

Bridging AI and BNP for Layered Point Pattern Data Analysis

NSF-ICERM
BNP Inference - Computational Issues

Qiwei Li
Associate Professor of Statistics

Department of Mathematical Sciences
The University of Texas at Dallas

Table of Contents

1 Background

2 AI-derived Data

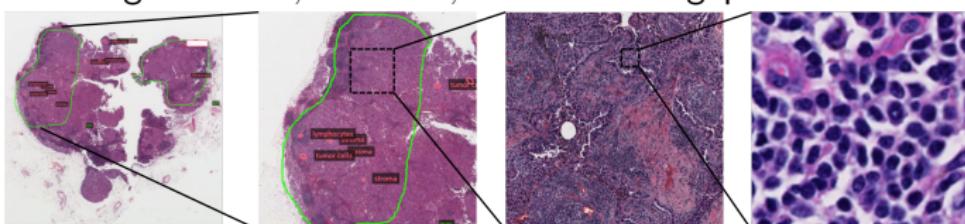
3 Statistical Inference

4 Results

5 Summary

Tumor Pathology Images

- Capture histological details in high resolution
 - Average size: $25,000 \times 20,000 = 500$ megapixels



- Require a systematical exploration on subtle patterns
- Harbor a large amount of biological information

- Cell growth pattern
 - Survival outcome (Gleason *et al.*, 2002; Amin *et al.*, 2002; Borczuk *et al.*, 2009; Barletta *et al.*, 2010)
 - Treatment response (Tsao *et al.*, 2015)
- Cell-cell interaction
- Cell interaction with the surrounding micro-environment

AI-Statistics for Pathology Image Analysis

- AI discovers complex patterns, but lacks interpretability

AI-Statistics for Pathology Image Analysis

- AI discovers complex patterns, but lacks interpretability
- Statistics interprets data, but cannot afford complex data

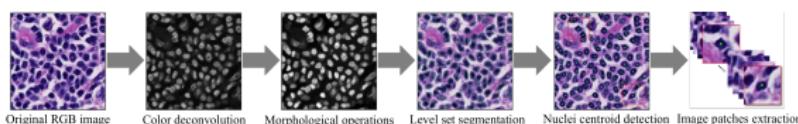
AI-Statistics for Pathology Image Analysis

- AI discovers complex patterns, but lacks interpretability
- Statistics interprets data, but cannot afford complex data
- AI-Statistics workflow

AI - ConvPath Pipeline

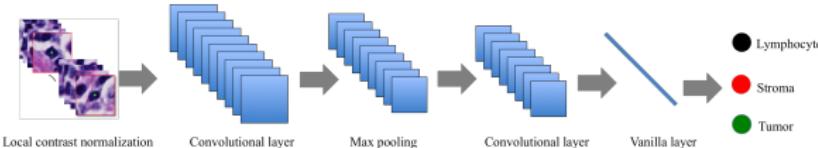
■ Cell segmentation with water-shed method

- Yi et al., Automatic extraction of cell nuclei from H&E-stained histopathological images (2017), *J. Med. Imaging*, **4**(2)

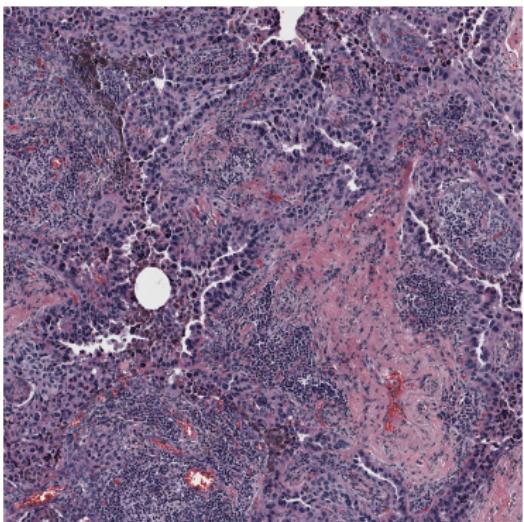
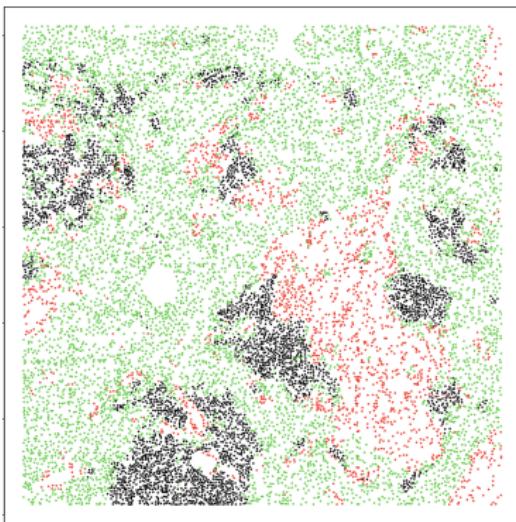


■ Cell type classification by deep learning

- Wang *et al.*, ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network (2019), *EBioMedicine*, **50**

