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Dynamic Partitions

In many applications, it is of interest to study the evolution of clusters of
observations over time:
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In many applications, it is of interest to study the evolution of clusters of
observations over time:

-~ Environmental Sciences, to see how locations cluster differently from other
locations over time

Time period 4, o.=0.6

Time period 5, o.=0.59

Time period 6, o= 0.65

58 od
9 9
32 22 14 b 23 32 22 14 b 23 32 2 14 b 3
28 28
47 - 5418 47 " 5 418 47 - 5 418
8 19 56 44 8 “ 4.1 8 y 44
42 6 42 6 2 . 42 .
55 11 34 ] ] 34 34
48 38 18 12 38 12 A 38
35. 35 33‘35
\ 49 30 49 30 1 . 30
25 40 25 40 25
b 3 ﬁ 3

Page, Quintana, Dahl, JCGS, 2022




Dynamic Partitions

In many applications, it is of interest to study the evolution of clusters of
observations over time:

= Mobile data, sports sciences, to study the coordination of movements in time to
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LJ In many applications, it is of interest to study the evolution of clusters of
observations over time:

< Brain imaging data, to study how the activity of different brain regions clusters
over time and across different subgroups of subjects, or to study how neuronal
activations are differently clustered as a function of behavior
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Dynamic Partitions

LJ In many applications, it is of interest to study the evolution of clusters of
observations over time:

< Brain imaging data, to study how the activity of different brain regions clusters
over time and across different subgroups of subjects, or to study how neuronal
activations are differently clustered as a function of behavior

Every application may
require a different
modeling of the
temporal dynamics
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Modeling of dynamic evolution of partition parameters

& Time-varying Dirichlet process mixture models
(Caron, Davy, Doucet 2007)
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Modeling of dynamic evolution of partition parameters

& Time-varying Dirichlet process mixture models
(Caron, Davy, Doucet 2007)
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Other contributions (purposely non-exhaustive):

Fox, E., Sudderth, E.B., Jordan, M.I., and Willsky, A.S. (2011) - Switching DLM
Nieto-Barajas & Contreras-Cristan (2014) - Hierarchical LMM w. clustering of
parameters

Cassese, Zhu, G., Vannucci (2019) - Dynamic model selection
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'TIntroduce an auxiliary variable that identifies which of the experimental units
at time -7 will be considered for possible cluster reallocation at time ¢

- J 1 if unit 7 is not reallocated when moving from time ¢ — 1 to ¢
Tt =N 0 otherwise
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Modeling of dynamic partitions

Dynamic temporal allocation of the units (Page, Quintana, Dahl, JCGS 2022)

'TIntroduce an auxiliary variable that identifies which of the experimental units
at time -7 will be considered for possible cluster reallocation at time ¢

f

R 1 if unit ¢ is not reallocated when moving from time t — 1 to ¢
Tt =9 0 otherwise

.

across /=1,..., munits

See also Paganin S., Page G., Quintana, F.A. (2024): Informed Random Partition
Models with Temporal Dependence.



Temporal biclustering

In multi-subject neuroscience studies
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fMRI studies

Measure small changes in blood flow related to
brain activity

Experiments can be designed to study brain
activity during a task

Multiple subjects often undergo the same
experiment

 What patterns of brain-region activation are there in any given Brain region clusters . Within
moment of the experiment? _

* How do patterns of brain-region activation change during the Dynamic brain region
experiment? clusters

* How do patterns of brain-region activation vary across .
subjects? Subject clusters . ACross




Multi-subject temporal biclustering

Data Model

Measurements

Profile 1 Profile 2 Profile 3

R
State




One subject model

-~ Basic model, time O



One subject model

-~ Basic model, time O

Data Y for ROI
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One subject model
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-~ Dynamic Brain Region Clustering:

t=1 t=2
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with probability 1 —a, : ¢, ~ Gategorical(p,, ..., px)
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One subject model

-~ Dynamic Brain Region Clustering:

=] =2
i=1 | M% ] @ \
0.00 025 050 0.75 1.00

O
a, ~ Beta(10,2)

S == NN W H

with probabllity o, : ¢, = ¢,

with probability 1 —a, : ¢, ~ Gategorical(p,, ..., px)
Large a, encourages

Y, | c,=k~ Student-t(u,, 5;) smooth dynamics!

