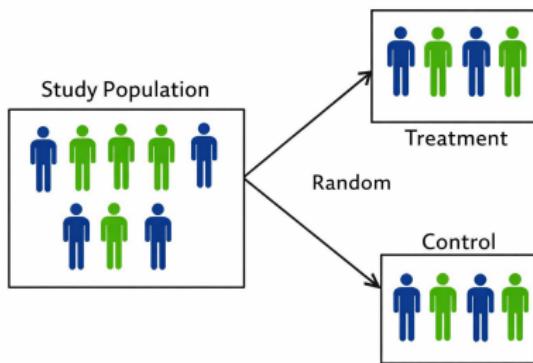
²Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, USA

³Department of Decision Sciences, Bocconi University, Milan, Italy

⁴Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,
USA

⁵Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA

Biometrika 2026
arxiv.org/abs/2506.04128



Are there treatment effects in some biomarker subgroups?

Datasets :RWD+RCTs

Table 1. Distribution of pretreatment patient characteristics for the TMZ+RT arm of three clinical studies and three RWE studies

Study						AVAglio
NCT ID			NCT01013285	NCT00441142	—	NCT00943826
PubMed ID	DFCI-cohort	UCLA-cohort	PM21135282	PM25910950	PM22120301	PM24552318
Data type	RWE	RWE	RWE	Phase II	Phase II	Phase III
Arm	TMZ+RT	TMZ+RT	TMZ+RT	TMZ+RT	TMZ+RT	TMZ+RT
Enrollment period			8/06-11/08	2/09-6/11	8/05-2/11	6/09-3/11
Enrollments to SOC	378	305	110	29	16	460
OS events	269	265	89	24	15	344
Age						
Median	58	57	59	58	59	57
Range	18-91	20-84	20-90	26-73	36-69	18-79
SD	13	13	14	11	11	10
Sex (%)						
Females	0.43	0.36	0.36	0.45	0.5	0.36
Males	0.57	0.64	0.64	0.55	0.5	0.64
KPS (%)						
≤80	0.55	0.39	0.32	0.24	0.44	0.31
>80	0.45	0.61	0.68	0.76	0.56	0.69
Data missing (n)	27	17	0	0	0	0
RPA (%)						
3	NA	0.22	0.25	NA	0.12	0.16
4	NA	0.42	0.41	NA	0.75	0.61
5	NA	0.34	0.33	NA	0.13	0.23
6	NA	0.02	0.01	NA	0	0
Data missing (n)	378	0	0	29	1	0
Resection (%)						
Biopsy	0.14	0.22	0.21	0.21	0	0.09
Sub total	0.47	0.47	0.36	0.48	0.31	0.49
Gross total	0.39	0.31	0.43	0.31	0.69	0.42
Data missing (n)	12	15	0	0	0	0
MGMT (%)						
Unmethylated	0.43	0.71	0.60	0.86	0.43	0.67
Methylated	0.57	0.29	0.40	0.14	0.56	0.32
Data missing (n)	194	128	40	7	0	0.23
IDH1 (%)						
Wild-type	0.91	0.91	0.98	0.83	NA	NA
Mutant	0.09	0.09	0.02	0.17	NA	NA
Data missing (n)	188	0.46	52	6	16	344

Abbreviations: IDH1, isocitrate dehydrogenase 1; KPS, Karnofsky performance status; MGMT, O6-methylguanine-DNA methyltransferase; RPA, recursive partitioning analysis.

Setting

	RCT, $\mathcal{D} = (Y, X, A)$	ED, $\mathcal{D}_E = (Y_E, X_E, A_E)$
Outcome	$Y = (Y_1, \dots, Y_n)$	$Y_E = (Y_{E,1}, \dots, Y_{E,n_E})$
Covariates	$X = (X_1, \dots, X_n)$	$X_E = (X_{E,1}, \dots, X_{E,n_E})$
Treatment	$A = (A_1, \dots, A_n)$	$A_E = (A_{E,1}, \dots, A_{E,n_E})$
Distribution	$p(y, x, a)$	$p_E(y_E, x_E, a_E)$