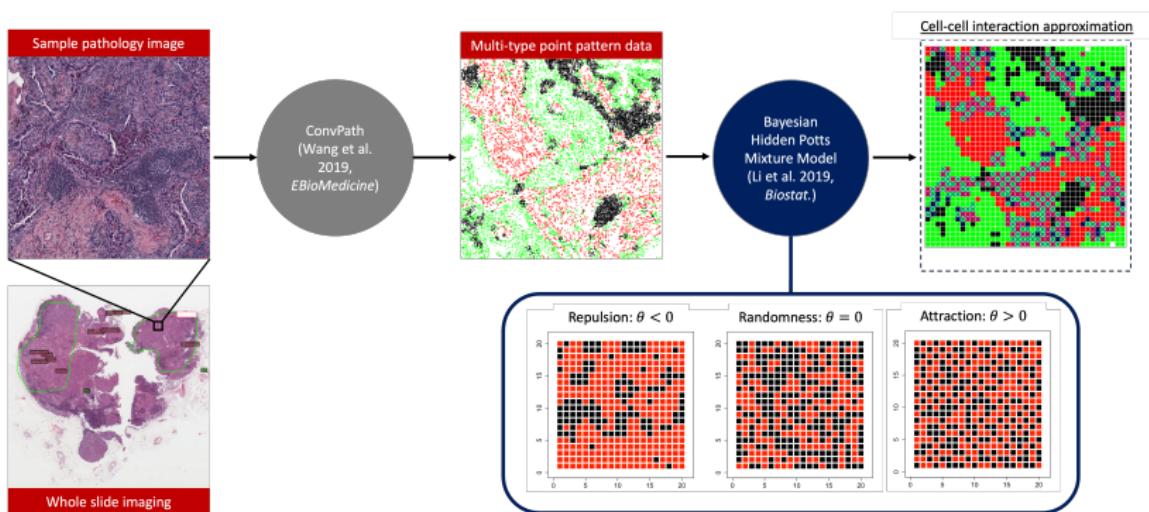


Data - Multi-type Point Patterns

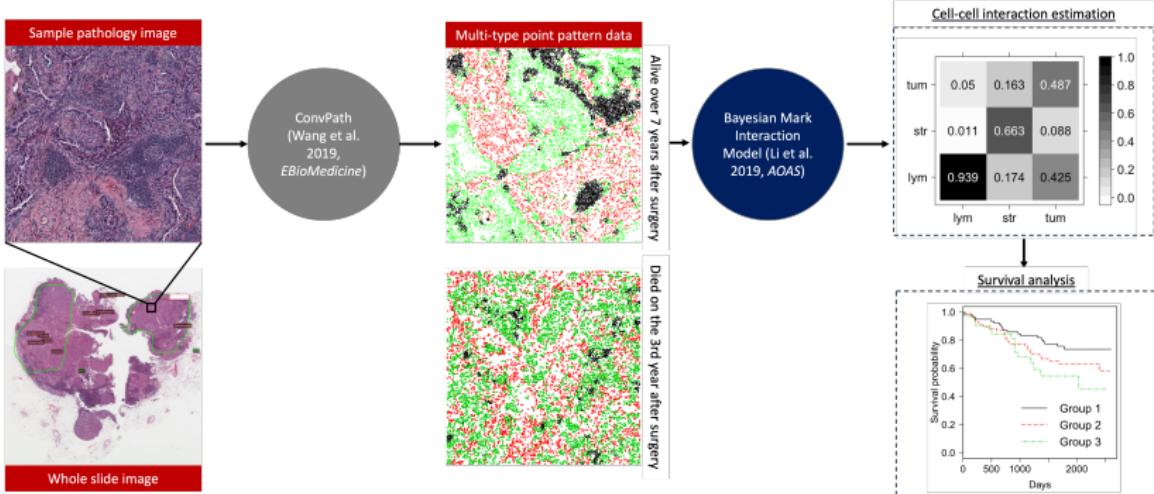


- Raw data: pathology images
- Processed data: multi-type point pattern data
 - Locations: $(x_i, y_i), i = 1, \dots, n$
 - Marks: $z_i \in \{\text{Lymphocyte} (\bullet), \text{stromal} (\bullet), \text{and tumor} (\bullet)\}$

AI-Bayesian for Point Pattern Data Analysis



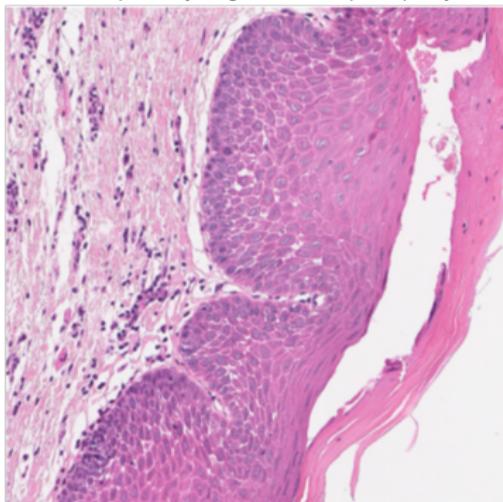
AI-Bayesian for Point Pattern Data Analysis



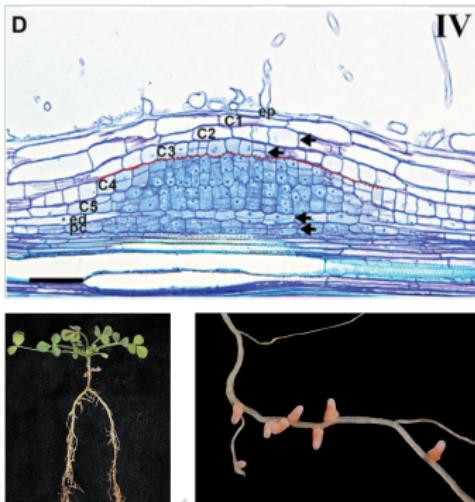
Motivation

- Motivation: the number of epithelial layers is linked to dysplasia severity in oral cancer
- Goal: estimate the number of cellular layers in an image

A cropped WSI from a patient in the oral potentially malignant disorders (OPMD) study

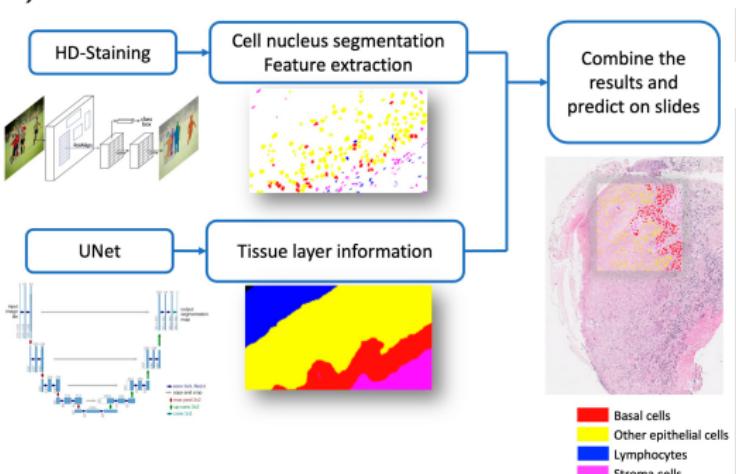


A micrograph image slide from *medicago truncatula* root nodule

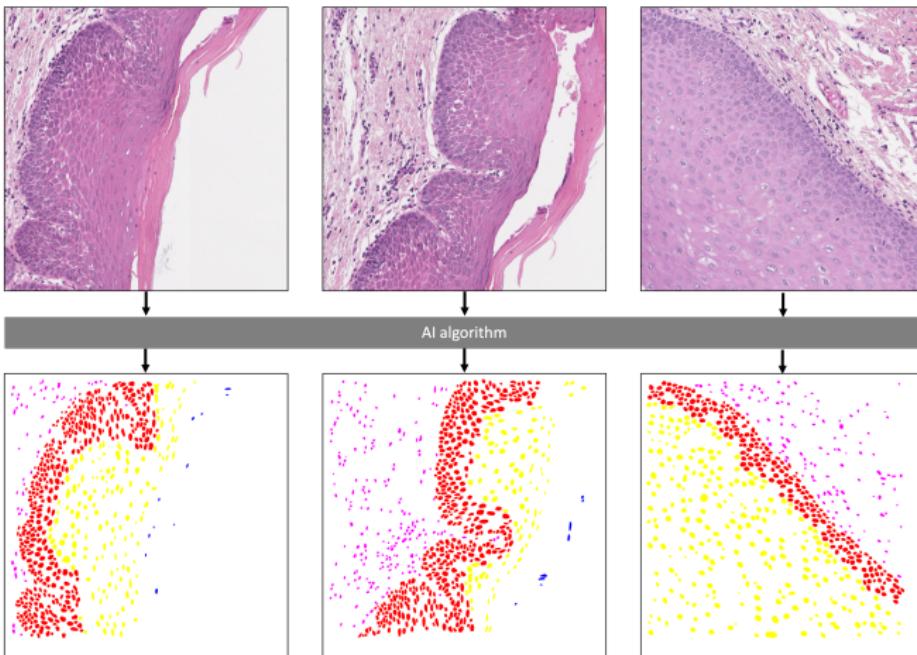


AI - Deep Convolutional Neural Network

- Cell nuclei segmentation and classification using HD-staining (Wang *et al.*, *Cancer Res.*, 2020) and YOLOv8 mask (Rong *et al.*, *Mod. Pathol.*, 2023)
- Tissue layer segmentation using U-Net (Ronneberger *et al.*, *MICCAI'15*)



