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SETTING: MULTIPLE POPULATIONS

We consider the following setting:
» data are divided into g groups (or populations), where group ¢ contains n, data
points,as ¢ =1,...,9;
» denote by Yy 1,..., Yy pn, the observations for group £,as £ =1,...,g.

» data are assumed partially exchangeable: exchangeable within groups and
conditionally independent across groups.
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SETTING: MULTIPLE POPULATIONS

We consider the following setting:
» data are divided into g groups (or populations), where group ¢ contains n, data
points,as ¢ =1,...,0;
» denote by Yy 1,..., Yy pn, the observations for group £,as £ =1,...,g.
» data are assumed partially exchangeable: exchangeable within groups and
conditionally independent across groups.

Relevant examples are:

» students’ GPAs grouped by university of attendance;
> patients’ health data grouped by hospital;

» galaxies grouped by luminosity type.
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STANDARD BAYESIAN CLUSTERING

Bayesian clustering is addressed by specifying a mixture model for each group:
Vol B [ 0B T =1imi £=1,g
X
where:

» f(- | x) is a density with parameter x;

» (Py,...,Pg) is a vector of mixing measures for all groups.
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STANDARD BAYESIAN CLUSTERING

Bayesian clustering is addressed by specifying a mixture model for each group:
Ver B ™ [ 1 10B@0) i=1.imi £,
where:
» f(- | x) is a density with parameter x;
» (Py,...,Pg) is a vector of mixing measures for all groups.

Several proposals are available to specify (P, . .., Pg) and achieve across-group
clustering:

dependent Dirichlet process (MacEachern, 1999);

hierarchical Dirichlet process (Teh et al., 2006) and generalizations;
additive structures (Lijoi et al., 2014);

nested Dirichlet process (Rodrduez et al., 2008) and generalizations;

vV vVv.v. vy

see (Quintana et al., 2022) for a complete review.
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STANDARD BAYESIAN CLUSTERING

By introducing suitable latent variables, the mixture model can be written in a
hierarchical fashion:

ind
Yoil Xei ™ (- | Xe,)
L oid .
Xoi | Be ™ pe
where the random probability measures py, . . ., g are typically assumed to be almost
surely discrete.
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STANDARD BAYESIAN CLUSTERING

By introducing suitable latent variables, the mixture model can be written in a
hierarchical fashion:

ind
Yoil Xei ™ (- | Xe,)
i
Xoi | Be ™ pe

where the random probability measures py, . . ., g are typically assumed to be almost
surely discrete.

» The discreteness of the p,’s induces ties of the latent variables within and across
samples

» Ties induce the standard clustering mechanism in mixture models

Yy,iand Yy i are in the same cluster <= X, ; = X, j/

» The use of dependent random probability measures allows to borrow information
across groups.
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PROBLEMS WITH STANDARD CLUSTERING

Remarks:

» Two observations are in the same cluster iff they share the same latent variable.
» The standard notion of clustering is based on exact sharing of latent variables.

» This notion of clustering is too rigid when subtle differences across groups matter!
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PROBLEMS WITH STANDARD CLUSTERING

Remarks:

» Two observations are in the same cluster iff they share the same latent variable.
» The standard notion of clustering is based on exact sharing of latent variables.

» This notion of clustering is too rigid when subtle differences across groups matter!

We showcase the rigidity of standard clustering mechanism by considering an
illustrative example with g = 2 groups:

» Gaussian mixture of three components in each group;

» the components differ slightly across groups = we expect only three clusters.

We use the hierarchical Dirichlet process (HDP) to fit the data.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES
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ny = n, = 500 observations;

» the three components differ slightly across the two groups.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES
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» The HDP recognizes six different cluster!
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES
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» ny = no = 50 observations
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

— — — True
HDP

— — — True
HDP

» The HDP recognizes three clusters, but inaccurate density estimates
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OUR CONTRIBUTION

Summarizing the results:

> large sample size: good density estimations, but bad clustering and information
sharing;

» small sample size: bad density estimations, but good clustering and information
sharing.
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OUR CONTRIBUTION

Summarizing the results:

> large sample size: good density estimations, but bad clustering and information
sharing;

» small sample size: bad density estimations, but good clustering and information
sharing.