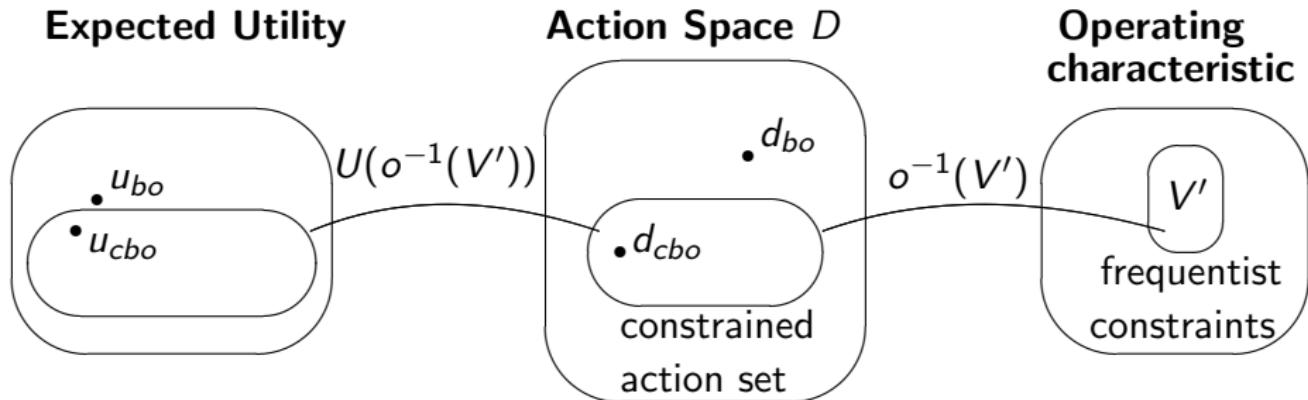
- ▶ Permutation-compatible null hypothesis:

$H_0 : p(y, x, a)$ is invariant to any permutation of $a, \forall (y, x, a)$

- ▶ H_0 implies no treatment effect in **any** patient subpopulation

$$E_p(Y_i | X_i = x_i, A_i = 1) = E_p(Y_i | X_i = x_i, A_i = 0), \forall x_i$$

Bayes Optimum (ob) vs Constrained Bayes Optimum (c_{ob})



Action space: candidate testing functions.

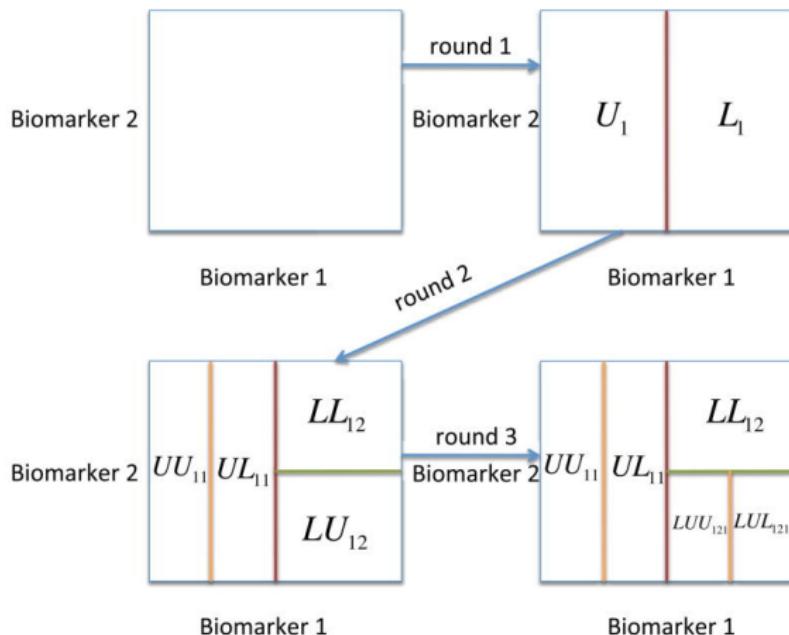
Utility criteria: expected power.