Data - Multi-type Point Patterns

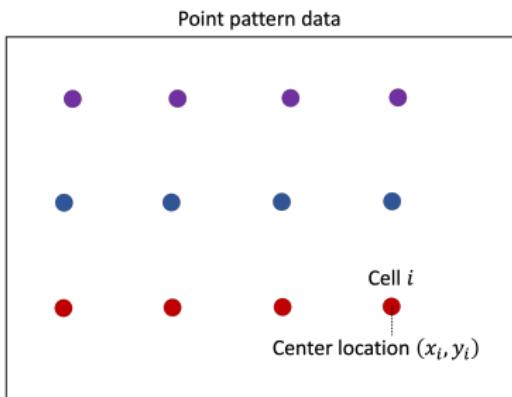
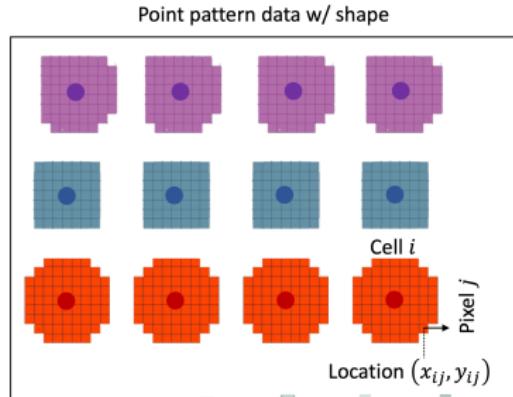


Data - Multi-type Point Patterns

- Raw data: oral tissue pathology images
 - 128 oral potentially malignant disorders (OPMD) patients from the Erlotinib Prevention of Oral Cancer (EPOC) trial at UT MDACC
 - 701 sample images (in 4 megapixels) from 255 whole slide images (WSI)
- Processed data: multi-type point pattern data
 - The number of cells n ranges from 169 to 3,003
 - Locations: $(x_i, y_i), i = 1, \dots, n$
 - Marks: $z_i \in \{\text{Lymphocytes} (\bullet), \text{stroma cells} (\bullet), \text{and epithelial cells} (\bullet \text{ and } \bullet)\}$

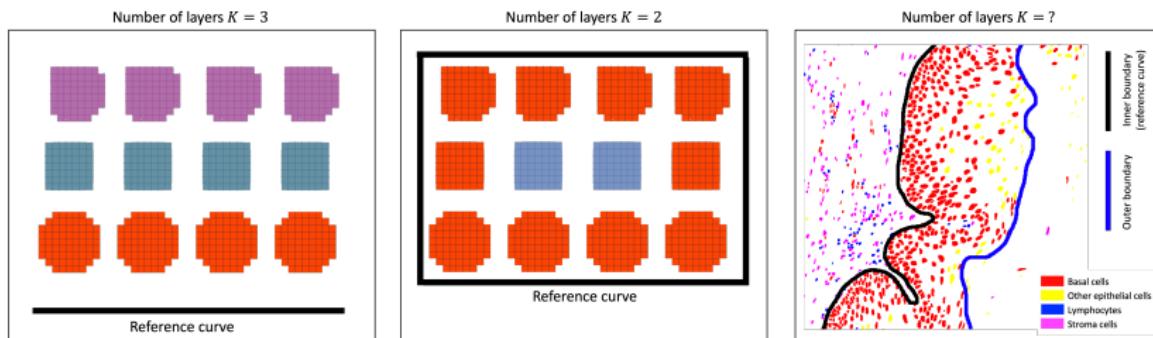
Data - Point Patterns w/ Shape

- Processed data: point pattern data w/ shape
 - Locations of cell nuclei: $(x_i, y_i), i = 1, \dots, n$
 - Marks: $z_i \in \{\text{Lymphocytes} (\bullet), \text{stroma cells} (\bullet), \text{and epithelial cells} (\bullet \text{ and } \bullet)\}$
 - Cell nucleus pixel: $(x_{ij}, y_{ij}), i = 1, \dots, n$ and $j = 1, \dots, m_i$, where m_i is the number of total pixels in cell nucleus i



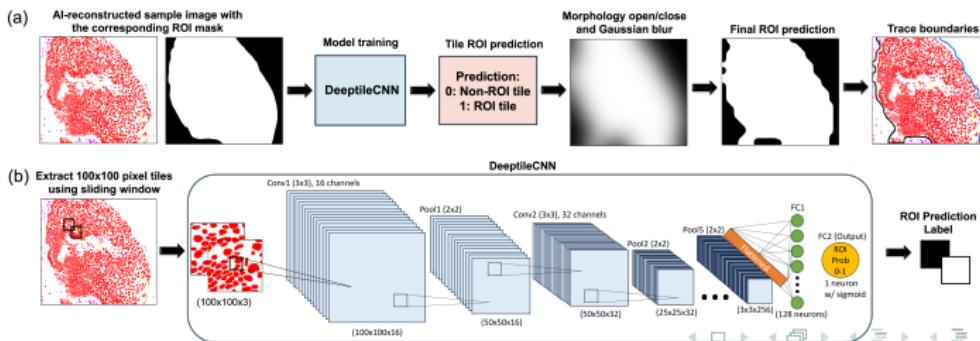
Data - Reference Curves

- Layered structure depends on the selection of reference curves
- Pathologists define the outer boundary near the corneum cells (layers are less distinct), and the inner boundary near the denser stromal regions



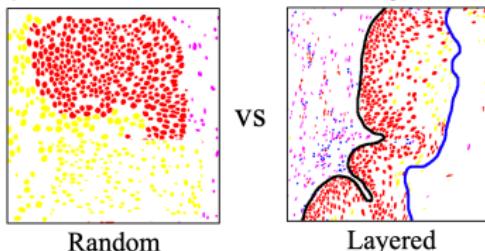
AI - DeeptileCNN

- Boundary detection is approached as tile classification
- Region of interest (ROI) classification using DeeptileCNN
 - Tiles were labeled as ROI if $\geq 75\%$ of pixels overlapped with the ground-truth ROI mask
 - Size: 55,613 (training), 15,930 (validation), and 7965 (test)
 - Overall accuracy: 87.1% (training) and 85.5% (test)
 - Gaussian smoothing was used to reduce blocky edges by tiling

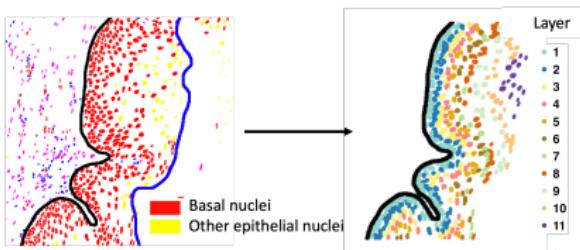


Research Goals

- To study the layered structure in point pattern data
 - To test if point pattern data exhibit a layered structure

