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Discrete RPMs G key for BNP

Discrete random probability measures G are key for BNP
inference, as they serve as building blocks for:

. Flexible random density construction

fG(x) =

∫
f(x | θ)G( dθ).

. Clustering inherent to exchangeable seq. driven by G or fG.

. Classification allocated via the mass of fG on a suitable space.

. Species sampling problems and predictive inference

. Generalizations of mixture models

. Flexible dependent stochastic structures.

. . . etc.



A variety of ways to construct or represent G

. Via infinite dim. distributions with specified fdds of {G(A)}A∈X

. Normalized completely random measures µ

G(A) =
µ(A)

µ(X)
, A ∈ X

. Species sampling processes (SSP)

G(A) =

∞∑
j=1

wj δθj (A) +

(
1−

∞∑
j=1

wj

)
G0(A), (1)

where θj
iid∼ G0 and the weights wj ≥ 0 satisfy

∑
j wj ≤ 1 almost

surely (a.s.), and (θj)j is independent of (wj)j

. Some others, Pólya trees, NTR, etc.

Kingman (1967,1993), Ferguson (1973), Pitman (1996), Prünster (2002),
Nieto-Barajas et al.(2004), Lijoi et al.(2005,2007), James et al. (2006,2009).



SSPs, normalized CRMs and Stick-breaking

Given a CRM µ satisfying 0 < µ(X) <∞⇒ G(·) = µ(·)
µ(X)

Prünster (2002), Regazzini et. al.(2003), James et. al. (2006)

If ν(ds, dx) = s−1e−sdsαG0(dx) ⇒ G ∼ D(αG0)

Ferguson (1973)

G =
∑

i≥1wiδθi∑
i≥1wi = 1

θi
iid∼ G0

(wi)i≥1 ⊥ (θi)i≥1

Sethuraman (1994), Ishwaran and James (2001), Kallenberg (2017)

wi = vi
∏i−1

j=1(1− vj)

Dirichlet Process

Many choices of (vi)

Favaro et al. (2012); Favaro et al. (2016); Gil-Leyva et al. (2020);
Gil-Leyva and M. (2023); Gil-Leyva et al.(2026)

Exchangeable RPM, SSP

Stick-breaking priors

Homogeneous
normalized CRM

Normalized CRM

Markov/Exch. SB
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Computational bottleneck of SSP

We focus on the rich class of proper SSPs

G(A) =

∞∑
j=1

wj δθj (A) (2)

• Infinite series rep. are elegant but computationally awkward.

• Known issues:

. fixed truncation ⇒ approximation error.

. adaptive/slice schemes ⇒ random truncations, often
SSP-specific.

. for many SSPs: predictive/EPPF not available in closed form.



Goal

Goal: Recognize a generic, distributionally exact finite
representation for any proper SSP which allows

• Exact simulation of proper SSP.

• Explicit comparisons with truncation approximations and
transparent control of computational cost.

• Prior and posterior machinery (allocations, Gibbs updates)
without ad hoc truncations.



Exact finite mixture representation of SSP.
•Taking inspiration from the paper by Kalli et. al.(2011).

Theorem 1 (Exact finite representation of proper SSPs)

Fix a strictly decreasing seq. (ξj)j≥1 ⊂ (0, 1] with ξj ↓ 0.

sk :=

k∑
h=1

ξ−1
h wh, P(K = k | w) := (ξk − ξk+1) sk, for each k ≥ 1

Conditionally on K = k, define reweighted finite weights

w̃
(k)
j :=

ξ−1
j wj

sk
, j = 1, . . . , k,

and the finite random measure

G?(· | K = k,θ) :=

k∑
j=1

w̃
(k)
j δθj (·).

Then G? d
= G.

Key idea: Conditionally on K = k, say G?k, involves only finitely many atoms.