Our proposal to overcome the trade-off outlined above:

» we introduce a new model for clustering grouped data;
» we also define a new notion of clustering;

» our proposal is based on the shot-noise Cox process (Maller, 2003).
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OUTLINE

HIERARCHICAL SHOT-NOISE COX PROCESS

BAYESIAN ANALYSIS

APPLICATION
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HIERARCHICAL SHOT-NOISE COX
PROCESS




HIERARCHICAL SHOT-NOISE COX PROCESS

We introduce the vector of mixing measures

(Br.-... Po)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.
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HIERARCHICAL SHOT-NOISE COX PROCESS

We introduce the vector of mixing measures

(Br.-... Po)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.

» We define each p, via normalization

where jiy is a Completely Random Measure (CRM), see (Kingman, 1967).
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(Br.-... Po)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.

» We define each p, via normalization

where jiy is a Completely Random Measure (CRM), see (Kingman, 1967).

» This is a common strategy in the BNP literature: see (Regazzini et al., 2003) and
subsequent contributions.
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HIERARCHICAL SHOT-NOISE COX PROCESS

We introduce the vector of mixing measures

(Br.-... Po)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.

» We define each p, via normalization

where jiy is a Completely Random Measure (CRM), see (Kingman, 1967).

» This is a common strategy in the BNP literature: see (Regazzini et al., 2003) and
subsequent contributions.

» Note that a CRM is a functional of a Poisson process N;:

fie = Senboy, <= No =D 55,60
h>1 h=1

where N, is a Poisson Process (PP) on R4 x X with intensity measure given by
pe(8)dsn(dx).
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HIERARCHICAL SHOT-NOISE COX PROCESS

We introduce the vector of mixing measures

(Br.-... Po)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.

» We define each p, via normalization

where jiy is a Completely Random Measure (CRM), see (Kingman, 1967).

» This is a common strategy in the BNP literature: see (Regazzini et al., 2003) and
subsequent contributions.

» Note that a CRM is a functional of a Poisson process N;:

fie = Senboy, <= No =D 55,60
h>1 h=1

where N, is a Poisson Process (PP) on R4 x X with intensity measure given by
pe(8)dsn(dx).

» The measure 7 is specified to induce dependence across groups.
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HIERARCHICAL SHOT-NOISE COX PROCESS

» (fi1,...,fig) is a Hierarchical shot-noise Cox process (HSNCP).
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HIERARCHICAL SHOT-NOISE COX PROCESS

» (fi1,...,fig) is a Hierarchical shot-noise Cox process (HSNCP).
R, A
72 L4
A
M L4
73
! T2 T3 (:

> A= 341 0(~,,7,): Poisson process with intensity measure po(dv)Go(dr)
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HIERARCHICAL SHOT-NOISE COX PROCESS

» (@1, ..., fig) is a Hierarchical shot-noise Cox process (HSNCP).

> fig | A= 3"p>1 Sende,,: CRM with intensity measure p(s)ds na(dx)

> A=34>106(y,,m" Poisson process with intensity measure po(d~)Go(dr)
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HIERARCHICAL SHOT-NOISE COX PROCESS

» (@1, ..., fig) is a Hierarchical shot-noise Cox process (HSNCP).

[ NG I

> fig | A= 3"p>1 Sende,,: CRM with intensity measure p(s)ds na(dx)

na(dx) = {Zwk(x’ Tj)} dx

j=1

> A=34>106(y,,m" Poisson process with intensity measure po(d~)Go(dr)

12/26



HIERARCHICAL SHOT-NOISE COX PROCESS

» (@1, ..., fig) is a Hierarchical shot-noise Cox process (HSNCP).