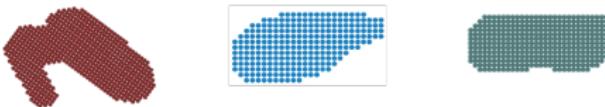


- To estimate the number of layers from layered point pattern data

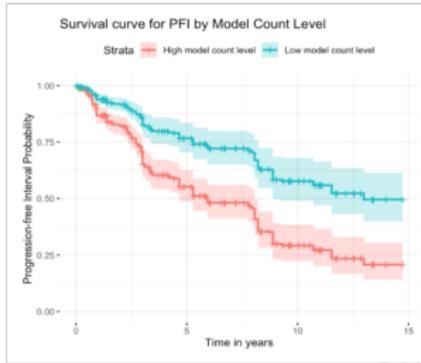


Research Goals

- To characterize shape of cell nuclei

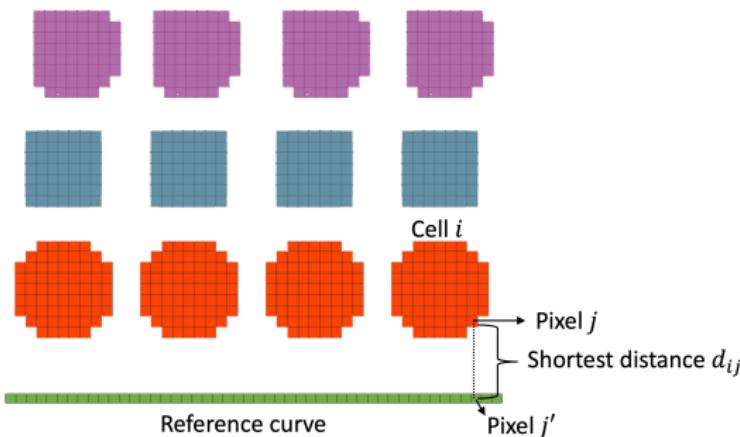


- To assess the clinical significance of epithelial layer numbers and oral cancer progression

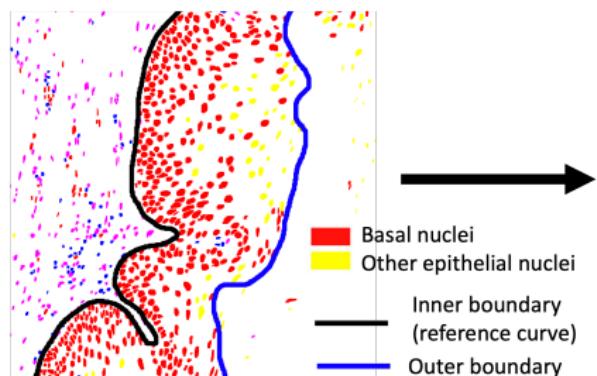


BLADE - Input Data

- Input data d_{ij} : the shortest Euclidean distance from the pixel j in cell nucleus i to the reference curve
- $\mathbf{d}_{i\cdot} = (d_{i1}, \dots, d_{i,m_i})$ captures the spatial position of each cell nucleus i to the reference curve

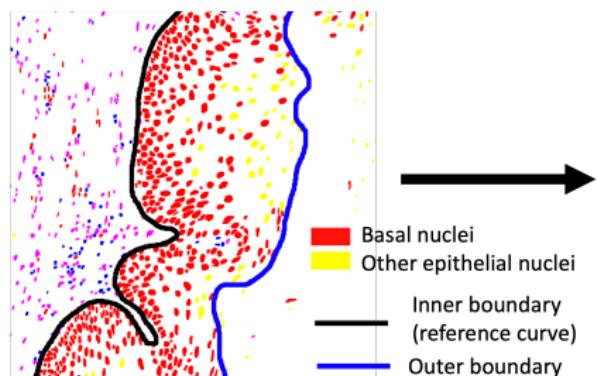
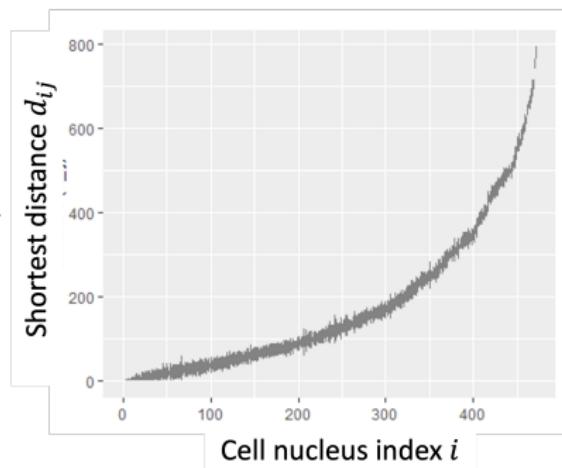


BLADE - Input Data



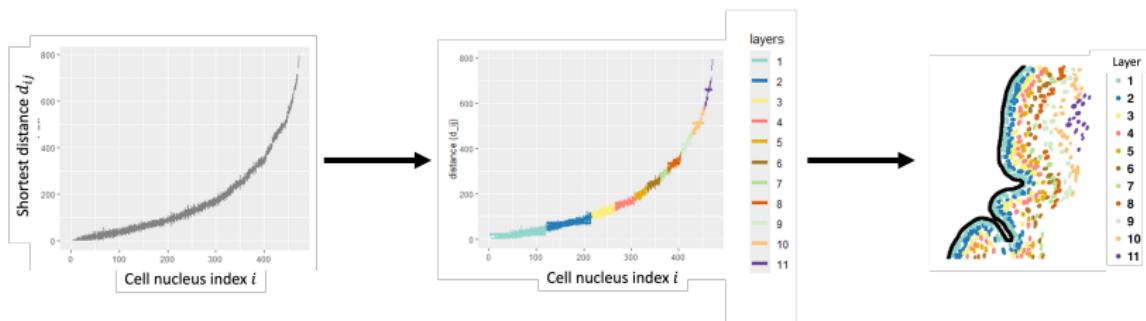
- Each bar represents a cell nucleus i
- The two ends of each bar i indicating the range of shortest distances $\mathbf{d}_{i\cdot} = (d_{i1}, \dots, d_{im_i})$

BLADE - Input Data



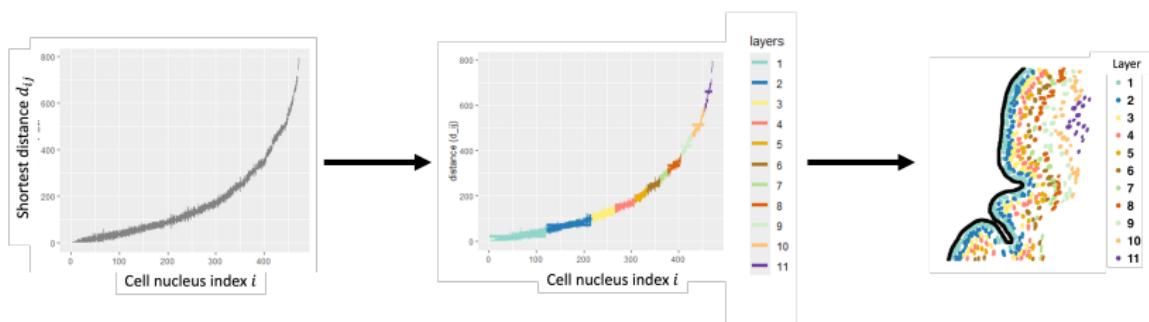
- Each bar represents a cell nucleus i
- The two ends of each bar i indicating the range of shortest distances $\mathbf{d}_{i\cdot} = (d_{i1}, \dots, d_{im_i})$
- View $\mathbf{d}_{i\cdot}$ as sampling points from a function

BLADE - Overview



- Cluster the functions with sampling points $d_{i\cdot}, i = 1, \dots, n$ into distinct groups in a sequential order
 - Not necessary to include all elements in $d_{i\cdot}$ to reconstruct the nucleus shape

BLADE - Overview



- Cluster the functions with sampling points $d_{i\cdot}, i = 1, \dots, n$ into distinct groups in a sequential order
 - Not necessary to include all elements in $d_{i\cdot}$ to reconstruct the nucleus shape
- What is the most appropriate function?
- What is the most appropriate clustering approach?

