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locations over time 

Page, Quintana, Dahl, JCGS, 2022
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➡  In many applications, it is of interest to study the evolution of clusters of 
observations over time: 

👉 Brain imaging data, to study how the activity of different brain regions clusters 
over time and across different subgroups of subjects, or to study how neuronal 
activations are differently clustered as a function  of behavior  

Every application may  
require a different  

modeling of the 
temporal dynamics
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Modeling of dynamic evolution of partition parameters

➡ Time-varying Dirichlet process mixture models  
(Caron, Davy, Doucet 2007) 
 

     

 

Other contributions (purposely non-exhaustive): 
  
Fox, E., Sudderth, E.B., Jordan, M.I., and Willsky, A.S. (2011) - Switching DLM  
Nieto-Barajas & Contreras-Cristan (2014) - Hierarchical LMM w. clustering of 
parameters  
Cassese, Zhu, G., Vannucci (2019) - Dynamic model selection
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Modeling of dynamic partitions

➡ Dynamic temporal allocation of the units (Page, Quintana, Dahl, JCGS 2022) 

‼Introduce an auxiliary variable that identifies which of the experimental units 
 at time t-1 will be considered for possible cluster reallocation at time t
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Modeling of dynamic partitions

➡ Dynamic temporal allocation of the units (Page, Quintana, Dahl, JCGS 2022) 

‼Introduce an auxiliary variable that identifies which of the experimental units 
 at time t-1 will be considered for possible cluster reallocation at time t

 
 
 
 
 
 
 
across i=1,…, m units 
 
See also Paganin S., Page G., Quintana, F.A. (2024): Informed Random Partition 
Models with Temporal Dependence.

UCLA



Temporal biclustering  

in multi-subject neuroscience studies 
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Multi-subject temporal biclustering UCLA
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👉 Basic model, time 0 



One subject model UCLA

Yr ∣ cr = k ∼ Student-t(μk, σk)Statistical 
model

cr

Yr

μk

σk

Inferred activation 
pattern

Data Yr for ROI r = 1,…, R

μ2

{σ1 μ1

{σ2

👉 Basic model, time 0 
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 with probability α2 : cr2 = cr1

 with probability 1 − α2 : cr2 ∼ Categorical(p1, …, pK)

Yr2 ∣ cr2 = k ∼ Student-t(μk, σk)

👉 Dynamic Brain Region Clustering:
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Dynamic Temporal Allocation of the Units as in Page et al. 2022
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👉 Dynamic Brain Region Clustering:

Large  encourages 
smooth dynamics!

αt

0
1
2
3
4

0.00 0.25 0.50 0.75 1.00
α

α2 ∼ Beta(10,2)

Dynamic Temporal Allocation of the Units as in Page et al. 2022
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👉 Dynamic Brain Region Clustering:

Dynamic Temporal Allocation of the Units as in Page et al. 2022

 with probability α3 : cr3 = cr2

 with probability 1 − α3 : cr3 ∼ Categorical(p1, …, pK)

Yr3 ∣ cr3 = k ∼ Student-t(μk, σk)
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T
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T

. . .

👉 Dynamic Brain Region Clustering:

Prior on  
such that active number of 
clusters can:  
- be learned from data 
- differ across time and 

subjects 

p = (p1, …, pK) with probability αt : crt = cr,t−1

 with probability 1 − αt : ct ∼ Categorical(p1, …, pK)

Yrt ∣ crt = k ∼ Student-t(μk, σk)



One subject model UCLA

T

. . .

👉 Dynamic Brain Region Clustering:

p ∣ ω0 ∼ Dirichlet(ϕ ω01, …, ϕ ω0K),

ω0 ∣ η ∼ Dirichlet ( η
K

, …,
η
K )

η ∼ Gamma(d1, d2)
Sparse Hierarchical Mixture of Mixtures Model 

Malsiner-Walli et al. 2016 (Stat. Comput.)

ω0 = (ω01, …, ω0K)



Clustering Subjects UCLA

From clustering brain regions over time in a single subject to multiple subjects: 
 

Data +
Identify 

Temporal  
profiles 

(subgroups)

💡 Profile: specific sequence of brain-region clusters during the experiment
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Profile 1

. . .

 t = T

. . .

 t = T t = 3 t = 2 t = 1

Profile 2

. . .

 t = 1  t = T t = 3 t = 2

Profile 3

💡 Profile: specific sequence of brain-region clusters during the experiment
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Profile 1

. . .

 t = T

. . .

 t = T t = 3 t = 2 t = 1

Profile 2

. . .

 t = 1  t = T t = 3 t = 2

Profile 3

Profile 4
. . .

