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SETTING: MULTIPLE POPULATIONS

We consider the following setting:

I data are divided into g groups (or populations), where group ` contains n` data
points, as ` = 1, . . . , g;

I denote by Y`,1, . . . ,Y`,n` the observations for group `, as ` = 1, . . . , g.

I data are assumed partially exchangeable: exchangeable within groups and
conditionally independent across groups.

Relevant examples are:

I students’ GPAs grouped by university of attendance;

I patients’ health data grouped by hospital;

I galaxies grouped by luminosity type.
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STANDARD BAYESIAN CLUSTERING

Bayesian clustering is addressed by specifying a mixture model for each group:

Y`,i | p̃`
ind∼
∫
X

f (· | x)p̃`(dx) i = 1, . . . , n`; ` = 1, . . . , g

where:

I f (· | x) is a density with parameter x ;

I (p̃1, . . . , p̃g) is a vector of mixing measures for all groups.

Several proposals are available to specify (p̃1, . . . , p̃g) and achieve across-group
clustering:

I dependent Dirichlet process (MacEachern, 1999);

I hierarchical Dirichlet process (Teh et al., 2006) and generalizations;

I additive structures (Lijoi et al., 2014);

I nested Dirichlet process (Rodrǵuez et al., 2008) and generalizations;

I see (Quintana et al., 2022) for a complete review.
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STANDARD BAYESIAN CLUSTERING

By introducing suitable latent variables, the mixture model can be written in a
hierarchical fashion:

Y`,i | X`,i
ind∼ f ( · | X`,i )

X`,i | p̃`
iid∼ p̃`

where the random probability measures p̃1, . . . , p̃g are typically assumed to be almost
surely discrete.

I The discreteness of the p̃`’s induces ties of the latent variables within and across
samples

I Ties induce the standard clustering mechanism in mixture models

Y`,i and Y`,i′ are in the same cluster⇐⇒ X`,i = X`,i′

I The use of dependent random probability measures allows to borrow information
across groups.
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PROBLEMS WITH STANDARD CLUSTERING

Remarks:

I Two observations are in the same cluster iff they share the same latent variable.

I The standard notion of clustering is based on exact sharing of latent variables.

I This notion of clustering is too rigid when subtle differences across groups matter!

We showcase the rigidity of standard clustering mechanism by considering an
illustrative example with g = 2 groups:

I Gaussian mixture of three components in each group;

I the components differ slightly across groups⇒ we expect only three clusters.

We use the hierarchical Dirichlet process (HDP) to fit the data.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I n1 = n2 = 500 observations;

I the three components differ slightly across the two groups.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I The HDP recognizes six different cluster!
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I n1 = n2 = 50 observations
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I The HDP recognizes three clusters, but inaccurate density estimates

8 / 26



OUR CONTRIBUTION

Summarizing the results:

I large sample size: good density estimations, but bad clustering and information
sharing;

I small sample size: bad density estimations, but good clustering and information
sharing.

Our proposal to overcome the trade-off outlined above:

I we introduce a new model for clustering grouped data;

I we also define a new notion of clustering;

I our proposal is based on the shot-noise Cox process (Møller, 2003).
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OUTLINE

HIERARCHICAL SHOT-NOISE COX PROCESS

BAYESIAN ANALYSIS

APPLICATION
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HIERARCHICAL SHOT-NOISE COX PROCESS

We introduce the vector of mixing measures

(p̃1, . . . , p̃g)

to define the hierarchical shot-noise Cox process (HSNCP) mixture model.

I We define each p̃` via normalization

p̃`( · ) =
µ̃`( · )
µ̃`(X)

where µ̃` is a Completely Random Measure (CRM), see (Kingman, 1967).

I This is a common strategy in the BNP literature: see (Regazzini et al., 2003) and
subsequent contributions.

I Note that a CRM is a functional of a Poisson process Ñ`:

µ̃` =
∑
h≥1

S`hδφ`h ⇐⇒ Ñ` =
∑
h≥1

δ(S`h,φ`h)

where Ñ` is a Poisson Process (PP) on R+ × X with intensity measure given by
ρ`(s)ds η(dx).

