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Dear Colleagues,  

This letter follows the recent application of Dr. Steffen Ventz to your department. Dr. Ventz was a 
postdoctoral fellow at the Dana-Farber Cancer Institute and the Harvard School of Public Health from 
February 2013 until June 2015. I was his postdoctoral mentor together with Professor Giovanni 
Parmigiani. I have worked with Steffen on several research projects, and I continue to constantly work 
with him. During the last years we published several articles together. We also have several ongoing 
research projects. Steffen is an excellent colleague: he is an extremely talented statistician and one 
of the most brilliant and productive scholars that I have worked with. I admire him for the contagious 
enthusiasm he puts in his work. He has tremendous skills in identifying relevant research problems 
and in providing creative and scientifically rigorous solutions. I have rarely met statisticians with a 
comparable passion for their research. He is very productive and I have been impressed by his ability 
in planning his work precisely and effectively. Dr.Ventz is also extremely talented in communicating, 
presenting and discussing his research ideas with colleagues, faculties and students.  

A relevant part of the work with Steffen has been devoted to statistical methods for the design and 
analysis of clinical trials. I provide a summary of the goals of our research projects. The study of new 
therapies in precision medicine poses new challenges, both in the development of efficient designs 
and in the analysis of biomedical data. These challenges continue to stimulate our interest in the 
study of new methods to design trials. The primary purpose of Steffen research projects on clinical 
trial designs is to develop innovative designs that are both practical and efficient. Dr. Ventz’ work on 
clinical trial designs focuses on the following main topics and goals.  

(1) Comparison of clinical trial designs, including Bayesian response-adaptive designs, multi-arm 
multi- stage designs and platform designs. Comparisons rely on metrics with clear interpretability and 
on simulation studies, to capture different levels of efficiency across designs. The choice of the 
simulation scenarios is perhaps the most delicate aspect of the comparison, because the 
performances of candidate designs can vary across simulation scenarios. Most of the comparative 
studies have been tailored to specific diseases, including the evaluation of new treatments in 
tuberculosis and breast cancer. This work has been published both in the statistical literature and in 
medical journals.  

(2) Joint modeling of multiple endpoints in clinical studies. The aforementioned collaborations with 
experts in tuberculosis motivated Dr. Ventz’ work on joint Bayesian modeling of surrogate and 
primary endpoints. The goal of this work is to produce randomization probabilities that mirror, during 
the course of the clinical trial, both early efficacy results on surrogate outcomes and preliminary 
evidence of treatment effects on primary outcomes.  

(3) Definition of response-adaptive randomization probabilities. Dr. Ventz proposed new Bayesian 
response-adaptive randomization rules. Most response-adaptive randomization schemes have been 
designed to increase the number of patients that receive an effective treatment during the clinical trial. 
In his work, Dr. Ventz developed alternative approaches to minimize, at completion of the study, 
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trial, the design, including the sample size, a detailed 
plan for interim decisions, and statistical methods for 
data analyses should be prespecified. Additionally, a plan 
for how missing data in the trial and external data sources 
will be handled is important. Potential distortion 
mechanisms that can bias treatment effect estimates and 
undermine the scientific validity of externally augmented 
clinical trial findings have been carefully examined and 
include unmeasured or misclassified confounders and 
data quality issues, such as the use of different standards 
to capture or measure outcomes.37–39

Risks of introducing bias (table) and compromising the 
control of false positives and false negatives when using 
external patient-level data can differ substantially across 
externally augmented clinical trial designs, which span 
from single-arm studies (figure 1A) to hybrid randomised 
studies (figure 1B). Quantitative analyses of these and 
other risks (eg, exposure of patients to inferior treatments) 
are necessary before trial initiation. The decision to use 
external data should take account of several factors in 
addition to the study population and available patient-
level datasets, including the stage of drug development 
(eg, early phase 2 vs confirmatory trials); the specific 
decisions (eg, early stopping of a phase 2 study for futility40 
or sample size re-estimation during the study41) that will 
be supported by external data; resources (including 
maximum sample size); and the potential trial designs 
and statistical methods for data analysis.