> b= ﬂf&): random probability of group ¢

> fig | A= 3"p>1 Sende,,: CRM with intensity measure p(s)ds na(dx)

na(dx) = {Zwk(x’ Tj)} dx

j=1

> A=34>106(y,,m" Poisson process with intensity measure po(d~)Go(dr)
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HIERARCHICAL SHOT-NOISE COX PROCESS MIXTURE MODEL

» We use the construction in a mixture setting.

Group 1 % Group 2

ind
Yoi | Xei ™ £(- | Xei)
- ~ flg
Xoi | Be ~ Pe = —
£/| (4 0 ME(X) ﬂ
fie IN=" Stnbs,, : CRM (p(s)dsn(dx)) { X ”
h>1

N="3"8(nm PP (po(dy)Go(dr))
h>1

na(dx) = {quk(x, ;)

j=1
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A NEW DEFINITION OF CLUSTERING

» We observe that the random measure fi, can be equivalently written as

fig = Z fgj

j>1
where

fiej =) Sijndsy, is @ CRM with intensity measure ~;p(s)ds k(x, 77)dx
h>1

» The atoms of ji,; are close to the parent atom 7;’s of A but not identical.

> ji,;: generates similar latent variables X,;'s, but not identical.
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A NEW DEFINITION OF CLUSTERING

» We observe that the random measure fi, can be equivalently written as

fig = Z fgj

j>1
where

figj = Stjnds,,, is @ CRM with intensity measure ~;p(s)ds k(x, 7;)dx
h>1

» The atoms of ji,; are close to the parent atom 7;’s of A but not identical.
> ji,;: generates similar latent variables X,;'s, but not identical.

This induces a new definition of clustering:

NEW CLUSTERING DEFINITION

» traditional clustering: observations Yj;’s are clustered together iff they share the
same latent variables X;;’s;

» clustering with HSNCP: observations Y,;’s are clustered together iff they have
similar same latent variables Xy;’s;
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES
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» ny = no, = 500 observations.

» The HSNCP borrows information across groups: we recognize only three
clusters.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES
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» ny = no, = 50 observations.

» The HSNCP provides good density estimates.
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BAYESIAN ANALYSIS




BAYESIAN INFERENCE: HSNCP MIXTURE MODELS

Summing up, we now focus on the latent variables in the HSNCP mixture model
i

Fe(X)

(Bt -, fig) ~ HSNCP(p, po, Go, k(- -))

Xei | Pe ~ Pe =

where the HSNCP has been specified before.

17/26



BAYESIAN INFERENCE: HSNCP MIXTURE MODELS

Summing up, we now focus on the latent variables in the HSNCP mixture model
i

Fe(X)
(Bt -, fig) ~ HSNCP(p, po, Go, k(- -))

Xei | Pe ~ Pe =

where the HSNCP has been specified before. We have expressions for

» the marginal distribution of the latent parameters X;;’s;
» the posterior distribution of the HSNCP;

» the predictive distribution of a new latent parameter.

We explain the theoretical properties and induced clustering through a restaurant

franchise metaphor.
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RESTAURANT FRANCHISE METAPHOR

~ ind ~
Xei | Be ™ B
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RESTAURANT FRANCHISE METAPHOR

Restaurant 1

~ ind ~
Xei | Be ™ B
Restaurant franchise
metaphor:

» Franchise of g
restaurants.

Restaurant 2
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RESTAURANT FRANCHISE METAPHOR

Restaurant 1

Xoi | e ™ By 74: pizza 57 indian 31 hamburger

Restaurant franchise
metaphor:

» Franchise of g
restaurants.