Dynamic Temporal Allocation of the Units as in Page et al. 2022
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-~ Dynamic Brain Region Clustering:
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One subject model

-~ Dynamic Brain Region Clustering:

= pe=2 (=3
RS SRS

with probability a; : ¢4 =1c¢,

with probability 1 —a; :  ¢,; ~ Categorical(p, ..., px)

Dynamic Temporal Allocation of the Units as in Page et al. 2022



One subject model

-~ Dynamic Brain Region Clustering:

I =1 pe=2 t=3 =T
i§ > A 5
i=1 (W3R @ “llé’_zy . glgb
with probability o, : ¢, =¢,,_, Prior on p = (py, - -+, Pg)

with probability 1 —«,: ¢, ~ Categorical(p,, ..., px) such that active number of
clusters can:

Y, | c, =k~ Student-t(y,, o) - be learned from data

- differ across time and
subjects



One subject model

-~ Dynamic Brain Region Clustering:

w, | n ~ Dirichlet (%, ,%) W, = (a)01, ...,a)OK)

ES,oarse Hierarchical Mixture of Mixtures Model

n~ Gamma(dl’ d2) Malsiner-Walli et al. 2016 (Stat. Comput.)



Clustering Subjects

From clustering brain regions over time in a single subject to multiple subjects:

Identify

Data + Temporal '
profiles

(subgroups)

. Profile: specific sequence of brain-region clusters during the experiment
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. Profile: specific sequence of brain-region clusters during the experiment

Profile 1
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Subject clusters

. Profile: specific sequence of brain-region clusters during the experiment

Profile 1 Profile 2
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Subject clusters

. Profile: specific sequence of brain-region clusters during the experiment

Profile 2

\Profile 3

Profile 1
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Subject clusters

. Profile: specific sequence of brain-region clusters during the experiment

Profile 2

\Profile 3

Profile 4
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Full model

For subject i, brain region r and time ¢

s; ~ Categorical(ry, ..., my)

@ Profile of subject i J—I—L ------ J—  ~ Dirichlet ( N N)

e ~ Gammac(b,, b,)

Sparse Finite Mixture




Full model

For subject i, brain region r and time ¢

@ @ Probability that a cluster persists over time

with probability &/  ¢'¥= ¢
@ Cluster of region r P ya “ri = Cri-1
attime 7 for profile s; 7\, ish probability 1 — o ¢ ~ Categ (p(f,)... 152)

. . ’ (Si) .
@ Profile of subject 1 p | po ~ Dirichlet(¢ wy,, ..., P por),
. n i
~ Dirichlet | —, ..., —

n ~ Gammald,, d,)

[Finite approx. of Hierarchical Dirichlet Process]



Full model

For subject i, brain region r and time ¢

@ @ Probability that a cluster persists over time

@ Cluster of region r
at time ¢ for profile s;
I/il’t ‘ Si == Z, Cﬁtz) — k, //tk, Uk ~ StUdent't(ﬂk, Gk)

Proflle of subject 1 ‘
Mean and ; ind
standard ll’f ‘ C( ) = k Hies Virt NOrmaI(//tka lrt)
deviation of Vi, c(” _k (;2 iid nv-73(v. o )

cluster k



Posterior Inference

* We design a MCMC for posterior inference, mostly using Gibbs updates

» Crucial step is the update of cluster-assignment sequence (c,fﬁ, o c,,,(;)) for each
profile z and region r

* For the case with no profiles, Page et al. (2022) propose a marginal sampler
> Lety, , = 1 with probability @, (so y,,is an indicator of cluster persistence)

> Marginal updates are conditional on present and future persistence indicators

and cluster assignments

v

o o




Block update of region clusters

* We design update of cluster-assignment sequences in block:

> Update persistence indicators and cluster assignments together and
sequentially, only conditioned on the past



Blocked vs Marginal Sampler

BL = Binder loss

MAE = Mean Absolute
Error of state
parameters

f-measure

(F1, combining precision
and recall)

for changepoint
detection accuracy
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Application to fMRI study