Candidate externally augmented clinical trial designs 
and statistical methods for data analysis can present 
markedly different trade-offs between potential 
efficiencies (eg, discontinuing early randomised trials of 
ineffective treatments by leveraging external data) and 
risks of poor operating characteristics (eg, bias and poor 
control of false positive results). The value of integrating 
external data is context specific and strictly dependent on 
the trial design and methods selected for data analysis 
and decision making.

We describe three examples of externally augmented 
clinical trials with markedly different risks of poor 
operating characteristics. The purpose of these examples 
is to illustrate how external information can be used for 
making different decisions during or at completion of a 
trial.

The first example is a single-arm trial with an external 
control group. We consider either binary primary 
outcomes (eg, tumour response) or time to event 
outcomes with censoring (eg, overall survival). This 

Figure 1: Clinical trial designs
(A) A clinical study with patient enrolment to a single experimental group and an 

external control group (external control group single-arm trial). (B) A two-stage 
hybrid randomised trial design. (C) A randomised trial design that uses external 

data for interim futility analyses to support the decision to continue or 
discontinue the study. If the trial is not discontinued, the final analysis does not 

use external data.

21TLO1052

Leveraging external data in the design and analysis of clinical trials in
neuro-oncology.
Rahman et al 2021, Lancet Onc



Integration of External Data in Clinical Trials
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Abstract

In oncology the efficacy of novel therapeutics often differs across patient subgroups, and these

variations are difficult to predict during the initial phases of the drug development process. The

relation between the power of randomized clinical trials (RCTs) and heterogeneous treatment effects

(HTEs) has been discussed by several authors. In particular, false negative results are likely to occur

when the treatment effects concentrate in a subpopulation but the study design did not account for

potential HTEs. The use of external data (ED) from completed clinical studies and electronic health

records has the potential to improve decision-making throughout the development of new therapeu-

tics, from early-stage trials to registration. Here we discuss the use of ED to evaluate experimental

treatments with potential HTEs. We introduce a permutation procedure to test, at the completion

of a RCT, the null hypothesis that the experimental therapy does not improve the primary outcomes

in any subpopulation. The permutation test leverages the available ED to increase power. Also,

the procedure controls the false positive rate at the desired α-level without restrictive assumptions

on the ED, for example, in scenarios with unmeasured confounders, different pre-treatment patient

profiles in the RCT population compared to the ED, and other discrepancies between the trial and

the ED. We illustrate that the permutation test is optimal according to an interpretable criteria and

discuss examples based on asymptotic results and simulations, followed by a retrospective analysis of

individual patient-level data from a collection of glioblastoma clinical trials.

1

Biometrika 2026
arxiv.org/abs/2506.04128



Are there treatment effects in some biomarker subgroups?



Datasets :RWD+RCTs

PrSATðXÞ and PrHCðXÞ differ substantially, then pHC and pE are
not comparable, treatment effect estimates can be biased, and
type I error rates can deviate from the targeted value. If the
patient's prognostic profiles in the single-arm study are favorable
compared with the study used as benchmark, then the type I error
probability tends to be above the targeted a-level, and vice versa.
In the latter case, the power decreases.

In an RCT, patients are randomized to the control and exper-
imental arm, with patient characteristics, on average, equally
distributed between arms, reducing the risk of bias compared
with single-arm trial designs.

Results
Limitations of the single-arm design

We illustrate the bias and type I error deviation associated
with single-arm trials using an example for a hypothetical inef-
fective experimental treatment in a disease with one known
prognostic biomarker X. We assume, for each patient, identical
outcome probabilities under the experimental and control
treatment. Figure 1A shows the difference ðpE % pHCÞ when the
prevalence of the biomarker varies between PSATðX ¼ 1Þ ¼ 0:1
and 0.9 for different correlation levels between the outcome Y and
the biomarker X. Even with a moderate association between the

biomarker and the outcome, the differences between the distribu-
tions ðPHC; PSATÞ result in bias and departures from the intended
10% type I error rate (Fig. 1B).