> Infinitely many
thematic rooms,
(7)j=1-

Restaurant 2

T1: pizza To: indian 73: hamburger
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RESTAURANT FRANCHISE METAPHOR

Restaurant 1

Xoi | e ™ By 74: pizza 57 indian 31 hamburger

Restaurant franchise

metaphor: Q Q O

» Franchise of g

restaurants. Q Q Q

> Infinitely many
thematic rooms,
(77)j=1-

» Each thematic room
contains infinitely
many tables.

Restaurant 2

T1: pizza To: indian 73: hamburger

O
O

O
O

O
O
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~ ind ~
Xei | Be ™ B

Restaurant franchise
metaphor:

» Franchise of g

restaurants.

Infinitely many
thematic rooms,
(77)j=1-

Each thematic room
contains infinitely
many tables.

Customers Xp;s at
the same table eat
the same dish ¢p,
related to the
room’s theme.

RESTAURANT FRANCHISE METAPHOR

Restaurant 1

T1: pizza

To: indian

T3: hamburger

Xi1
Xs(oro)

Xis

Xia

@)

Restaurant 2

Ty pizza

To: indian

73: hamburger

Xos

Xoo

Xo3
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PREDICTIVE DISTRIBUTION: INTUITION

A new customer Xjp; in
restaurant ¢ can either:

Restaurant 1

T1: pizza

To: indian

T3: hamburger

Xi1
Xs(oro)

Xie

Xia

@)

Restaurant 2

Ty pizza

To: indian

73: hamburger

Xos

Xo2

Xo3
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PREDICTIVE DISTRIBUTION: INTUITION

Restaurant 1

T1: pizza To: indian T3: hamburger

A new customer Xjp; in ‘
Xia

restaurant ¢ can either: ]

» enter an empty

room and sit at an ;‘ X @
empty table. '3 12
Xis
Restaurant 2
T1: pizza To: indian 73: hamburger
Xoe
Xo2
Xo3
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A new customer Xjp; in
restaurant ¢ can either:

> enter an empty

room and sit at an
empty table.

enter an already
occupied room and
sit at an empty
table.
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A new customer Xjp; in
restaurant ¢ can either:

> enter an empty

room and sit at an
empty table.

enter an already
occupied room and
sit at an empty
table.

enter an already
occupied room and
sit at an already
occupied table.

PREDICTIVE DISTRIBUTION: INTUITION

Restaurant 1

T1: pizza

To: indian

T3: hamburger

Xi1
Xs(oro)

Xie

Xia

Xii
xe{oe)

@)

Restaurant 2

Ty pizza

To: indian

73: hamburger

Xos

Xo2

Xo3
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PREDICTIVE DISTRIBUTION: PROBABILISTIC STRUCTURE

PREDICTIVE DISTRIBUTION (CARMINATI ET AL., 2026+)

Let X = (Xi,..., Xy) be a sample of size n. Then, for any Borel set A, we have

Ke
U K(Up, Een + 1)
Pt AN = 05 2 Ut 70

7|
5 U, 1)
+ e Z’f(U¢u1)*O(Z1 14U, & + 1) /de\Xm Ten =1)
2= NO(Z; 1¢(U/( C/

g 5
+ I_(U,;)fz(U[, 1)Ko <; 'Lf(U[),‘I) / m(dx),

U are latent variables similar to those in (James et al., 2009), and T are latent
variables describing the room structure.
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PREDICTIVE DISTRIBUTION: PROBABILISTIC STRUCTURE

PREDICTIVE DISTRIBUTION (CARMINATI ET AL., 2026+)

Let X = (Xi,..., Xy) be a sample of size n. Then, for any Borel set A, we have

Ke
U K(Up, Een + 1)
Pt AN = 05 2 Ut 70

7|

U, h0(21 1?(U1) §/+1 /
+ > " k(U 1 m(ax | X}y, : Ton = J)
(0 2 (58, 0. ) e

. g "
+ r(“f;);;(uf, 1)ko <; u(ué),1> / m(ax),

U are latent variables similar to those in (James et al., 2009), and T are latent
variables describing the room structure.