 t = 1  t = T t = 3 t = 2

💡 Profile: specific sequence of brain-region clusters during the experiment
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Yirt

si Profile of subject i

πz

N1 2 3

si ∼ Categorical(π1, …, πN)

π ∼ Dirichlet ( ε
N

, …,
ε
N )

ε ∼ Gamma(b1, b2)

Sparse Finite Mixture 

Profile of subject i

For subject , brain region  and time i r t
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For subject , brain region  and time i r t

Yirt

crt   at time t  for profile si
Cluster of region r(si)

Probability that a cluster persists over timecr,t−1
(si) (si)αt

with probability αt cr,t = cr,t−1

with probability 1 − αt cr,t ∼ Categ(p1, …, pK )

[Finite approx. of Hierarchical Dirichlet Process]

  at time t  for profile si
Cluster of region r

(si)

(si) (si)

(si) (si)(si)

(si)

p ∣ p0 ∼ Dirichlet(ϕ ω01, …, ϕ p0K),

p0 ∣ η ∼ Dirichlet ( η
K

, …,
η
K )

(si)

η ∼ Gamma(d1, d2)

si Profile of subject i
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For subject , brain region  and time i r t

Yirt ∣ si = z, c(z)
rt = k, μk, σk ∼ Student-t(μk, σk)

Yirt

si Profile of subject i

crt   at time t  for profile si
Cluster of region r(si)

Probability that a cluster persists over timecr,t−1
(si) (si)αt

μk

σk

Mean and 
standard 
deviation of 
cluster  k

Yi,r,t ∣ c(si)
r,t = k, μk, Vi,r,t

ind∼ Normal(μk, Vi,r,t)

Vi,r,t ∣ c(si)
r,t = k, σ2

k
iid∼ Inv-χ2(ν, σ2

k ) .



Posterior Inference UCLA

• We design a MCMC for posterior inference, mostly using Gibbs updates


• Crucial step is the update of cluster-assignment sequence  for each 
profile  and region 


• For the case with no profiles, Page et al. (2022) propose a marginal sampler


‣ Let  with probability   (so  is an indicator of cluster persistence)


‣ Marginal updates are conditional on past, present and future persistence indicators 
and cluster assignments

(cr,1, …, cr,T )
z r

γr,t = 1 αt γr,t

(z) (z)

crcr, cr, t+1tt−1
…

…γrγr, γr, t+1tt−1…

…



Block update of region clusters UCLA

• We design update of cluster-assignment sequences in block: 

‣ Update persistence indicators and cluster assignments together and 
sequentially, only conditioned on the past

γr,1

cr,1

γr,1 γr,2

cr,2cr,1

γr,2 γr,T−1

cr,T−1cr,2

γr,T−1 γr,T

cr,Tcr,T−1



Blocked vs Marginal Sampler UCLA

changepoint (f−measure) log−likelihood

measurement partition (BL) state parameters (MAE)
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MCMC iteration

sampler

blocked

marginal

BL = Binder loss

BL = Binder loss 
 
MAE = Mean Absolute 
              Error of state 
              parameters

f-measure  
(F1, combining precision  
and recall) 
for changepoint 
detection accuracy



Application to fMRI study UCLA

•N = 23 Healthy Subjects R = 11 ROIs known to be involved in 
 
Default Mode Network (DMN): Posterior Cingulate Cortex (PCC), left/right 
Dorsolateral Prefrontal Cortex (L/R DLPFC), left/right posterior Inferior 
Parietal Lobule (L/R pIPL), left Parahippocampal Gyrus (L PHG), and left 
Inferolateral Temporal Cortex (L ITC) 
 
Salience Network (SN): Left/right Insula (L/R Insula), left/right Lateral 
Parietal regions (L/R LP) 

Image credit: Hussain, Sana, et al. (2023)
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Dynamic Linear Models - A primer UCLA

Dynamic linear models (DLMs) are commonly used for time-series data due to their flexibility and 
adaptability. 
 
They define a class of state-space models 
 
As such they are characterized by a system of two equations: 

👉 an observation equation, which describes the observed data as a linear combination of latent state 
variables with noise, 

👉  state equation that describes how latent states evolve over time, thereby tracking the underlying 
dynamics of the system.



