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Bayesian mixture models

K
W\O,W""Nd'Zkagk(-) i=1,...,n 0 " pg, W= (Wi,...,Wk) ~ Pu.
k=1

fy = parametric family, K = number of components (finite or infinite)

Blei et al., 2004; Marin et al., 2005, McLachlan et al., 2019
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Bayesian mixture models

K
Y,-\@,W%"Zkaek(-) i=1,...,n Ok =~ pg, W= (Wi,...,Wk)~ Pw.
k=1

fy = parametric family, K = number of components (finite or infinite)

e Very classical models. Applied in various fields in many variants’
¢ Building block of larger probabilistic models (e.g. hierarchical, temporal, .. .)
e Computationally challenging (i.e. algorithms slow for large n!)
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'Blei et al., 2004; Marin et al., 2005, McLachlan et al., 2019
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Formulation with allocation variables

Introduce allocation variables‘ c=(cy,...,cn) € [K]"

. Assume K fixed for now!
iid. iid. i.id.
\/I' | 0707 w ~ fQC,(y)v C/ | 07 w ~ MUIt(W)a 9/( ~ va W~ pW
X2
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Classical MCMC for (finite) mixture models

If| pw = Dir(a) |, with a = (v, . . ., @):

e Conditional sampler: updates ‘ c~ m(cl0,w) ‘ and ’ (0,w) ~ 7(6,w|c) ‘with target

n

K
m(c,0,w) oc [T w @ T o, (Yi)po(6k) n(e) = 1(c; = k)
k=1

iici=k i=1
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Classical MCMC for (finite) mixture models

If| pw = Dir(a) |, with a = (v, . . ., @):

e Conditional sampler: updates ‘ c~ m(cl0,w) ‘ and ’ (0,w) ~ 7(6,w|c) ‘with target

m(c,0,w) o H we O T fo(Y)po(B) nk(c) =Y 1(c; = k)

iici=k i=1

* Marginal sampler: updates ‘ ci~m(ci|c_j)forieln] ‘with target

K
m(c) HF o+ nk(c)) / H fa, (Yi)Po (0k) dO
ke

i:c=
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Classical MCMC for (finite) mixture models

If| pw = Dir(a) |, with a = (v, . . ., @):

e Conditional sampler: updates ‘ c~ m(cl0,w) ‘ and ’ (0,w) ~ 7(6,w|c) ‘with target

n
m(c, 8, w) x H w @O T £, (Yi)Pa(6k) n(c) =" 1(ci = k)
i:ci=k i=1
* Marginal sampler: updates ‘ ci~m(ci|c_j)forieln] ‘with target
K
m(c) Hr(a+nk c)) / H fa, (Yi)Po (0k) dO
k=1 i:ci=

e Similarly happens with and p,, the GEM distribution =- Dirichlet process!
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Marginal (Gibbs) sampler

w(c)-reversible Markov kernel Pyg on [K]”

112]13]4]5 n
At each iteration: h
1. Sample i ~ Unif([n]) t e ®
2. Update ¢; ~ w(c; | c_i) o|e
° oo
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Marginal (Gibbs) sampler

w(c)-reversible Markov kernel Pyg on [K]” :
1123145 n
At each iteration: o
1. Sample i ~ Unif([n]) t e ®
2. Update ¢; ~ w(c; | c_i) o|e

® o|e
® Arguably among the most popular MCMC schemes for mixture models.

e Simple to implement.

* O(K) cost per iteration.

How does it scale with n?
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Prior case: slow convergence

Consider the prior case: | fp(y) = f(y)| < limiting case of weakly informative data.
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Prior case: slow convergence

Consider the prior case: | fp(y) = f(y)| < limiting case of weakly informative data.

Theorem (variation of Khare and Zou, 2009)
The L2-relaxation time of Py is
n(n+ Ko —1
trer = (K—a) ~ P

¢ Related to Pélya urns and models in population genetics

e Implication: | O(n?) | required for convergence

® |ntuition: random-walk behaviour = see later!
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Posterior case: slow convergence
Consider data generated as

Y, "¢ 0.9N(y | 0.9,1) + 0.1N(y | —0.9,1) | i=1,...,n=2000

and consider K =2 and fy(y) = N(y | ,1) <« “easy” problem.
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Posterior case: slow convergence

Consider data generated as

Y, "¢ 0.9N(y | 0.9,1) + 0.1N(y | —0.9,1) | i=1,...,n=2000

and consider K =2 and fy(y) = N(y | 6,1) <« “easy” problem.

Marginal

Traceplot of the size of the o |
largest cluster. ©

Initialized uniformly at random. @ |
Thinning of size n = 2000.

We expect to be close t0 0.9 in S
stationarity. |

iy % 5o 5o
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Posterior case: our proposal

Consider data generated as

Y, "¢ 0.9N(y | 0.9,1) + 0.1N(y | —0.9,1) | i=1,...,n=2000

and consider K =2 and fy(y) = N(y | 6,1) <« “easy” problem.

Non reversible

1.0

Traceplot of the size of the
largest cluster.

Initialized uniformly at random. @ |
Thinning of size n = 2000.

0.9
|

We expect to be close t0 0.9 in S
stationarity. |
iy % 5 5o
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Posterior case: our proposal (advanced)

Consider data generated as

Y, "¢ 0.9N(y | 0.9,1) + 0.1N(y | —0.9,1) | i=1,...,n=2000

and consider K =2 and fy(y) = N(y | 6,1) <« “easy” problem.

Informed non reversible

1.0

Traceplot of the size of the
largest cluster.

Initialized uniformly at random. @ |
Thinning of size n = 2000.