BLADE - Shape Component

- Assume d_{ij} follows a generalized Beta (GBe) distribution:

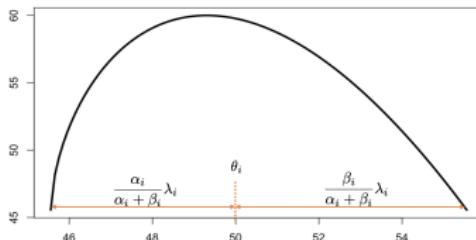
$$d_{ij} | \alpha_i, \beta_i, \theta_i, \lambda_i \sim \text{GBe}(\alpha_i, \beta_i, \theta_i, \lambda_i)$$

- p.d.f.: $f(d_{ij} | \alpha_i, \beta_i, \theta_i, \lambda_i) =$

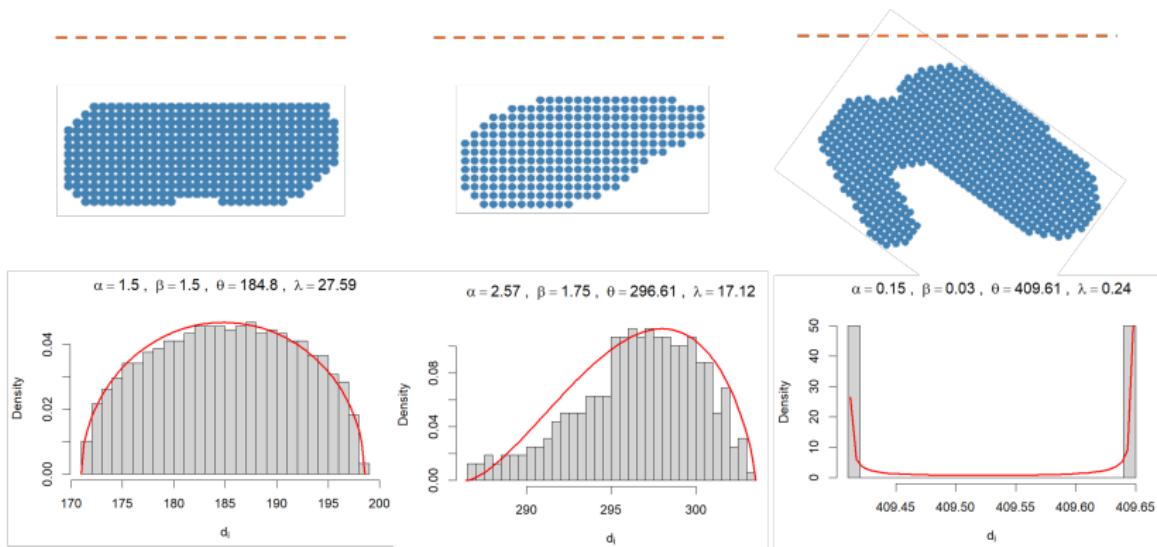
$$\frac{\Gamma(\alpha_i + \beta_i)}{\Gamma(\alpha_i)\Gamma(\beta_i)} \frac{\left(d_{ij} - \theta_i + \frac{\alpha_i}{\alpha_i + \beta_i} \lambda_i\right)^{\alpha_i - 1} \left(-d_{ij} + \theta_i + \frac{\alpha_i}{\alpha_i + \beta_i} \lambda_i\right)^{\beta_i - 1}}{\lambda_i^{\alpha_i + \beta_i - 2}}$$

- Relationship with the Beta distribution:

$$\frac{d_{ij} - \left(\theta_i - \frac{\alpha_i}{\alpha_i + \beta_i} \lambda_i\right)}{\lambda_i} \sim \text{Beta}(\alpha_i, \beta_i)$$

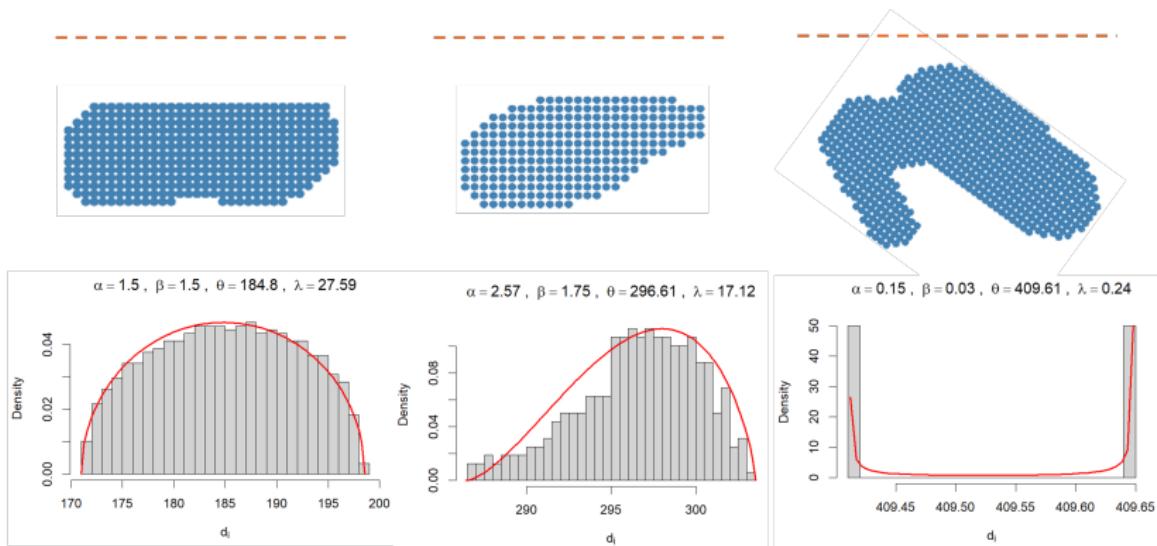


BLADE - Shape Component



- The estimated shape parameters α_i and β_i for three representative cell nuclei

BLADE - Shape Component



- The estimated shape parameters α_i and β_i for three representative cell nuclei
- Extended to α_k and β_k , assuming nuclei shape is similar

BLADE - FMM

- Adjust for the shape effect *via* the GBe model
- The stratification focuses on clustering the mean shortest distances θ_i 's