Operating characteristic : Type I error $< \alpha$ (**robust control**)

Prior + Utility Criteria + Regulator Constraint \rightarrow Test

Step1: select a joint prior model for \mathcal{D} and \mathcal{D}_E

Example:



Integration of ED through a Bayesian model

- ▶ A working model \mathcal{M} facilitating integration of ED

$$\mathcal{M} = \left\{ \begin{array}{ll} \text{RCT: } & q_{\theta}(y|x, a) = \prod_i q_{\theta}(y_i|x_i, a_i) \\ \text{ED: } & q_{E,\theta}(y_E|x_E, a_E) = \prod_i q_{E,\theta}(y_{E,i}|x_{E,i}, a_{E,i}) \\ \text{Prior: } & \pi(\theta), \theta \in \Theta \end{array} \right\}$$

- ▶ Specification of q_{θ} and $q_{E,\theta}$ allows for HTE (e.g., interaction terms)
- ▶ Reflects prior belief on the discrepancy between RCT and ED
- ▶ Conditional distribution $\pi(\theta|\mathcal{D}_E)$ summarizes the information in ED

$$\pi(\theta|\mathcal{D}_E) \propto \pi(\theta) q_{E,\theta}(Y_E|X_E, A_E)$$

- ▶ A test statistic for RCT data incorporating $\pi(\theta|\mathcal{D}_E)$

$$m(\mathcal{D}) = \int q_{\theta}(Y|X, A) \pi(\theta|\mathcal{D}_E) d\theta$$

ED-augmented Permutation Test

$\tau = (\tau_1, \dots, \tau_n)$ a permutation of $(1, \dots, n)$, $\tau \in \mathcal{T}$.

Algorithm *permutation test*

- 1: **Input:** The number of permutations J , ID $\mathcal{D} = (Y, X, A)$, working model \mathcal{M} , conditional distribution $\pi(\theta|\mathcal{D}_E)$
- 2: $m(\mathcal{D}) = \int_{\theta} q_{\theta}(Y|X, A) \pi(\theta|\mathcal{D}_E) d\theta;$
- 3: **for** $j \leftarrow 1$ to J **do**
- 4: $\tau \leftarrow$ a random sample from \mathcal{T} ;
- 5: $m_j = \int_{\theta} q_{\theta}(Y|X, A^{(\tau)}) \pi(\theta|\mathcal{D}_E) d\theta;$
- 6: **Output:** $\tilde{\phi}(\mathcal{D}) = \mathbb{I} \left[\frac{1 + \sum_1^J \mathbb{I}(m_j > m(\mathcal{D}))}{1 + J} \leq \alpha \right]$

Proposition (Optimality of ED-PT)

$\phi(D)$ has maximal Bayesian expected power (BEP) among all level α tests, where BEP of a test ϕ' is defined as

$$BEP(\phi') = \mathbb{E}_{(X,A) \sim p} \left[\int \left(\int \phi'(Y, X, A) q_\theta(Y|X, A) dY \right) \pi(\theta|\mathcal{D}_E) d\theta \right]$$

recall:

π prior model

ϕ is the testing procedure $D \rightarrow \{0, 1\}$

A simple example

- ▶ Compare the operating characteristics of ED-PT and other testing procedure, especially the robustness against **discrepancy between RCT and ED**
- ▶ $X_i, X_{E,i} \in \{0, 1\}$ are subpopulation indicators
- ▶ Data generating mechanism

$$A_i \stackrel{iid}{\sim} \text{Bernoulli}(2/3), A_{E,i} = 0,$$
$$Y_i | A_i, X_i \sim N(\gamma A_i + \beta_1 X_i + A_i \gamma_1 X_i, 1),$$
$$Y_{E,i} | X_{E,i} \sim N(\beta_0 + \beta_1 X_{E,i}, 1).$$

- ▶ $\beta_1 = 0.5, \gamma = 0.5, \gamma_1 = -0.3$
- ▶ HTE: 0.5 and 0.2 in $X_i = 0$ and $X_i = 1$ respectively
- ▶ β_0 quantifies the discrepancy between RCT and ED