» first term: the customer chooses an occupied room and table;
» second term: the customer chooses an occupied room and an empty table.

» third term: the customer chooses an empty room and empty table.
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POSTERIOR DISTRIBUTION: PROBABILISTIC STRUCTURE

POSTERIOR DISTRIBUTION (CARMINATI ET AL., 2026+)

Let X = (X1, ..., Xg) be a sample of size n. Then the following distributional equality
holds true
o <" L
Be| T, X, US D Sppdxe +> i) + iy,
h=1 j=1
for any restaurant £ =1,...,g.

» The S;,'s are independent positive random variables with density
fsz, (8) o e~ Vesstenp(s).

> The ﬂﬁf)’s are independent CRMs, conditionally on latent parameters ('yj(p), TI,(")),
with a known density;

> (/7,<1p), . ﬁ,g’)) is a HSNCP with updated parameters.
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APPLICATION




APPLICATION: SLOAN DIGITAL SKY SURVEY

We consider the dataset from the Sloan Digital Sky Survey first data release (Abazajan
et al., 2003).

» |t contains measurements of the u — r color, that is, the difference between
ultraviolet and red color distributions.
» The measurements refer to 23:1 ny, = 24,312 galaxies.

» Galaxies are divided in g = 25 groups according to luminosity type and
environment.

» u — r color provides a robust indicator of galaxy type and star formation activity.

» Clustering galaxies according to their u — r color allows us to identify different
evolutionary stages.

We run the MCMC algorithm for 50,000 iterations. Running our algorithm on a
standard laptop took 3 hours and 19 minutes.
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APPLICATION: SELECTED GROUPS
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APPLICATION: CLUSTER DISTRIBUTION

ustering - HSNCP Groups Clustering - HDP Groups

24/26



ESSENTIAL BIBLIOGRAPHY

» BERAHA M., CAMERLENGHI F., GHILOTTI L. (2025). Bayesian calculus and predictive
characterizations of extended feature allocation models. Available on ArXiv.

» DomMBOWSKY A., DUNSON D. B. (2025). Bayesian clustering via fusing of localized densities.
Journal of the American Statistical Association, in press.

» JAMES L., LIJoI A., PRUNSTER I. (2009). Posterior analysis for normalized random
measures with independent increments. Scandinavian Journal of Statistics, 36, 76-97.

» KINGMAN J.F.C. (1967). Completely random measures. Pacific J. Math. 21, 59-78.

» LiJor A., NIPOTI B., PRUNSTER |. (2014). Bayesian inference with dependent normalized
completely random measures. Bernoulli, 20, 1260-91.

» MACEACHERN S. N. (1999). Dependent nonparametric processes. In ASA proceedings of
the section on Bayesian statistical science, 50-55.

» MALSINER-WALLI G., FRUHWIRTH-SCHNATTER S., GRUN B. (2017). Identifying mixtures of
mixtures using Bayesian estimation. Journal of Computational and Graphical Statistics, 26,
285-295.

» MgLLER J. (2003). Shot noise Cox processes. Advances in Applied Probability, 35, 614—640.

> QUINTANA F. A., MULLER P., JARA A., MACEACHERN S. N. (2022). The dependent Dirichlet
process and related models. Statistical Science, 37, 24—41.

» REGAzzINI E., LIJol A., PRUNSTER I. (2003). Distributional results for means of normalized
random measures with independent increments. Annals of Statistics, 31, 560-585.

» RODRIGUEZ A., DUNSON D. B., GELFAND A. E. (2008). The nested Dirichlet process.
Journal of the American Statistical Association, 103, 1131—44.

» TEH Y.W., JORDAN M., BEAL M.J., BLEI D.M. (2006). Hierarchical Dirichlet Processes.
Journal of the American Statistical Association, 101, 1566—81.

25/26



Thank you!



	Hierarchical shot-noise Cox process
	Bayesian analysis
	Application