BLADE - FMM

- Adjust for the shape effect *via* the GBe model
- The stratification focuses on clustering the mean shortest distances θ_i 's
- Let $z = (z_1, \dots, z_n)$ denote the latent layers, where $z_i = k$ indicates the cell nucleus i belongs to layer k
- GMM with conjugate prior

$$\theta_i | z_i = k, \mu_k, \sigma_k^2 \sim N(\mu_k, \sigma_k^2)$$

$$\mu_k, \sigma_k^2 \sim NIG(\mu_0, p_0, \nu_0/2, SS_0/2)$$

$$z_i | \omega \sim Multi(1, \omega), \omega \sim Dir(\gamma)$$

BLADE - DPMM

- In the Dirichlet process (DP), the weight ω_k is constructed *via* stick-breaking process:

$$\omega_k = v_k \prod_{h=1}^{k-1} (1 - v_h), \quad v_k \sim \text{Be}(1, \gamma)$$

- γ is the concentration parameter that controls the variation of the DP prior around its mean G_0

- DPMM

$$\theta_i | \mu_i, \sigma_i^2 \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\mu_i, \sigma_i^2 | G \sim G$$

$$G \sim \text{DP}(G_0, \gamma), \text{ where } G_0 = \text{NIG}(\mu_0, p_0, \nu_0/2, SS_0/2)$$

BLADE - DPMM

- The random partition can be generated with an urn scheme or a Chinese restaurant process (CRP)
 - The conditional distribution for each z_i is:

$$\Pr(z_i = k \mid \mathbf{z}_{-i}) \propto \begin{cases} n_{k,-i} & \text{for an existing cluster} \\ \gamma & \text{if } c \text{ is a new cluster} \end{cases},$$

- As the sample size grows, \hat{K} remains inconsistent due to the presence of extraneous clusters in the posterior
- Flexible but often leads to overestimation of clusters.

BLADE - MFM

- Mixture of Finite Mixtures (MFM) proposed by Miller and Harrison (*JASA*, 2018)

$$z_i|K, \pi \sim \sum_{k=1}^K \pi_k I(z_i = k), \quad \pi|K \sim \text{Dir}(\gamma), \quad K-1 \sim \text{Poi}(\tau)$$

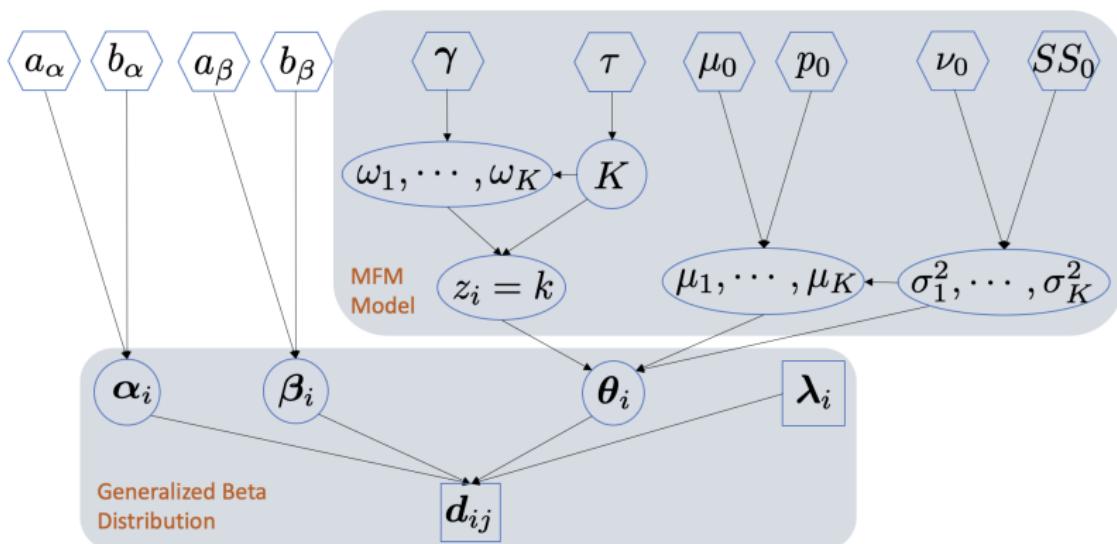
- The conditional distribution for each z_i under MFM is:

$$\Pr(z_i = k \mid \mathbf{z}_{-i}) \propto \begin{cases} n_{k,-i} + \gamma & \text{for an existing cluster } k \\ \frac{V_n(|\mathbf{z}_{-i}|+1)}{V_n(|\mathbf{z}_{-i}|)} \gamma & \text{if } k \text{ is a new cluster} \end{cases}$$

- Reduces the likelihood of forming extraneous clusters as $\frac{V_n(|\cdot|+1)}{V_n(|\cdot|)} < 1$
- Avoids overestimation as number of clusters converges to a finite value

BLADE - Wrap-up

■ Graphical representation:

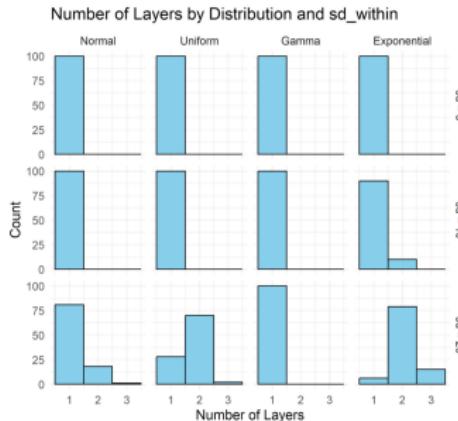


BLADE - Hypothesis Testing

- To test whether a given point pattern exhibits a layered structure or not *via* Bayes factor (BF)

$$BF = \frac{\Pr(K = 1|\cdot) / \Pr(K \geq 2|\cdot)}{\Pr(K = 1) / \Pr(K \geq 2)} = \frac{\sum_{t=1}^T I(|\mathbf{z}^{(t)}| = 1) / I(|\mathbf{z}^{(t)}| \geq 2)}{e^{-\tau} / (1 - e^{-\tau})}$$

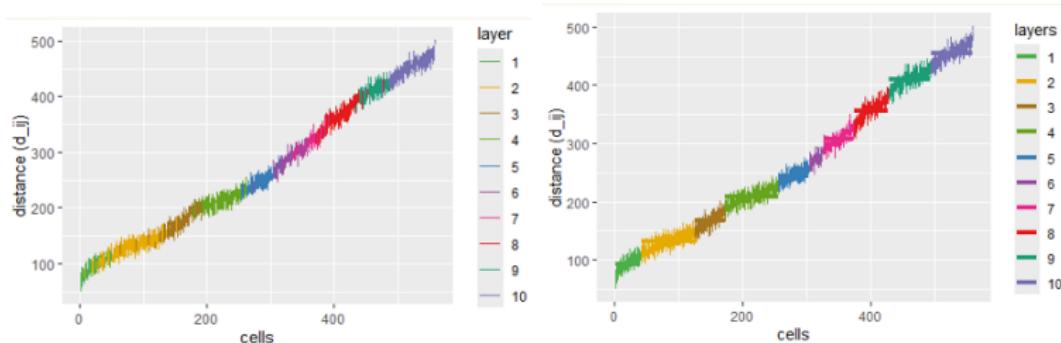
- When MFM prior assumes $K - 1 \sim \text{Poi}(\tau)$