A random choice of (ξj)

Corollary 1 (Stick-breaking SSPs)

If wj = vj
∏
`<j(1− v`), choose the random decreasing sequence

ξj :=
∏
`<j

(1− v`) (remaining stick after j − 1 breaks).

Then ξ−1j wj = vj and ξk − ξk+1 = ξkvk = wk, so for K = k:

w̃
(k)
j =

vj∑k
h=1 vh

, P(K = k | v) = wk

k∑
h=1

vh.

Includes DP and Dirichlet stick-breaking variants.

Corollary 2 (Geometric stick-breaking)

If vj ≡ v and wj = v(1− v)j−1, take ξj = (1− v)j−1. Then w̃
(k)
j = 1/k &

P(K = k | v) = k v2(1− v)k−1, k = 1, 2, . . .



TV bounds

. For a decreasing sequence (ξj) (random or deterministic) define the
corresponding ξ–reweighted measure G?k.

. For a fixed realization (wj , θj)j≥1, define the tail mass
Rk :=

∑
j>k wj and the renormalized truncation without tail

G(k)
ren :=

k∑
j=1

w̄j δθj , w̄j :=
wj

1−Rk
.

Coupling-based bounds

dTV(G,G?k) ≤ Rk +Dk, dTV

(
G(k)

ren, G
?
k

)
≤ Dk,

where Dk = Mk −1
Mk +1 , with Mk = ξ1

ξk
.

• Exponential ξj = e−ηj : Dk = tanh
(
η(k − 1)/2

)
.

• Random ξk = Rk−1: Dk = (1−Rk−1)/(1 +Rk−1).



Averaging over K

Expected-TV

EK|w,ξ
[
dTV(G,G?K)

]
≤ EK|w,ξ[RK ] + EK|w,ξ[DK ].

For deterministic (ξj),

P(K = k)=(ξk−ξk+1)

k∑
h=1

E[wh]

ξh
& EK|w,ξ[RK ]=

∑
1≤h<j

(
1− ξj

ξh

)
E[whwj ].

so

EK|w,ξ
[
dTV(G,G?K)

]
≤
∑
h<j

(
1− ξj

ξh

)
E[whwj ] +

∑
k≥1

Mk − 1

Mk + 1
P(K = k).



DPα, Geo, and PY(σ, α) cases and ξk = e−ηk

Take ξk = qk = e−ηk with q = e−η ∈ (0, 1). Then

Dk =
1− qk−1

1 + qk−1
= tanh

(η(k − 1)

2

)
.

Define

ak := E
[ k∏
j=1

(1− Vj)
]
, µ := E[V1], a1 = E[1− V1] = 1− µ.

Then (for q 6= a1) the marginal pmf of K can be written as

P(K = k) =
(1− q)µ
q − a1

(
qk − ak

)
, k ≥ 1.

Hence

E
[
dTV(G,G?K)

]
≤ E[RK ] +

∞∑
k=1

tanh
(η(k − 1)

2

) (1− e−η)µ

e−η − a1
(
e−ηk − ak

)
.



DPα, Geo, and PY(σ, α) particularities

(i) DP(α,G0): Vj
iid∼ Beta(1, α), µ = 1

α+1 , a1 = α
α+1 =: a, ak = ak.

When q → a

P(K = k) =
k ak−1

(α+ 1)2
.

(ii) Geo: wk = V (1− V )k−1 (deterministic or random V ).

µ = E[V ], a1 = E[1− V ] = 1− µ, ak = E[(1− V )k].

If q → 1− V , K − 1 ∼ NegBin(2, V ) .

(iii) PD(σ, α): Vj
ind∼ Beta(1− σ, α+ jσ), µ = 1−σ

α+1 , a1 = α+σ
α+1 ,

ak =

(
α
σ + 1

)
k(

α+1
σ

)
k

.