A simple example: testing procedures

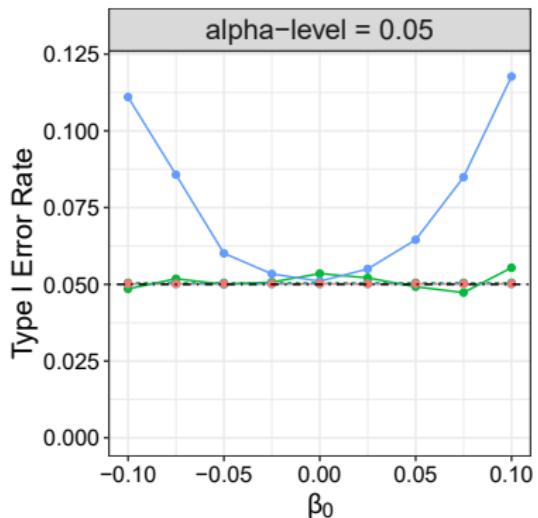
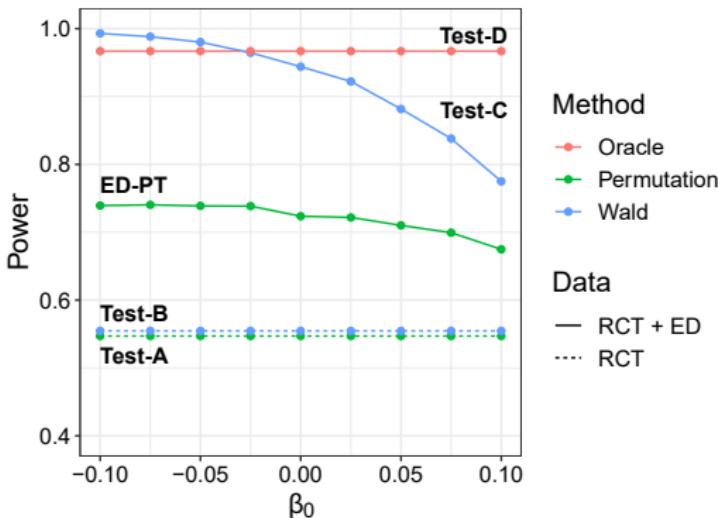
- ▶ All methods are based on the working model

$$Y_i|A_i, X_i \sim N(\theta_0 + \theta_1 X_i + \theta_2 A_i + A_i \theta_3 X_i, 1),$$

$$Y_{E,i}|X_{E,i} \sim N(\theta_0 + \theta_1 X_{E,i}, 1),$$

- ① **ED-PT**: the proposed testing procedure in Algorithm 1
- ② **Test-A**: the same algorithm as ED-PT but without using ED
- ③ **Test-B**: a Wald test for (θ_2, θ_3) based on the RCT only
- ④ **Test-C**: a Wald test for (θ_2, θ_3) based on RCT + ED
- ⑤ **Test-D**: an *oracle* Wald test that knows the outcome model of the control in the RCT

An example: simulation results



one-sided testing

- ▶ H_0 does not distinguish between positive and negative treatment effects
- ▶ the experimental treatments could perform worse than the control (e.g., toxicities)
- ▶ with negative effects we don't want to reject the null
- ▶ ED-PT has to be modified
- ▶ **Main idea:** we modify the test statistic

Modified ED-PT for one-sided alternatives

We propose two types of modifications:

- ① Posterior probability:

$$\tilde{m}_1(\mathcal{D}) = \int_{\tilde{\Theta}} \pi(\theta | \mathcal{D}, \mathcal{D}_E) d\theta,$$

where $\tilde{\Theta} \subset \Theta$ indicates the parameter space corresponding to relevant treatment effects. In the illustrating example, we can set $\tilde{\Theta} = \{\theta_2 > 0 \text{ or } \theta_2 + \theta_3 > 0\}$

