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Discrete RPMs G key for BNP

Discrete random probability measures G are key for BNP
inference, as they serve as building blocks for:

> Flexible random density construction

fola) = [ (a1 6)Glap)
> Clustering inherent to exchangeable seq. driven by G or fq.
> Classification allocated via the mass of f; on a suitable space.
> Species sampling problems and predictive inference
> Generalizations of mixture models

> Flexible dependent stochastic structures.

. etc.



A variety of ways to construct or represent GG
> Via infinite dim. distributions with specified fdds of {G'(A)} 4cx
> Normalized completely random measures p

AeXx

> Species sampling processes (SSP)

Zw] dp, (A <IZw]>G0 (1)
where 0; g Go and the weights w; > 0 satisfy Zj w; < 1 almost
surely (a.s.), and (6;); is independent of (w;);

> Some others, Pdélya trees, NTR, etc.

Kingman (1967,1993), Ferguson (1973), Pitman (1996), Priinster (2002),
Nieto-Barajas et al.(2004), Lijoi et al.(2005,2007), James et al. (2006,2009).



SSPs, normalized CRMs and Stick-breaking

Given a CRM p satisfying 0 < p(X) < 0o = G(+) = %

Normalized CRM

Priinster (2002), Regazzini et. al.(2003), James et. al. (2006)



SSPs, normalized CRMs and Stick-breaking

Given a CRM p satisfying 0 < p(X) < 0o = G(+) = %

If v(ds,dx) = s te *dsaGo(dz) = G ~ D(aGy)

Normalized CRM

Dirichlet Process

Ferguson (1973)



SSPs, normalized CRMs and Stick-breaking

G = ZiZI w;0y,
Zizl w; =1
0; ~ Gy
(wi)iz1 L (0;)i>1

Exchangeable RPM, SSP

Stick-breaking priors

Homogeneous
normalized CRM

Normalized CRM

|
|
|
i Dirichlet Process

Sethuraman (1994), Ishwaran and James (2001), Kallenberg (2017)



SSPs, normalized CRMs and Stick-breaking

Exchangeable RPM, SSP

Stick-breaking priors

Homogeneous
normalized CRM

Markov/Exch. SB

Many choices of (v;)

Normalized CRM

i Dirichlet Process

Favaro et al. (2012); Favaro et al. (2016); Gil-Leyva et al. (2020);
Gil-Leyva and M. (2023?: Gil-Leyva et al.(2026)



Computational bottleneck of SSP

We focus on the rich class of proper SSPs

G(A) = w0, (A) (2)
j=1

e Infinite series rep. are elegant but computationally awkward.
e Known issues:

> fixed truncation = approximation error.

> adaptive/slice schemes = random truncations, often
SSP-specific.

> for many SSPs: predictive/EPPF not available in closed form.



Goal

Goal: Recognize a generic, distributionally exact finite
representation for any proper SSP which allows

e Exact simulation of proper SSP.

e Explicit comparisons with truncation approximations and
transparent control of computational cost.

e Prior and posterior machinery (allocations, Gibbs updates)
without ad hoc truncations.



Exact finite mixture representation of SSP.
eTaking inspiration from the paper by Kalli et. al.(2011).

Theorem 1 (Exact finite representation of proper SSPs)

Fix a strictly decreasing seq. (§;);>1 C (0, 1] with &; | 0.

k
Sk = Z{;lwh, P(K =k | w):= (& — &k+1) Sk, foreach k>1
Conditionally on K = k, define reweighted finite weights

—1
ey & Wi
Sk

) jzl,"'7k7

and the finite random measure

k
G'(|K=k0): Z ) 8o, (-

Then G* £ G.

Key idea: Conditionally on K = k, say G}, involves only finitely many atoms.



A random choice of (&)

Corollary 1 (Stick-breaking SSPs)

If wj = v; [[,;(1 — ve), choose the random decreasing sequence

& = H(l —vp) (remaining stick after j — 1 breaks).
£<j

Then 5;1103- =wv; and & — &p1 = &k = Wy, so for K = k:

k
wg»k):kvij, ]P’(K:k|v):wk2vh.
> h=1Uh h=1

Includes DP and Dirichlet stick-breaking variants.

If v; = v and w; = v(1 —v)I 71, take & = (1 —v)7~!. Then ﬁ)ﬁk) =1/k &

P(K =k |v) = kv (1 —v)* 1, kE=1,2,...




TV bounds

> For a decreasing sequence (&;) (random or deterministic) define the
corresponding {-reweighted measure G7.