Here ak 6= ak1 , with singular point q = a1, unless σ = 0. Otherwise

P(K = k) =
(1− q)(1− σ)

(α+ 1)
(
q − α+σ

α+1

) (qk − ak), for q 6= a1 & k ≥ 1



Calibration of η

. Default: choose q = e−η close the residual a1 = E[1− V1]:

η ≈ − log a1,

which reduces to η? = log(1 + 1/α) for DP and η? = − log(1− V )
for geometric weights.

. Tuning: choose η to target a desired truncation level (e.g. E[K]
or median(K)):

. DP and deterministic geometric admit closed forms.

. PY requires solving Eσ,α,η[K] = κ numerically.



Comparison with a.s. ε-error correction

Take Arbel, De Blasi and Prünster (2019) a.s. error control

Gε =

τ(ε)∑
j=1

wj δθj + Rτ(ε) δθ0 , θ0 ∼ G0. (3)

where τ(ε) := min{n ≥ 1 : Rn < ε}, which satisfies

dTV(G,Gε) ≤ Rτ(ε) < ε a.s.

where G is the SSP corresponding to PY process.

Comparison to an ε–truncation Gε (same coupling)

If dTV(G,Gε) < ε a.s., then

dTV(G?K , Gε) ≤ ε+RK +DK a.s.,

⇒ E[dTV(G?K , Gε)] ≤ ε+ E[RK ] + E[DK ].



DP simulation under four scenarios, G0 = U(0, 1).
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Figure: DP α = 6, G0 = Unif(0, 1), ε = 0.01, η = 0.01.



Asymptotics of K as function of {ξk}

DP, ξk = e−ηk (G ∼ DP(α,G0))

Let q = e−η and a = α/(α+ 1). For q 6= a,

P(K = k) =
1− q

(α+ 1)(q − a)
(qk − ak), η? = log

(
1 +

1

α

)
(q = a).

Scaling:

η ↓ 0 : E[K] ∼ 1

η
, η = η? : E[K] = 2α+ 1, η ↑ ∞ : E[K]→ α+ 1.

Geometric weights, natural ξk = Rk−1

If wk = v(1− v)k−1, then K − 1 ∼ NegBin(2, v) and w̃j ≡ 1/k for j ≤ k.

Pitman–Yor, exponential ξk = qk (G ∼ PY(σ, α,G0))

E[wk] ∼ Cσ,αk−1/σ ⇒ P(K = k) ∼ Cσ,αk−1/σ, so E[K] <∞ ⇐⇒ σ < 1/2.



SSP mixture model and latent finite augmentation

• Mixture model with SSP mixing measure:

xi | G
iid∼ fG, fG(x) =

∑
j≥1

wjf(x | θj).

• Latent variables (per observation): (zi, ki) ∈ N× N.
. (Allocation/component-label, Truncation/available components for zi)

Hierarchical model

w ∼ p(w), θj
iid∼ G0, j ≥ 1,

P(ki = k | w) = (ξk − ξk+1) sk, sk =

k∑
h=1

wh/ξh,

P(zi = j | ki,w) ∝ ξ−1
j wj , j = 1, . . . , ki,

xi | zi,θ ∼ f(· | θzi).

. Conditional on (ki) the likelihood only involves finitely many
components, yet the model matches the original SSP mixture.



Mean-variance mixtures, 4 components.
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Figure: Panel A: DPFinite and DPSlice models, Panel B: GSBFinite and
GSBSlice models.



Galaxy data.
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Conclusions

• Any proper SSP admits an exact finite-mixture representation via
a latent truncation variable and atom reweighting.

• Some payoffs:

. Exact simulation of arbitrary SSP priors (no truncation),

. Posterior computation for SSP mixture models via standard
finite-mixture machinery (allocations + Gibbs).

• Total variation bounds help compare finite constructions and
understand the role of (ξj).

• It opens the question of principled choices of sequences ξj for
targeted mixing/tail exploration.

Note

K (representation) 6= cn (occupancy) 6= m (finite model dimension).
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