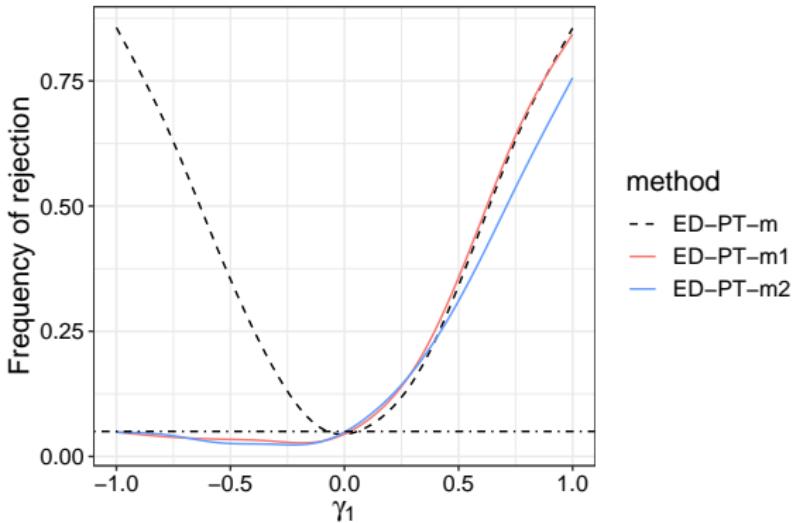
- ② Expected regret:

$$\tilde{m}_2(\mathcal{D}) = \frac{1}{n} \int \sum_{i=1}^n [\mathbb{E}_{q_\theta}(Y_i | X_i, A_i = \tilde{a}_i(\theta)) - \mathbb{E}_{q_\theta}(Y_i | X_i, A_i = 0)] d\pi(\theta | \mathcal{D}, \mathcal{D}_E),$$

where $a_i(\theta) = \arg\max_a \mathbb{E}_{q_\theta}(Y_i | X_i, A_i = a)$ is the optimal treatment for subject i based on the working model \mathcal{M}

example (continued): negative treatment effects

- ▶ Inflated rejection probability of the original ED-PT under negative treatment effects
- ▶ Both \tilde{m}_1 and \tilde{m}_2 can resolve this issue
- ▶ The same data-generating model as before with $\gamma = 0$ and $\gamma_1 \in [-1, 1]$



Glioblastoma (GBM) datasets

- ▶ Collections of multiple GBM trials and EHR data (Rahman et. al 2023)
 - ▶ Patients treated with temozolomide and radiation therapy (TMZ+RT)
 - ▶ Focus on the AVAGLIO study and DFCI EHR
- ▶ **Outcome:** 12-month survival (binary)
- ▶ **Covariates:** age, sex, Karnofsky performance status (KPS), MGMT methylation status and extent of tumor resection (EOR)
- ▶ Four subgroups defined by KPS (≤ 90 vs. > 90) and MGMT (positive vs. negative) status
 - ▶ Two biomarkers that might modulate treatment effects (Chen et al. 2018)

Generating *in silico* RCTs and EDs

- ▶ A resampling schema as in ? to create synthetic RCTs and EDs
- ▶ Accurate evaluation of operating characteristics
- ▶ The simulation follows four steps:
 - ① *In silico RCT*: sample with replacement n patients from TZM+RT arm of the AVAGLIO study
 - ② *Treatment assignment*: randomly assign $n_1 = n/(1 + r)$ to the *in silico* experimental arm and the rest to the control
 - ③ *Introduce treatment effects*: randomly flipped negative outcome in the experimental arm into positive with a pre-specified probability
 - ④ *In silico ED*: sample with replace n_E patients from either the TZM+RT arm of the AVAGLIO study or the DFCI EHR data

Methods in comparison

- We consider the following working model:

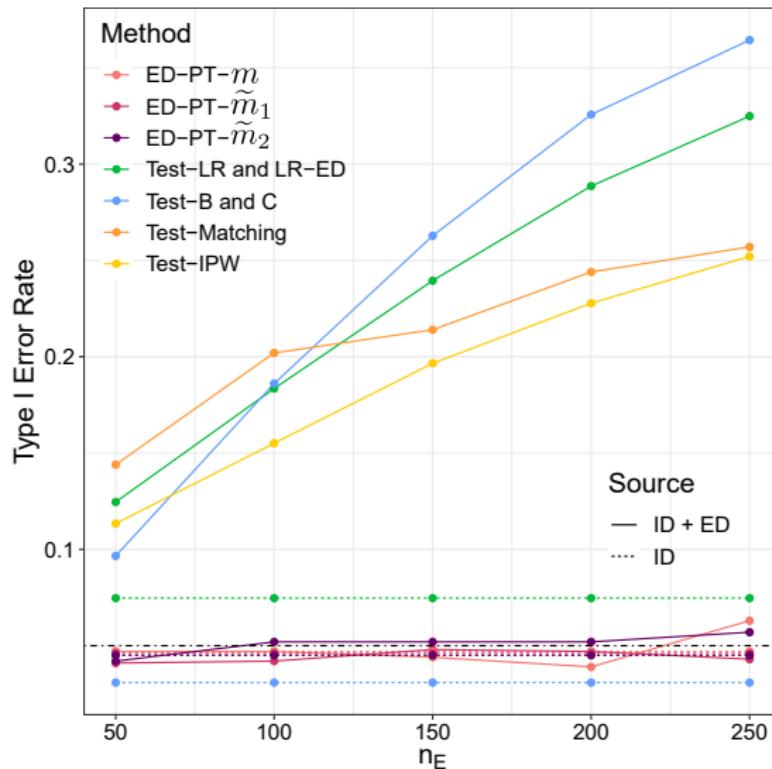
$$\text{logit}[q_\theta(y = 1|x, a)] = \theta_0 + \theta_x^\top x + \theta_a a + \theta_I^\top x_{4:6} a,$$

$$\text{logit}[q_{E,\theta}(y = 1|x_E)] = \theta_0 + (\theta_x + \theta_{E,x})^\top x,$$

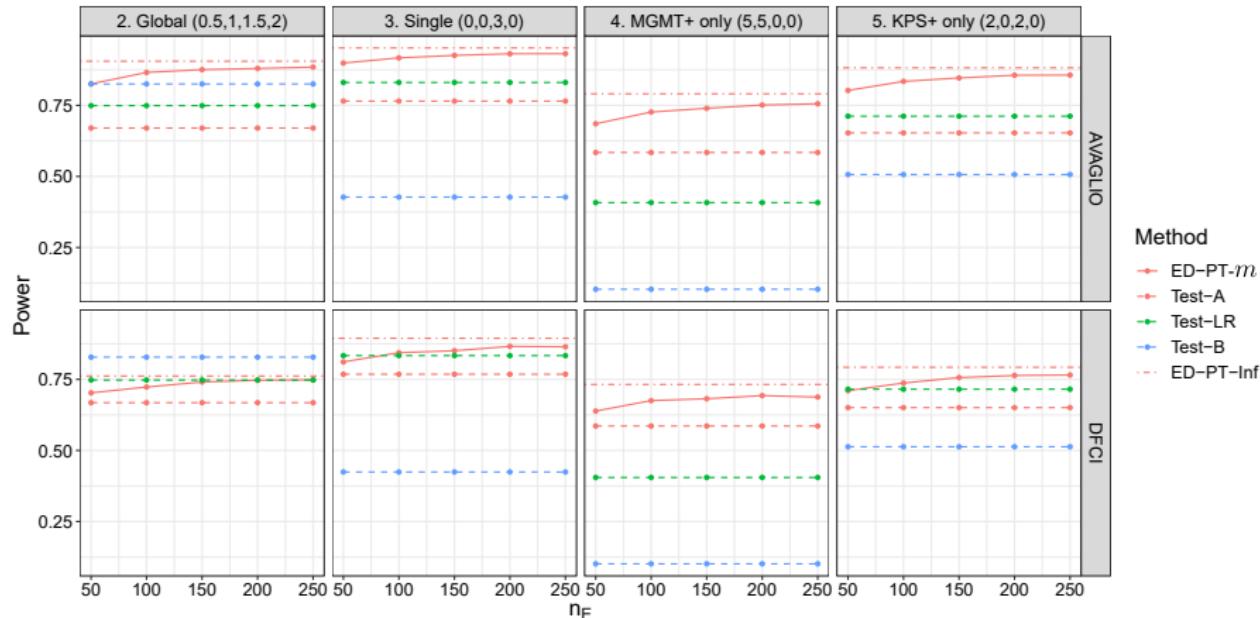
where $x = (\text{age}, \text{sex}, \text{EOR}, \text{MGMT}, \text{KPS}, \text{MGMT} \times \text{KPS})$