*N = 23 Healthy Subjects R = 11 ROIs known to be involved in

Default Mode Network (DMN): Posterior Cingulate Cortex (PCC), left/right
Dorsolateral Prefrontal Cortex (L/R DLPFC), left/right posterior Inferior

Parietal Lobule (L/R plPL), left Parahippocampal Gyrus (L PHG), and left
Inferolateral Temporal Cortex (L ITC)

Salience Network (SN): Left/right Insula (L/R Insula), left/right Lateral
Parietal regions (L/R LP)

SQ1 RS1 SQ2 RS2 SQ3 RS3 SQ4 RS4 SQ5 RSS

2 @2@2@Q2@2@

i — — —i —

18sec 2min 18sec 2min 18sec Smin 18sec 1Tmin 18sec 1 min

Image credit: Hussain, Sana, et al. (2023)



Results
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Dynamic Partition Linear Model

! Instead of looking at unit-specific allocations, look at the change in the partitions as
a whole




Dynamic Linear Models - A primer

Dynamic linear models (DLMs) are commonly used for time-series data due to their flexibility and
adaptabillity.

They define a class of state-space models
As such they are characterized by a system of two equations:

<~ an observation equation, which describes the observed data as a linear combination of latent state
variables with noise,

~ state equation that describes how latent states evolve over time, thereby tracking the underlying

—

dynamics of the system.



A simple DLM: A Local Level model (LLM)

Let Y, = {Y Lpp e Yn,t} be an n-dimensional vector observed at f = 1,..., T time points

In an LLM, the observed data are composed of a level component plus a random noise:
Yie = Pit + &
. id )
with e, ~ N (O,T )
o P, = {ﬁl,t, el ﬂn,t} the underlying level or trend of the time series:

Bit = Pit—1 + wy

where @, i N(O,1)



Local Level Dynamic Random Partition Model (LLDPM)



Local Level Dynamic Random Partition Model (LLDPM)

For each unit (e.g., eacharm)i € {1,...,n}, we have:

<~ a model for the observation equation (e.g., the Gaussian kernel):

ind
Yz‘,t -Bz’,t ~ p(y?;,t, | /B?Z,t,).

<~ The state equation governs the dynamics of the time-varying partitions

< Similarly to the LLM we want to tie the partition at time -7, possibly with the partition at time ¢

LLM = Random Walk
LLDPM = partitions are discrete = NDARMA-like formulation (Jacobs & Lewis, 1983)



Local Level Dynamic Random Partition Model (LLDPM)

NDARMA describes a stationary discrete-valued analogue of ARMA built by randomly choosing
whether the next value is copied from a past observation or taken from an innovation.
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Local Level Dynamic Random Partition Model (LLDPM)

NDARMA describes a stationary discrete-valued analogue of ARMA built by randomly choosing
whether the next value is copied from a past observation or taken from an innovation.

Let 7z, indicate a partition at time t

~ Let | ;| indicate the number of clusters/blocks identified in the partition at time

=

among the n units

< Let y, indicate a (latent) changepoint (cgp) indicator (O=no cgp; 1=cgp)
detects changes in the partitions of units from time ¢ - 1 to time ¢

o p* (th) indicates the distribution of a base random partition model

a probability distribution that describes the probability of different clusters
allocations at each time t = e.g. CRP
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n, ~ Beta(a, b) partition at time t-1



Local Level Dynamic Random Partition Model (LLDPM)

The partition-based state equation is characterized as a mixture over two partition models:

7 | =1y V2:(=1) ™~ (1 — Vt) 5@_1 (”r) +7, D" (”z)
< T o<

Fully dependent case Innovation
The partition at time t The partition at
coincides time t is extracted
o with the partition at from the base
y, ~ Bern (nt) time t-1 process
independently of
jid the

n, ~ Beta(a, b) partition at time t-1

One can be more creative in the definition state equation (NDARMA) and prior for ¥,




Local Level Dynamic Random Partition Model (LLDPM)