TMZþRT in newly diagnosed GBM
The standard of care of TMZþRT for newly diagnosedGBMwas

established in 2004 based on results from the EORTC-NCIC
CE.3 (22). Subsequently, nine additional trials enrolled patients
on TMZþRT control arms between 2005 and 2013 (Supplemen-
tary Table S1). The majority of single-arm studies used the
reported results of EORTC-NCIC CE.3 as historical benchmark
(Supplementary Table S1). Sample sizes of the TMZþRT control
arms in the RCTs varied between 16 (19) patients and 463 (18)
patients. Supplementary Figure S1 shows reported Kaplan–Meier
estimates, median OS, and OS-12 for the TMZþRT arms. Point
estimates for OS-12 varied between 0.56 and 0.81 across studies,
and between 13.2 and 21.2 months for median OS.

Prognostic variables
Through a literature review, we identified prognostic factors

associated with survival in newly diagnosed GBM (23–26). A Cox
regression analysis, stratified by trial and treatment arm, was used
to quantify association of covariates with OS (Table 2). On
multivariable analyses, age (HR 1.03; P < 0.001), male gender

Table 1. Distribution of pretreatment patient characteristics for the TMZþRT arm of three clinical studies and three RWE studies

Study AVAglio
NCT ID NCT01013285 NCT00441142 — NCT00943826
PubMed ID DFCI-cohort UCLA-cohort PM21135282 PM25910950 PM22120301 PM24552318
Data type RWE RWE RWE Phase II Phase II Phase III
Arm TMZþRT TMZþRT TMZþRT TMZþRT TMZþRT TMZþRT
Enrollment period 8/06-11/08 2/09-6/11 8/05-2/11 6/09-3/11
Enrollments to SOC 378 305 110 29 16 460
OS events 269 265 89 24 15 344
Age
Median 58 57 59 58 59 57
Range 18–91 20–84 20–90 26–73 36–69 18–79
SD 13 13 14 11 11 10

Sex (%)
Females 0.43 0.36 0.36 0.45 0.5 0.36
Males 0.57 0.64 0.64 0.55 0.5 0.64

KPS (%)
(80 0.55 0.39 0.32 0.24 0.44 0.31
>80 0.45 0.61 0.68 0.76 0.56 0.69
Data missing (n) 27 17 0 0 0 0

RPA (%)
3 NA 0.22 0.25 NA 0.12 0.16
4 NA 0.42 0.41 NA 0.75 0.61
5 NA 0.34 0.33 NA 0.13 0.23
6 NA 0.02 0.01 NA 0 0
Data missing (n) 378 0 0 29 1 0

Resection (%)
Biopsy 0.14 0.22 0.21 0.21 0 0.09
Sub total 0.47 0.47 0.36 0.48 0.31 0.49
Gross total 0.39 0.31 0.43 0.31 0.69 0.42
Data missing (n) 12 15 0 0 0 0

MGMT (%)
Unmethylated 0.43 0.71 0.60 0.86 0.43 0.67
Methylated 0.57 0.29 0.40 0.14 0.56 0.32
Data missing (n) 194 128 40 7 0 0.23

IDH1 (%)
Wild-type 0.91 0.91 0.98 0.83 NA NA
Mutant 0.09 0.09 0.02 0.17 NA NA
Data missing (n) 188 0.46 52 6 16 344

Abbreviations: IDH1, isocitrate dehydrogenase 1; KPS, Karnofsky performance status; MGMT, O6-methylguanine-DNAmethyltransferase; RPA, recursive partitioning
analysis.

Design and Evaluation of an External Control Arm

www.aacrjournals.org Clin Cancer Res; 25(16) August 15, 2019 4995

Research. 
on September 27, 2020. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 
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Setting

RCT, D = (Y ,X ,A) ED, DE = (YE ,XE ,AE )

Outcome Y = (Y1, . . . ,Yn) YE = (YE ,1, . . . ,YE ,nE )
Covariates X = (X1, . . . ,Xn) XE = (XE ,1, . . . ,XE ,nE )
Treatment A = (A1, . . . ,An) AE = (AE ,1, . . . ,AE ,nE )

Distribution p(y , x , a) pE (yE , xE , aE )