BLADE - Simulation

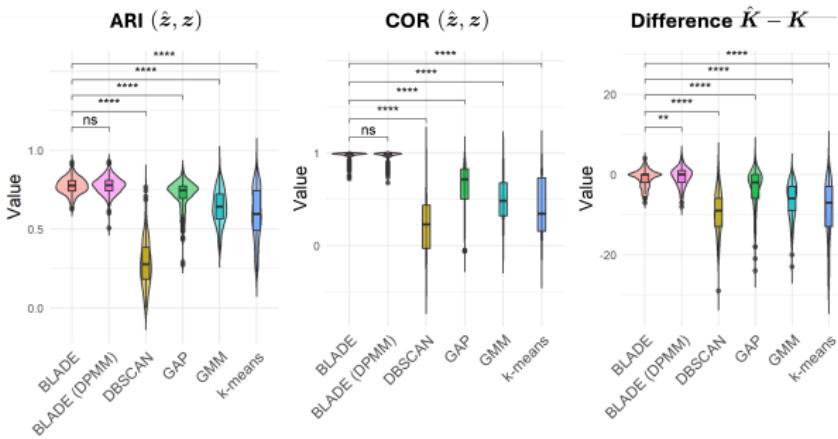
■ Simulation setup:

- Generated 200 simulated datasets
- $K_{\text{true}} \sim U(5, 35)$, $n_k \sim N_{[20,200]}(100, 60^2)$, and $m_i \sim U(90, 150)$



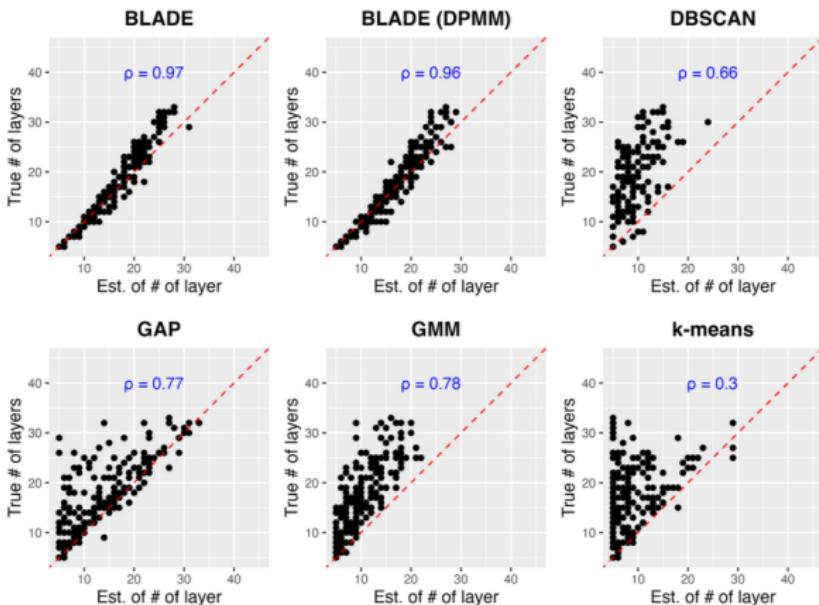
BLADE - Simulation

- Comparison of layered structures estimated by BLADE and other methods



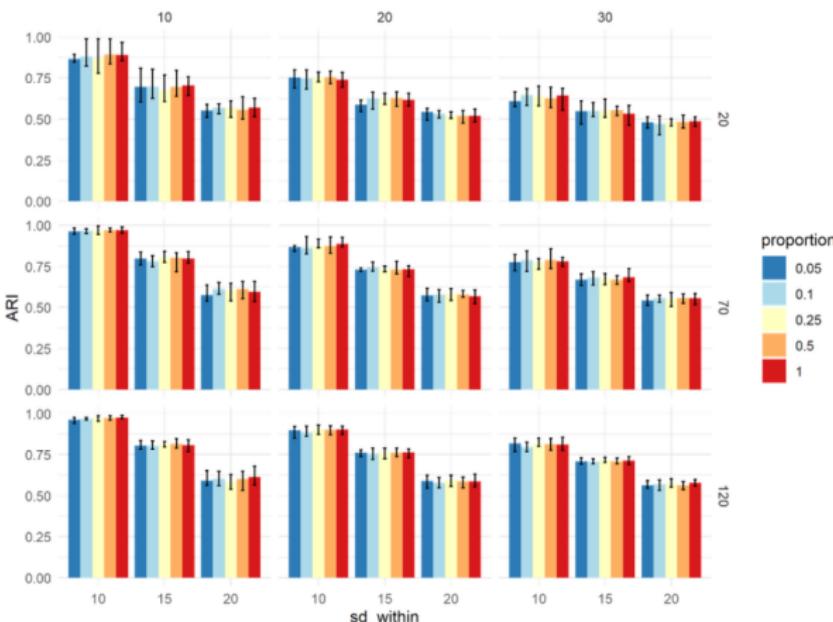
BLADE - Simulation

- Comparison of layered structures estimated by BLADE and other methods



BLADE - Simulation

- BLADE maintained high ARI scores even when only a small proportion of pixel-level data d_{ij} were used.

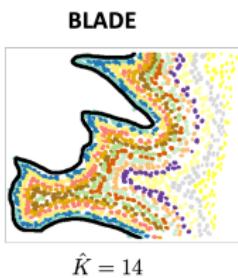
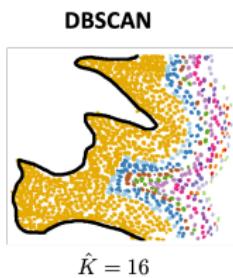
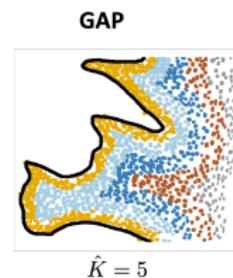
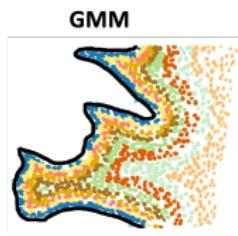
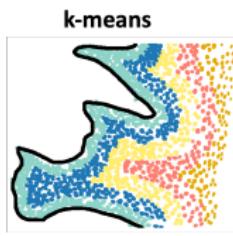
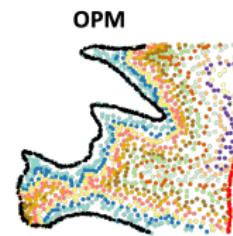


BLADE - Oral Tissue Pathology Images

- Oral cancer is the sixth most common cancer globally
- Early detection increases survival: 83.7% (early) vs. 38.5% (late stage)
- 128 patients with oral potentially malignant disorders (OPMD) from the erlotinib prevention of oral cancer (EPOC) trial at UT MDACC
- Clinical Data:
 - Demographics: age, gender
 - Risk factors: prior/concurrent oral cancer, TP53 mutation, LOH eligibility, leukoplakia group, HistBaselineR3
 - Outcomes: progression-free interval (PFI) status and time: 1 = progression observed and 0 otherwise

BLADE - Oral Tissue Pathology Images

- The layered structures estimated by BLADE and the other methods for patient 076