I The measure η is specified to induce dependence across groups.
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∑
h≥1

δ(S`h,φ`h)
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HIERARCHICAL SHOT-NOISE COX PROCESS

I (µ̃1, . . . , µ̃g) is a Hierarchical shot-noise Cox process (HSNCP).

I p̃` = µ̃`
µ̃`(X)

: random probability of group `

I µ̃` | Λ =
∑

h≥1 S`hδφ`h : CRM with intensity measure ρ(s)ds ηΛ(dx)

ηΛ(dx) =

∑
j≥1

γj k(x , τj )

 dx

I Λ =
∑

h≥1 δ(γh,τh): Poisson process with intensity measure ρ0(dγ)G0(dτ)
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HIERARCHICAL SHOT-NOISE COX PROCESS MIXTURE MODEL

I We use the construction in a mixture setting.

Y`i | X`i
ind∼ f ( · | X`i )

X`i | p̃` ∼ p̃` =
µ̃`

µ̃`(X)

µ̃` | Λ =
∑
h≥1

S`hδφ`h : CRM (ρ(s)ds ηΛ(dx))

Λ =
∑
h≥1

δ(γh,τh) : PP (ρ0(dγ)G0(dτ))

ηΛ(dx) =

∑
j≥1

γj k(x , τj )

 dx
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A NEW DEFINITION OF CLUSTERING

I We observe that the random measure µ̃` can be equivalently written as

µ̃` =
∑
j≥1

µ̃`j

where

µ̃`j =
∑
h≥1

S`jhδφ`jh is a CRM with intensity measure γjρ(s)ds k(x , τj )dx

I The atoms of µ̃`j are close to the parent atom τj ’s of Λ but not identical.

I µ̃`j : generates similar latent variables X`i ’s, but not identical.

This induces a new definition of clustering:

NEW CLUSTERING DEFINITION

I traditional clustering: observations Y`i ’s are clustered together iff they share the
same latent variables X`i ’s;

I clustering with HSNCP: observations Y`i ’s are clustered together iff they have
similar same latent variables X`i ’s;

14 / 26



A NEW DEFINITION OF CLUSTERING

I We observe that the random measure µ̃` can be equivalently written as

µ̃` =
∑
j≥1

µ̃`j

where

µ̃`j =
∑
h≥1

S`jhδφ`jh is a CRM with intensity measure γjρ(s)ds k(x , τj )dx

I The atoms of µ̃`j are close to the parent atom τj ’s of Λ but not identical.

I µ̃`j : generates similar latent variables X`i ’s, but not identical.

This induces a new definition of clustering:

NEW CLUSTERING DEFINITION

I traditional clustering: observations Y`i ’s are clustered together iff they share the
same latent variables X`i ’s;

I clustering with HSNCP: observations Y`i ’s are clustered together iff they have
similar same latent variables X`i ’s;

14 / 26



ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I n1 = n2 = 500 observations.

I The HSNCP borrows information across groups: we recognize only three
clusters.
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ILLUSTRATIVE EXAMPLE: SHIFTED GAUSSIAN MIXTURES

I n1 = n2 = 50 observations.

I The HSNCP provides good density estimates.
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BAYESIAN ANALYSIS



BAYESIAN INFERENCE: HSNCP MIXTURE MODELS

Summing up, we now focus on the latent variables in the HSNCP mixture model

X`i | p̃` ∼ p̃` =
µ̃`

µ̃`(X)

(µ̃1, . . . , µ̃g) ∼ HSNCP(ρ, ρ0,G0, k( · , · ))

where the HSNCP has been specified before.

We have expressions for

I the marginal distribution of the latent parameters X`i ’s;

I the posterior distribution of the HSNCP;

I the predictive distribution of a new latent parameter.

We explain the theoretical properties and induced clustering through a restaurant

franchise metaphor.
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RESTAURANT FRANCHISE METAPHOR

X`i | p̃`
ind∼ p̃`

Restaurant franchise
metaphor:

I Franchise of g
restaurants.

I Infinitely many
thematic rooms,
(τj )j≥1.

I Each thematic room
contains infinitely
many tables.

I Customers X`i s at
the same table eat
the same dish φ`h,
related to the
room’s theme.