- Laplace approximation to compute $m(\mathcal{D})$ and its variants
- We consider four classes of methods:
 - ① ED-PT, ED-PT- \tilde{m}_1 , ED-PT- \tilde{m}_2 and a permutation test without using ED (Test-A)
 - ② Wald test without accounting for covariates (Test-B, C)
 - ③ Likelihood ratio test for (θ_a, θ_I) using RCT and RCT + ED
 - ④ Causal inference based methods for external control integration: a matching approach and an IPW approach

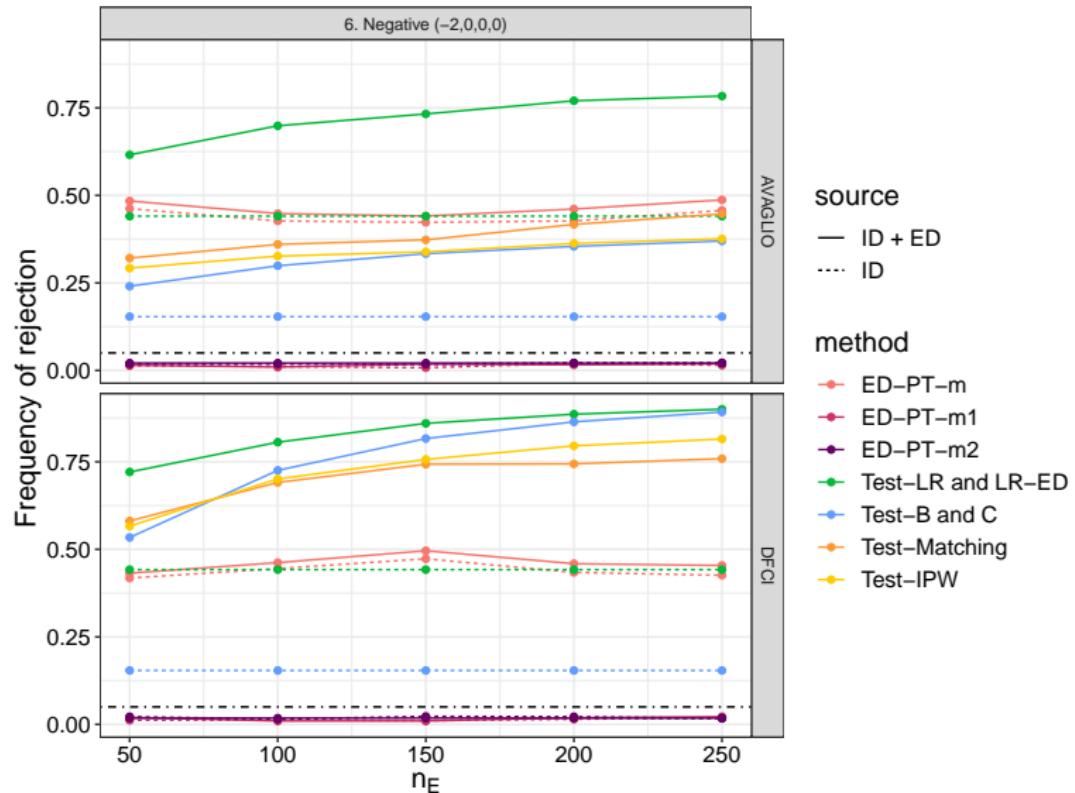
Type I error rates and power



Type I error rates and power



Type I error rates and power



Conclusion

- ▶ We investigate the use of ED in the analysis of RCTs where HTEs are plausible
- ▶ We propose a permutation test that leverage information from external data through a Bayesian model with the aim of enhancing power
- ▶ We illustrate the strength of our permutation procedure with a simulated example and a retrospective analysis of GBM data collections