▶ Permutation-compatible null hypothesis:

H0 : p(y , x , a) is invariant to any permutation of a, ∀(y , x , a)

▶ H0 implies no treatment effect in any patient subpopulation

Ep(Yi |Xi = xi ,Ai = 1) = Ep(Yi |Xi = xi ,Ai = 0),∀xi



Bayes Optimum (ob) vs Constrained Bayes Optimum (cob)

Expected Utility Operating
characteristic

Action Space D'

&

$

%
�
�

�
�

rubor
ucbo

'

&

$

%

�
�

�
�dcbor

dbor
constrained

action set

'

&

$

%

�
�

�

V ′

frequentist

constraints

o−1(V ′)U(o−1(V ′))

Action space: candidate testing functions.
Utility criteria: expected power.
Operating characteristic : Type I error < α ( robust control )

Prior + Utility Criteria + Regulator Constraint → Test



Step1: select a joint prior model for D and DE

Example:

Xu et. al, Stat Biosci 2016



Integration of ED through a Bayesian model

▶ A working modelM facilitating integration of ED

M =


RCT: qθ(y |x , a) =

∏
i qθ(yi |xi , ai )

ED: qE ,θ(yE |xE , aE ) =
∏

i qE ,θ(yE ,i |xE ,i , aE ,i )
Prior: π(θ), θ ∈ Θ


▶ Specification of qθ and qE ,θ allows for HTE (e.g., interaction

terms)

▶ Reflects prior belief on the discrepancy between RCT and ED

▶ Conditional distribution π(θ|DE ) summarizes the information
in ED

π(θ|DE ) ∝ π(θ)qE ,θ(YE |XE ,AE )

▶ A test statistic for RCT data incorporating π(θ|DE )

m(D) =
∫

qθ(Y |X ,A)π(θ|DE )dθ



ED-augmented Permutation Test

τ = (τ1, . . . , τn) a permutation of (1, . . . , n), τ ∈ T .

Algorithm permutation test

1: Input: The number of permutations J, ID D = (Y ,X ,A),
working modelM, conditional distribution π(θ|DE )

2: m(D) =
∫
θ qθ(Y |X ,A)π(θ|DE )dθ;

3: for j ← 1 to J do
4: τ ← a random sample from T ;
5: mj =

∫
θ qθ(Y |X ,A(τ))π(θ|DE )dθ;

6: Output: ϕ̃(D) = I
[
1+

∑J
1 I(mj>m(D))

1+J ≤ α
]



Proposition (Optimality of ED-PT)

ϕ(D) has maximal Bayesian expected power (BEP) among all level
α tests, where BEP of a test ϕ′ is defined as

BEP(ϕ′) = E(X ,A)∼p

[∫ (∫
ϕ′(Y ,X ,A)qθ(Y |X ,A)dY

)
π(θ|DE )dθ

]
recall:
π prior model
ϕ is the testing procedureD → {0, 1}



A simple example

▶ Compare the operating characteristics of ED-PT and other
testing procedure, especially the robustness against
discrepancy between RCT and ED

▶ Xi ,XE ,i ∈ {0, 1} are subpopulation indicators

▶ Data generating mechanism

Ai
iid∼ Bernoulli(2/3),AE ,i = 0,

Yi |Ai ,Xi ∼ N(γAi + β1Xi + Aiγ1Xi , 1),

YE ,i |XE ,i ∼ N(β0 + β1XE ,i , 1).

▶ β1 = 0.5, γ = 0.5, γ1 = −0.3
▶ HTE: 0.5 and 0.2 in Xi = 0 and Xi = 1 respectively

▶ β0 quantifies the discrepancy between RCT and ED



A simple example: testing procedures

▶ All methods are based on the working model

Yi |Ai ,Xi ∼ N(θ0 + θ1Xi + θ2Ai + Aiθ3Xi , 1),

YE ,i |XE ,i ∼ N(θ0 + θ1XE ,i , 1),

1 ED-PT: the proposed testing procedure in Algorithm 1

2 Test-A: the same algorithm as ED-PT but without using ED

3 Test-B: a Wald test for (θ2, θ3) based on the RCT only

4 Test-C: a Wald test for (θ2, θ3) based on RCT + ED

5 Test-D: an oracle Wald test that knows the outcome model
of the control in the RCT



An example: simulation results

alpha−level = 0.05
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one-sided testing