Restaurant 2

Restaurant 1

τ1: pizza τ2: indian τ3: hamburger

· · ·

τ1: pizza τ2: indian τ3: hamburger

· · ·

· · · · · · · · ·

· · · · · · · · ·

φ21 X21

X26

φ25X24

φ22 X27

φ24

φ23

φ26X25

X22

X23

φ11

φ16X13

X11

X16

φ12 X15

X14

φ14X12

φ13

φ15
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PREDICTIVE DISTRIBUTION: INTUITION

A new customer X`i in
restaurant ` can either:

I enter an empty
room and sit at an
empty table.

I enter an already
occupied room and
sit at an empty
table.

I enter an already
occupied room and
sit at an already
occupied table.

Restaurant 2

Restaurant 1

τ1: pizza τ2: indian τ3: hamburger

· · ·

τ1: pizza τ2: indian τ3: hamburger

· · ·

· · · · · · · · ·

· · · · · · · · ·

φ21 X21

X26

φ25X24

φ22 X27

φ24

φ23

φ26X25

X22

X23

φ11

φ16X13

X11

X16

φ12 X15

X14

φ14X12

φ13

φ15

X1iX1i

X1i
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· · ·

· · · · · · · · ·

· · · · · · · · ·

φ21 X21

X26

φ25X24

φ22 X27

φ24

φ23

φ26X25

X22

X23

φ11

φ16X13

X11

X16

φ12 X15

X14

φ14X12

φ13

φ15

X1iX1i

X1i
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PREDICTIVE DISTRIBUTION: PROBABILISTIC STRUCTURE

PREDICTIVE DISTRIBUTION (CARMINATI ET AL., 2026+)
Let X = (X1, . . . ,Xg) be a sample of size n. Then, for any Borel set A, we have

P(X`,n`+1 ∈ A | X ,T ,U) =
U`

Γ(n`)

K∑̀
h=1

κ(U`, ξ`h + 1)

κ(U`, ξ`h)
δX∗

`h
(A)

+
U`

Γ(n`)

|T |∑
j=1

κ(U`, 1)
κ0(
∑g
`=1 ψ(U`), ζj + 1)

κ0(
∑g
`=1 ψ(U`), ζj )

∫
A

m(dx | X∗`h : T`h = j)

+
U`

Γ(n`)
κ(U`, 1)κ0

( g∑
`=1

ψ(U`), 1

)∫
m(dx),

U are latent variables similar to those in (James et al., 2009), and T are latent
variables describing the room structure.

I first term: the customer chooses an occupied room and table;

I second term: the customer chooses an occupied room and an empty table.

I third term: the customer chooses an empty room and empty table.
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POSTERIOR DISTRIBUTION: PROBABILISTIC STRUCTURE

POSTERIOR DISTRIBUTION (CARMINATI ET AL., 2026+)
Let X = (X1, . . . ,Xg) be a sample of size n. Then the following distributional equality
holds true

µ̃` | T ,X ,U
d
=

K∑̀
h=1

S∗`hδX∗
`h

+

|T |∑
j=1

µ̃
(p)
`j + µ̃

(p)
` ,

for any restaurant ` = 1, . . . , g.

I The S∗`h ’s are independent positive random variables with density
fS∗

`h
(s) ∝ e−U`ssξ`hρ(s).

I The µ̃(p)
`j ’s are independent CRMs, conditionally on latent parameters (γ

(p)
j , τ

(p)
j ),

with a known density;

I (µ̃
(p)
1 , . . . , µ̃

(p)
g ) is a HSNCP with updated parameters.
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APPLICATION



APPLICATION: SLOAN DIGITAL SKY SURVEY

We consider the dataset from the Sloan Digital Sky Survey first data release (Abazajan
et al., 2003).

I It contains measurements of the u − r color, that is, the difference between
ultraviolet and red color distributions.

I The measurements refer to
∑g
`=1 n` = 24,312 galaxies.

I Galaxies are divided in g = 25 groups according to luminosity type and
environment.

I u − r color provides a robust indicator of galaxy type and star formation activity.

I Clustering galaxies according to their u − r color allows us to identify different
evolutionary stages.

We run the MCMC algorithm for 50,000 iterations. Running our algorithm on a

standard laptop took 3 hours and 19 minutes.
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APPLICATION: SELECTED GROUPS
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APPLICATION: CLUSTER DISTRIBUTION
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Thank you!
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