Average lagged ARI for the pairwise n=0.95 n=0.75

comparison of T=10 random 13 13 13 [1-‘3

partitions ;. assuming a base 8 8 8 0.8
7 7 7

* _

orocess p*( + ) = perpl + ) 5 6 6 0.6
5 5 5
4 4 4 0.4
3 3 3

For each matrix, the pixel in position ? ‘13 f 0.2

(i, j) refers to the comparison of r; 1234567 8 910 1234567 8 910 12345678910

and ;. n=0.25 n=0.05 n=0
10 10 10 1.0
9 9 9 I

For each value of #, values of the 8 8 8 0.8
7 7 7

lagged ARI are averaged over a 5 5 5 i

sample of 10,000 partitions. 5 5 5
4 4 4 0.4
3 3 3

The temporal dependence increases 2 2 2 0.2
1 1 1

as the temporal dependence 12345678 910 12345678 910 12345678 910

parameter n decreases.



Gesture Phase Segmentation data

Sensor data recordings of users recounting comic book stories (data from UCI ML repository)

The dataset provides scalar velocity and acceleration
values over four sensors, placed on the left hand, right
hand, left wrist, and right wrist

= N = 8 sensor measurements at regular time intervals




Gesture Phase Segmentation data

Position

— Left hand 1
— Right hand 1
— Left wrist 1
— Right wrist 1
— Left hand 2
— Right hand 2
— Left wrist 2
— Right wrist 2

Scalar velocity

0 100 200 300

T =349



Changepoint detection




Zooming in on a time-window

8 8 8 V4 8 8
Sensors:
/ / ’ S ! / 1: Left hand 1
6 6 5 3 6 6 2: Right hand 1
3: Left wrist 1
g 5 5 4 1 5 5
N 4: Right wrist 1
-
Al 4 4 3 3 ‘ 4 4 | 5 Lefthand 2
6: Right hand 2
3 3 1 6 3 3 g t han
7: Left wrist 2
€ e 6 4 / 2 8: Right wrist 2
1 1 2 2 1 1
355 31;6 3:I37 3II38 3:;9 34110

Times



“Concluding” remarks: challenges in complex applications

Scalability in all dimensions (units and time)
Incorporating available information (spatial dependence, covariates)

Combine BNP methods with biological mechanistic models over time (change points trigger
different modeling)

Assessing uncertainty (in partitions, which is also a function of the inference on changepoints)

Interpretation of random partitions (e.g., association with measurable outcome




Decoding neuronal ensembles from

spatially-referenced calcium traces




All the light that we can see: a new era in
miniaturized microscopy

One major challenge in neuroscience is to uncover how defined neural circuits in the brain encode, store,

modify, and retrieve information. Meeting this challenge comprehensively requires tools capable of recording

and manipulating the activity of intact neural networks in naturally behaving animals. Head-mounted miniature
microscopes are emerging as a key tool to address this challenge. Here we discuss recent work leading to the
miniaturization of neural imaging tools, the current state of the art in this field, and the importance and necessity of
open-source options. We finish with a discussion on what the future may hold for miniature microscopy.

Daniel Aharoni, Baljit S. Khakh, Alcino J.Silva and Peyman Golshani

ecades of neuroscience research imaging emerged, allowing the structural behavioral tests that provide a wealth of
D have led to the development and and functional imaging of large neuronal associated information. At the same time,
refinement of diverse behavioral networks at cellular resolution’*. However, electrophysiological techniques were
assays to probe the necessity and sufficiency these imaging techniques required the developed to probe the activity of large
of specific brain circuits and molecular animals to be head-fixed, thus limiting ensembles of neurons with single-cell
pathways in a multitude of tasks'~. In parallel,  the behavioral repertoire and preventing resolution™, Yet these methods, for the most
imaging techniques such as two-photon researchers from using a large battery of part, did not allow the identification of cell

NATURE METHODS | VOL 16 | JANUARY 2019 | 9-15 | www.nature.com/naturemethods 1



Mapping neuronal activity in real time

Calcium imaging is a microscopy
technique to optically measure the
intracellular calcium concentration of

neurons in awake animals.