A simple DLM: A Local Level model (LLM) UCLA

Let  be an n-dimensional vector observed at  time points

In an LLM, the observed data are composed of a level component plus a random noise:

 
with 

👉  the underlying level or trend of the time series:

where  
 
 

Yt = {Y1,t, …, Yn,t} t = 1,…, T

εi
iid∼ N (0,τ2)

βt = {β1,t, …, βn,t}

ωt
iid∼ N(0,1)
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For each unit (e.g., each arm) , we have: 

👉 a model for the observation equation (e.g., the Gaussian kernel): 
 
 
 

👉  The state equation governs the dynamics of the time-varying partitions 

👉  Similarly to the LLM we want to tie the partition at time t-1, possibly with the partition at time t 
 
    LLM ➡ Random Walk 
    LLDPM ➡ partitions are discrete ➡ NDARMA-like formulation (Jacobs & Lewis, 1983) 
 

i ∈ {1,…, n}

Local Level Dynamic Random Partition Model (LLDPM)
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NDARMA describes a stationary discrete-valued analogue of ARMA built by randomly choosing 
whether the next value is copied from a past observation or taken from an innovation. 
 
Let  indicate a partition at time t 

👉 Let  indicate the number of clusters/blocks identified in the partition at time t  

  among the n units 

👉 Let  indicate a (latent) changepoint (cgp) indicator (0=no cgp; 1=cgp)
➡ detects changes in the partitions of units from time t - 1 to time t 

👉   indicates the distribution of a base random partition model
➡ a probability distribution that describes the probability of different clusters  

 allocations at each time t  ➡ e.g. CRP 

πt

πt

γt

p* (πt)

Local Level Dynamic Random Partition Model (LLDPM)
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The partition-based state equation is characterized as a mixture over two partition models: 
 

πt ∣ π1:(t−1), γ2:(t−1) ∼ (1 − γt) δπt−1 (πt) + γt p* (πt)

Local Level Dynamic Random Partition Model (LLDPM)



UCLA

The partition-based state equation is characterized as a mixture over two partition models: 
 

πt ∣ π1:(t−1), γ2:(t−1) ∼ (1 − γt) δπt−1 (πt) + γt p* (πt)

Fully dependent case 
 

The partition at time t 
coincides  

with the partition at 
time t-1

Local Level Dynamic Random Partition Model (LLDPM)



UCLA

The partition-based state equation is characterized as a mixture over two partition models: 
 

πt ∣ π1:(t−1), γ2:(t−1) ∼ (1 − γt) δπt−1 (πt) + γt p* (πt)

Fully dependent case 
 

The partition at time t 
coincides  

with the partition at 
time t-1

Innovation  
 

The partition at 
time t is extracted 

from the base 
process 

independently of 
the  

partition at time t-1

Local Level Dynamic Random Partition Model (LLDPM)



UCLA

The partition-based state equation is characterized as a mixture over two partition models: 
 

πt ∣ π1:(t−1), γ2:(t−1) ∼ (1 − γt) δπt−1 (πt) + γt p* (πt)

Fully dependent case 
 

The partition at time t 
coincides  

with the partition at 
time t-1

Innovation  
 

The partition at 
time t is extracted 

from the base 
process 

independently of 
the  

partition at time t-1ηt
iid∼ Beta(a, b)

γt
iid∼ Bern (ηt)

Local Level Dynamic Random Partition Model (LLDPM)



UCLA

The partition-based state equation is characterized as a mixture over two partition models: 
 

πt ∣ π1:(t−1), γ2:(t−1) ∼ (1 − γt) δπt−1 (πt) + γt p* (πt)

Fully dependent case 
 

The partition at time t 
coincides  

with the partition at 
time t-1

Innovation  
 

The partition at 
time t is extracted 

from the base 
process 

independently of 
the  

partition at time t-1ηt
iid∼ Beta(a, b)

γt
iid∼ Bern (ηt)

One can be more creative in the definition state equation (NDARMA) and prior for γt

Local Level Dynamic Random Partition Model (LLDPM)
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Average lagged ARI for the pairwise 
comparison of T=10 random 
partitions   assuming a base 
process .  
 
 
For each matrix, the pixel in position 
(i, j) refers to the comparison of  
and .  

For each value of , values of the 
lagged ARI are averaged over a 
sample of 10,000 partitions. 

The temporal dependence increases 
as the temporal dependence 
parameter  decreases.

π1:T
p*( ⋅ ) = pCRP( ⋅ )

πi
πj

η

η

Local Level Dynamic Random Partition Model (LLDPM)



Gesture Phase Segmentation data UCLA

Sensor data recordings of users recounting comic book stories (data from UCI ML repository)

The dataset provides scalar velocity and acceleration 
values over four sensors, placed on the left hand, right 
hand, left wrist, and right wrist  
 
 
➡ n = 8 sensor measurements at regular time intervals

 



Gesture Phase Segmentation data UCLA

T = 349



Changepoint detection UCLA



Zooming in on a time-window UCLA



“Concluding” remarks: challenges in complex applications UCLA

Scalability in all dimensions (units and time)

Incorporating available information (spatial dependence, covariates)

Combine BNP methods with biological mechanistic models over time (change points trigger 
different modeling) 

Assessing uncertainty (in partitions, which is also a function of the inference on changepoints) 

Interpretation of random partitions (e.g., association with measurable outcome) 
 



Decoding neuronal ensembles from  
spatially-referenced calcium traces



UCLA



Mapping neuronal activity in real time UCLA

 Calcium imaging is a microscopy 
technique to optically measure the 
intracellular calcium concentration of 
neurons in awake animals. 