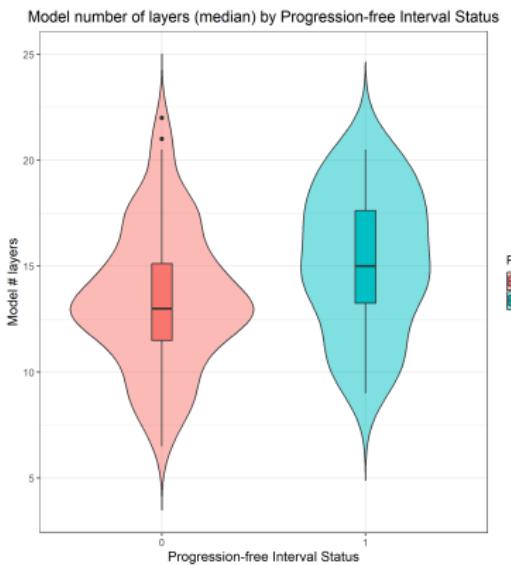
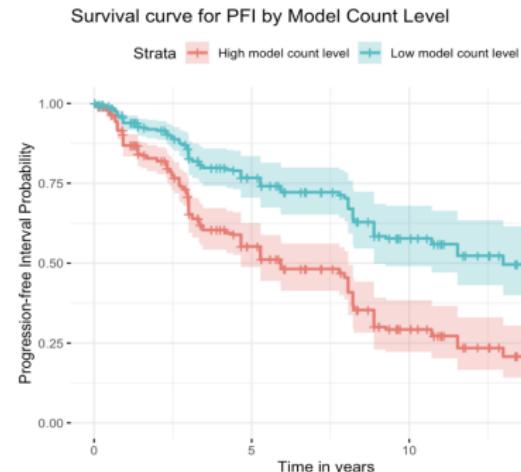
BLADE - Oral Tissue Pathology Images

- Model-derived layer count is significantly associated with disease progression
- Each additional layer increases the risk of progression by approximately 8%

Variable	Coefficient	Exp(Coef.)	SE	Pr(> z)
\hat{K} by BLADE	0.0771	1.0801	0.0237	0.00113
Age	-0.0302	0.9703	0.0156	0.05370
Male vs. female	-0.4778	0.6201	0.4149	0.24945
Prior oral cancer	0.9873	2.6841	0.3854	0.01042
Concurrent oral cancer	0.7515	2.1203	0.6273	0.23091
Leukoplakia group	0.4116	1.5092	0.6335	0.51589
LOH Eligible	0.4665	1.5944	0.3864	0.22727

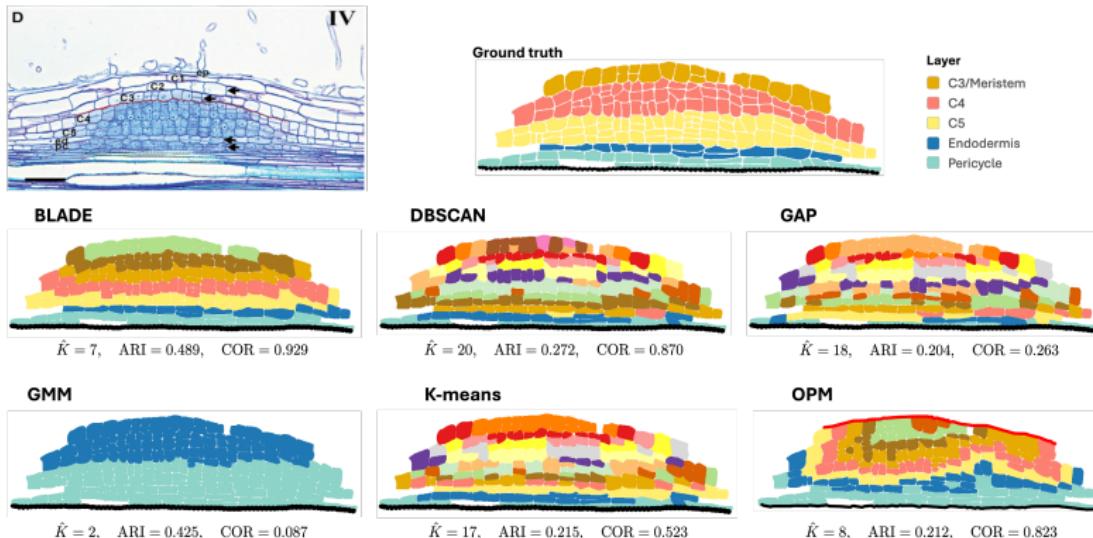
BLADE - Oral Tissue Pathology Images

- Patients with PFI status = 1 exhibited higher median layer counts compared to those with PFI status = 0



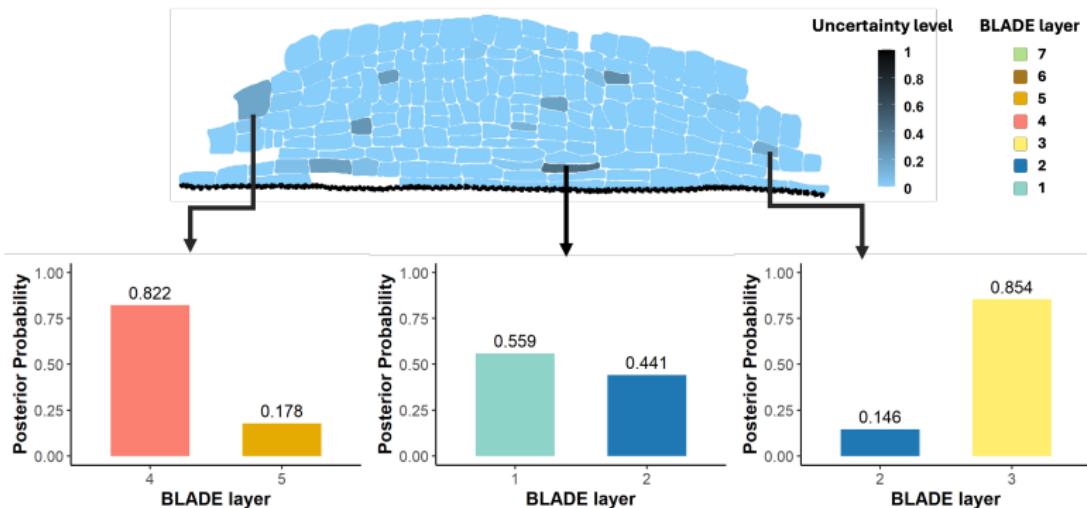
BLADE - *Medicago Truncatula* Root Nodule

- The layered structures at STAGE IV estimated by BLADE and the other methods



BLADE - *Medicago Truncatula* Root Nodule

- BLADE can also quantify the uncertainty, which can be defined as the posterior probability $\Pr(z_i \neq \hat{z}_i | \cdot)$



Summary

- Statistical shape and spatial analysis under the AI-Statistics workflow

- Bayesian nonparametric model for analyzed layered point pattern data
 - Test if point pattern data exhibit a layered structure
 - Estimate the number of layers from point pattern data
 - Effectively characterize cell nucleus shape information

The End

Thanks for your attention!

■ Acknowledgment

DMS-2210912
DMS-2113674

1R01GM141519
1R01DK131267