> For a fixed realization (wj,6;);>1, define the tail mass
Ry :=>" j>, Wj and the renormalized truncation without tail

W
— o j
ren. Ew](Sg], wj'_l—Rk'

Coupling-based bounds

drv(G,G}) < Ry+ Dy,  drv(GE),Gr) < Dy,

ren’

where Dy = M’“ +1’ with M, = 5—

e Exponential {; = e™: Dy, = tanh(n(k —1)/2).
e Random &, = Rx—1: Dp = (1 —Rp—1)/(1 + Ri—1)-



Averaging over K

Exjweldrv(G, Gk)] < EgjwelRx] + Exwe[Dk]-

For deterministic (&;),

|

P(K = k):(gk—ng)ZE;:"] & ExpwelRrl= Y (1—7) [wpw;).
h=1 1<h<j
SO
. M. —
Excue[dry(G.Gi0] < (1 &) Blunw) + 3 37 POK = 1
h<j k>1




DP,, Geo, and PY(o, @) cases and &, = e *

Take &, = ¢* = e "F with ¢ = ¢=7 € (0,1). Then

Cl—gt n(k —1)
Define
k
a=E [[0-V)],  w=EW] e =E1-v]=1-pu

j=1

Then (for ¢ # a1) the marginal pmf of K can be written as

]P(K:k):(z__ii)l’u(qk—ak), k> 1

Hence

Bldry (G.G30)] < BlRi] + 3 tanh (251 Lot (o,
k=1




DP,, Geo, and PY (o, «) particularities

. iid
%Y)hl)l)((y,Go): Vi ~ Beta(1,a), p= %ﬂ, ar =357 =t a, ag = ak.
enq—a

k’ak_l

P =) =

(ii) Geo: wy, = V(1 — V)*~1 (deterministic or random V).
pw=E[V], a1 =E[1l-V]=1—p, a=E[1-V)".

Ifg—1—V,|K—1~ NegBin(2,V) \

(iii) PD(0,@): V; % Beta(l — 0,a + jo), p= 122, a) = oto,

(5 +1)

Here ay, # a¥, with singular point ¢ = a;, unless o = 0. Otherwise
1 g

. (1=-9(-0) B ot
P(K_k)_(a+1)( _%ﬁ) (qk ak>> fi (I7é 1 & k21




Calibration of 7

> Default: choose ¢ = e~ close the residual a; = E[1 — V4]
n~ —logay,

which reduces to n* = log(1 4+ 1/«) for DP and n* = —log(1 — V)
for geometric weights.

> Tuning: choose 1 to target a desired truncation level (e.g. E[K]
or median(K)):

> DP and deterministic geometric admit closed forms.

> PY requires solving E; [ /K] = x numerically.



Comparison with a.s. e-error correction

Take Arbel, De Blasi and Priinster (2019) a.s. error control

7(e)
G, = ij 59j + Rr(a) (590, 0y ~ G. (3)
7=1

where 7(¢) := min{n > 1: R, < e}, which satisfies
dTv(G, GE) < RT(&) <e a.s.

where G is the SSP corresponding to PY process.

Comparison to an e-truncation G (same coupling)

If drv(G, Ge) < € a.s., then
dTv(G}((,GE) < e+ RK T DK a.s.,

= Eldrv(G%,G:)] < e + E[Rk] + E[Dk].




DP simulation under four scenarios, Gy = U(0, 1).

0.754

G([gvX])

0.254

0.004

— e-trunc. — Finite—K, &, = exp(-nk) — Fixed truncation (N = 10000)



dTV(G, G*_K) vs R_K+D_K
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Figure: DP a = 6, Gy = Unif(0.1), e = 0.01, » = 0.01.



Asymptotics of K as function of {&}

DP, & = e~k (G ~ DP(G’, Go))
Let g =e " and a = a/(a + 1). For q # a,

1—gq

PE=h =i DE—a

Scaling:

1
nd0: E[K]~ —, n=n": E[K]=2a+1, ntoo: EK] — a+1.
n

Geometric weights, natural &, = Ry_1

If wy, = v(1 — v)k~1, then K — 1 ~ NegBin(2,v) and w; = 1/k for j < k.

Pitman-—Yor, exponential ¢, = ¢* (G ~ PY(o,a, Gy))
Elwi] ~ Couk™ /7 = P(K =k) ~ Cy ok /7, 50 E[K] < 00 <= 0 < 1/2.




SSP mixture model and latent finite augmentation

e Mixture model with SSP mixing measure:

5| G¥ fo,  folz) = > wif(x|6;).

Jj=1

e Latent variables (per observation): (z;, k;) € N x N.

> (Allocation/component-label, Truncation/available components for z;)

Hierarchical model

w~p(w), 0 % Go, j> 1,

k
P(k; = k | w) = (§x — Ekt1) Sk, Sk = th/fh,
h=1

P(Zizjlki,w)O(§;1Wj, jzl,...7ki,
@i | 2,0 ~ f(- | 02,).

> Conditional on (k;) the likelihood only involves finitely many
components, yet the model matches the original SSP mixture.



Mean-variance mixtures, 4 components.
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Figure: Panel A: DPFinite and DPSlice models, Panel B: GSBFinite and

GSBSlice models.



Galaxy data.
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Figure: Panel A: DPFinite and DPSlice models, Panel B: GSBFinite and

GSBSlice models.



Conclusions

e Any proper SSP admits an exact finite-mixture representation via
a latent truncation variable and atom reweighting.

e Some payoffs:
> Exact simulation of arbitrary SSP priors (no truncation),
> Posterior computation for SSP mixture models via standard
finite-mixture machinery (allocations + Gibbs).

e Total variation bounds help compare finite constructions and
understand the role of (¢;).

e It opens the question of principled choices of sequences &; for
targeted mixing/tail exploration.
Note

K (representation) # ¢, (occupancy) # m (finite model dimension).
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