 The mechanism at the basis of calcium 
imaging is a physiological process of the 
cells: when a neuron fires, calcium floods 
the cell and produces a transient spike in 
its concentration 

 Fluorescent Calcium Indicators bind to 
calcium ions during neuronal activation 

👉 Outcome: movie of time-varying 
fluorescence intensities for each 
observable neuron in a targeted area.



Calcium imaging measurements UCLA

⏹ Physiological process (often model mathematically) behind calcium imaging:

👉  External Stimulus: Triggers a neuronal response


👉  Neuronal Activation: Calcium floods the cell, causing a temporary increase  

                                     in intracellular calcium concentration

👉  Return to Baseline: calcium levels return to their normal state as the neuron 

                                  goes back to rest

⏹ Fluorescent calcium traces are proxies of the activity over time of individual neurons



Neuronal Data from a freely moving mice UCLA

⏹  Recorded hippocampal CA1 activity in a freely moving mouse exploring a circular 
   arena (Chen et al, 2023)
⏹  CA1 supports spatial navigation and episodic memory (implicated also in AD)
⏹  229 neurons over 5,435 time points across a 12-minute session
⏹   The arena is split into a center and outer ring, and the time series is segmented into 

position-defined windows



1⃣ Jointly infer spikes and cluster neurons from calcium imaging


2⃣ Enforce spatially coherent clustering  

3⃣ Link neural ensembles to behavior & examine context-dependent shifts in    
clustering (doubly-spatial problem)

Our Data UCLA

 
229 neurons,  

more than  
5000 time points;  

scalability  
becomes important



• 6 clusters


• Top: spike trains & amplitudes


• Right: time series and neurons' 
locations colored by cluster  
(cluster 1 with 122 inactive neurons 
not reported)

Clustering of neurons overe a time window UCLA

2

3

4

56

0

25

50

75

100

0 20 40 60
Time

N
eu
ro
ns

Amplitude

5

10

15

0

10

20

30

40

0 20 40 60
Time

N
eu
ro
n

40

50

60

70

0 20 40 60
Time

75

80

85

90

95

0 20 40 60
Time

100

150

200

250

300

50 100 150 200

Cluster 1 2 3 4 5 6



−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Neuron A

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Neuron B

100

150

200

250

300

50 100 150 200

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Neuron C

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Neuron D

100

150

200

250

300

50 100 150 200

Spike probability   
0.0 0.5 1.0

• Co-clustering analysis: 
 
select neurons frequently 
clustered together and try 
to understand their spike 
patterns associated with 
the mouse position

Neuronal responses to mouse position UCLA



Heatmaps showing the spatial distribution of the clustering complexity 
and variability. Each point of the mouse trajectory is weighted by the 
mode (left panel) and variance (right panel) of the posterior distribution of 
the number of clusters in that location.

Spatial cluster variability UCLA



Similar data are also available on humans UCLA

Participants/recordings: 16 neurosurgical epilepsy patients; 3,109 single units recorded across amygdala, 
parahippocampal cortex, entorhinal cortex, and hippocampus. 
 
Neural data: microwire recordings from implanted intracranial electrodes in epilepsy patients. 

Behavioral data: A context question (the rule), one of five: Bigger? Last seen in real life? More expensive? or 
Older? (depending on picture set), Like better? Brighter? ➡ Two pictures are shown sequentially (two of the four). 
➡An answer prompt “1 or 2?”; the participant presses 1 or 2 to indicate which picture best fits the question. 
 
Separate neurons into (mostly non-overlapping) sets based on whether their firing rates depend on:  
Content (stimulus identity): neurons whose activity changes depending on which picture is shown 
Context (task rule/question): neurons whose activity changes depending on which question/rule is active 
Conjunctive (stimulus × context): neurons that respond specifically to a particular combination of picture and 
question



UCLA

Thank you!

Local Level Dynamic 
Random Partition 

Models 
for Changepoint 

Detection 
(BA, in press)

Bayesian temporal 
biclustering with 

applications to multi-
subject neuroscience 

studies

Decoding Neuronal 
Ensembles from 

Spatially-
Referenced 

Calcium Traces: A 
Bayesian 

Semiparametric 
Approach