The mechanism at the basis of calcium
imaging is a physiological process of the
cells: when a neuron fires, calcium floods

the cell and produces a transient spike in
Its concentration

Achromatic
lens

10 mm

Half-ball
lens

200 pm
Fig. 1| Open-source UCLA Miniscope. a, A mouse with a head-mounted Miniscope. b, Cross-sectional . . .
rendering of the Miniscope optical path. Blue, excitation path; green, emission optical path; GRIN, Fl uorescent Ca ICI um Ind Icators bl nd to
gradient-index lens. ¢, Maximum projection of a 10-minute motion-corrected Miniscope recording of ca |C| um iOnS d u ri ng neurona I aCtivation

hippocampal CA1 pyramidal neurons labeled with GCaMPéf. d, Spatial footprints of identified neurons
from the recording in €. Scale bar in d applies to c.

-~ Outcome: movie of time-varying
fluorescence intensities for each
observable neuron in a targeted area.



Calcium imaging measurements

I | T . T
0 10 20 30 &0
f | T Il| T
] 10 20 30 40

I T T 1 T
0 10 a0 <0

Time (seconds)

LJ Physiological process (often model mathematically) behind calcium imaging:
< External Stimulus: Triggers a neuronal response
< Neuronal Activation: Calcium floods the cell, causing a temporary increase
in intracellular calcium concentration
= Return to Baseline: calcium levels return to their normal state as the neuron
goes back to rest

L) Fluorescent calcium traces are proxies of the activity over time of individual neurons



Neuronal Data from a freely moving mice

y coordinate

-1 .D _05 Uﬂ DS 1{} M J ris R | SR P - -ml- I ey,

X coordinate

0 200 400 600
Time (seconds)

U Recorded hippocampal CA1 activity in a freely moving mouse exploring a circular
arena (Chen et al, 2023)

U CA1 supports spatial navigation and episodic memory (implicated also in AD)
U 229 neurons over 5,435 time points across a 12-minute session

U The arena is split into a center and outer ring, and the time series is segmented into
position-defined windows



Our Data

229 neurons,
more than
5000 time points;
scalability
becomes important

y coordinate

-10 -05 0.0 0.5
X coordinate

0 200 400 600
Time (seconds)

Jointly infer spikes and cluster neurons from calcium imaging
Enforce spatially coherent clustering

Link neural ensembles to behavior & examine context-dependent shifts in
clustering (doubly-spatial problem)



Clustering of neurons overe a time window
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Neuronal responses to mouse position

 Co-clustering analysis:

select neurons frequently
clustered together and try
to understand their spike
patterns associated with
the mouse position
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Spatial cluster variability

Posterior mode of the number of clusters Posterior variance of the number of clusters
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Heatmaps showing the spatial distribution of the clustering complexity
and variability. Each point of the mouse trajectory is weighted by the

mode (left panel) and variance (right panel) of the posterior distribution of
the number of clusters in that location.



Similar data are also available on humans

_Article

Distinct neuronal populationsinthe human /s osomo:
brain combine content and context

Marcel Bausch'™, Johannes Niediek'?, Thomas P. Reber'?, Sina Mackay', Jan Bostrom”®,
Christian E. Elger' & Florian Mormann'®

Open access

Participants/recordings: 16 neurosurgical epilepsy patients; 3,109 single units recorded across amygdala,
parahippocampal cortex, entorhinal cortex, and hippocampus.

Neural data: microwire recordings from implanted intracranial electrodes in epilepsy patients.

Behavioral data: A context question (the rule), one of five: Bigger? Last seen in real life? More expensive? or
Older? (depending on picture set), Like better? Brighter? = Two pictures are shown sequentially (two of the four).
= An answer prompt “1 or 27”; the participant presses 1 or 2 to indicate which picture best fits the question.

Separate neurons into (mostly non-overlapping) sets based on whether their firing rates depend on:
Content (stimulus identity): neurons whose activity changes depending on which picture 1s shown
Context (task rule/question): neurons whose activity changes depending on which question/rule is active

Conjunctive (stimulus x context): neurons that respond specifically to a particular combination of picture and
question



Bayesian temporal
biclustering with
applications to multi-
subject neuroscience
studies

Local Level Dynamic
Random Partition
Models
for Changepoint
Detection
(BA, in press)

Decoding Neuronal
Ensembles from
Spatially-
Referenced
Calcium Traces: A
Bayesian
Semiparametric
Approach

Thank youl!