▶ H0 does not distinguish between positive and negative
treatment effects

▶ the experimental treatments could perform worse than the
control (e.g., toxicities)

▶ with negative effects we don’t want to reject the null

▶ ED-PT has to be modified

▶ Main idea: we modify the test statistic



Modified ED-PT for one-sided alternatives

We propose two types of modifications:

1 Posterior probability:

m̃1(D) =
∫
Θ̃
π(θ|D,DE )dθ,

where Θ̃ ⊂ Θ indicates the parameter space corresponding to
relevant treatment effects. In the illustrating exampling, we
can set Θ̃ = {θ2 > 0 or θ2 + θ3 > 0}

2 Expected regret:

m̃2(D) = 1
n

∫ ∑n
i=1 [Eqθ(Yi |Xi ,Ai = ãi (θ))− Eqθ(Yi |Xi ,Ai = 0)] dπ(θ | D,DE ),

where ai (θ) = arg-maxaEqθ(Yi |Xi ,Ai = a) is the optimal
treatment for subject i based on the working modelM



example (continued): negative treatment effects
▶ Inflated rejection probability of the original ED-PT under

negative treatment effects

▶ Both m̃1 and m̃2 can resolve this issue

▶ The same data-generating model as before with γ = 0 and
γ1 ∈ [−1, 1]
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Glioblastoma (GBM) datasets

▶ Collections of multiple GBM trials and EHR data (Rahman et.
al 2023)
▶ Patients treated with temozolomide and radiation therapy

(TMZ+RT)
▶ Focus on the AVAGLIO study and DFCI EHR

▶ Outcome: 12-month survival (binary)

▶ Covariates: age, sex, Karnofsky performance status (KPS),
MGMT methylation status and extent of tumor resection
(EOR)

▶ Four subgroups defined by KPS (≤ 90 vs. > 90) and MGMT
(positive vs. negative) status
▶ Two biomarkers that might modulate treatment effects (Chen

et al. 2018)



Generating in silico RCTs and EDs

▶ A resampling schema as in ? to create synthetic RCTs and
EDs

▶ Accurate evaluation of operating characteristics
▶ The simulation follows four steps:

1 In silico RCT : sample with replacement n patients from
TZM+RT arm of the AVAGLIO study

2 Treatment assignment: randomly assign n1 = n/(1 + r) to the
in silico experimental arm and the rest to the control

3 Introduce treatment effects: randomly flipped negative
outcome in the experimental arm into positive with a
pre-specified probability

4 In silico ED: sample with replace nE patients from either the
TZM+RT arm of the AVAGLIO study or the DFCI EHR data



Methods in comparison

▶ We consider the following working model:

logit[qθ(y = 1|x , a)] = θ0 + θ⊺xx + θaa+ θ⊺I x4:6a,

logit[qE ,θ(y = 1|xE )] = θ0 + (θx + θE ,x)
⊺x ,

where x = (age, sex, EOR, MGMT, KPS,MGMT× KPS)

▶ Laplace approximation to compute m(D) and its variants
▶ We consider four classes of methods:

1 ED-PT, ED-PT-m̃1, ED-PT-m̃2 and a permutation test
without using ED (Test-A)

2 Wald test without accounting for covariates (Test-B, C)
3 Likelihood ratio test for (θa, θI ) using RCT and RCT + ED
4 Causal inference based methods for external control

integration: a matching approach and an IPW approach



Type I error rates and power
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Type I error rates and power
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Type I error rates and power

6. Negative (−2,0,0,0)
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Conclusion

▶ We investigate the use of ED in the analysis of RCTs where
HTEs are plausible

▶ We propose a permutation test that leverage information from
external data through a Bayesian model with the aim of
enhancing power

▶ We illustrate the strength of our permutation procedure with
a simulated example and a retrospective analysis of GBM data
collections