0.9
|

M\AMMNWWW

We expect to be close t0 0.9 in S
stationarity. |
iy % 5 5o
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Goal of this talk

* The marginal sampler is provably and empirically slow under many scenarios of interest.
e |ts issues when n is large have been known for a long time 2.
® Py is arguably one of the most popular MCMC schemes for mixture models.

2Celeux et al. (2000)
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Goal of this talk

* The marginal sampler is provably and empirically slow under many scenarios of interest.
e |ts issues when n is large have been known for a long time 2.
® Py is arguably one of the most popular MCMC schemes for mixture models.

What's next?
¢ Understanding why Py is slow.
¢ Showing a random-walk behaviour of Py when nis large.

e Exploit recent literature on non-reversible sampler to devise a simple and more efficient
MCMC scheme (scaling linearly with n in the prior case).

2Celeux et al. (2000)
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Goal of this talk

* The marginal sampler is provably and empirically slow under many scenarios of interest.
e |ts issues when n is large have been known for a long time 2.
® Py is arguably one of the most popular MCMC schemes for mixture models.

What's next?
¢ Understanding why Py is slow.
¢ Showing a random-walk behaviour of Py when nis large.

e Exploit recent literature on non-reversible sampler to devise a simple and more efficient
MCMC scheme (scaling linearly with n in the prior case).

A. F and Zanella, G. (2026+) A fast non-reversible sampler for Bayesian finite mixture models.
Under review.

2Celeux et al. (2000)

Filippo Ascolani (Duke University) Non-reversible MCMC for mixture models January 14, 2026 10/41



Insight: scaling limit

{cO}; Markov chain on [K]" with kernel Pyg

3Deinitializing Markov chain using the terminology of Roberts and Rosenthal (2001)
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Insight: scaling limit

{cO}; Markov chain on [K]" with kernel Pyg

Consider prior case: | fy(y) = f(y) | Define

nk (c®) multiplicity of component k at iteration ¢
Xu(€) = —p—| = n

By symmetry of 7(c) across i € [n], convergence of c(!) fully determined® by the Markov chain

Xe=(Xet,. .., Xek) t=0,1,2,...

3Deinitializing Markov chain using the terminology of Roberts and Rosenthal (2001)
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Insight: scaling limit

Expected change after one iteration:

1 a + NXy Ka—a+ n(1 — xg
[E[Xm’k_xkXt:x]:n[(1_xk)Ka+n—1_Xk Ka+n(—1 )
2 Ta Xk
=1 |5 ~ Koz +ol1)
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Insight: scaling limit

Expected change after one iteration:

1 a + nXx
[E[Xt+1,k—Xk\Xt=X]:E {(1_Xk) i

KOz—Oé+f7(1 —Xk)
Ka+n-1

Ka+n-—1

2 Ta Xk

e p ~ Ko +oh)
* We expect O(n?) iterations are needed for O(1) distance.
¢ |ntuition: the two probabilities cancel!

e This can be made more rigorous.
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Insight: scaling limit

Let| Z\” = X[z | < time acceleration by O(r?).
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Insight: scaling limit

Let| Z\” = X[z | < time acceleration by O(r?).

Theorem
{Zg”)},@?+ — {Zt}icr, weakly as n — oo, where {Z:}icr, is a diffusion process with generator
K 9 K 2
Lg(x) = ; o(1 - ka)akag(x) + k%; Xk (Srer — X )mg(x),

* Wright-Fisher process = diffusion on the unit simplex
e Diffusive behaviour at the level of cluster sizes.
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Insight: scaling limit

Main reason underlying diffusive behaviour:

1 1
[P(X[+1)k—Xk=—|-n|X[:X> %Xk(‘I —Xk)%[P(XHLk—Xk:—n|Xt:X>.

Almost equally likely to move along the two directions.

The chain moves back and forth a lot!

Reasonable that this happens also a posteriori (in weakly informative cases).
How to solve this?
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A simple example:

Chain in Diaconis et al. (2000).

1/2
A 1/2 1/2 1/2
7 A T A A .
C1>v\_/ > w__ - 3 w__
1/2 1/2 1/2

problem
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A simple example: problem
Chain in Diaconis et al. (2000).

1/2 1/2
N 12 12 12 1/2 12 N
A A~ A A~
1oz 2 a2 3 a1 12 ™ 4 M

* Reversible chain with n states.
* O(rP) iterations are needed to converge = similar to our case!
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A simple example: solution

1-1/n 1-1/n
1,+ 2,+ 3,+
1/n l T 1-1/n Il/n Il/n
1/n
8 1-1/n 1-1/n
1,- 2,- 3,-
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A simple example: solution

1/n
1-1/n 1-1/n 1-1/n ¥\
- - ——0O
1,+ 2,+ 3,+ n-1,+ n,+
1/n l T 1-1/n Il/n Il/n Il/n 1-1/nl T 1/n
1/n
¥\ 1-1/n 1-1/n 1-1/n
O < < s —
1,- 2,- 3,- n-1,- n,-

* Non-reversible (lifted) chain = we add a direction!
® O(n) iterations are needed to converge = fast!
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Non-reversible sampler (informal)

Extended target: | 7(c, v) = 7(c) (

1

2

)K(K—1)/2

‘ vk k = direction across clusters k and k'

Filippo Ascolani (Duke University)

Non-reversible MCMC for mixture models

ce K], v= (Vi )kek € {—1,+1}1KK=1/2
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Non-reversible sampler (informal)

1\ K(K=1)/2
Extended target: | 7(c, v) = 7(c) (2) ce[K]", v =(Vik )kek € {—1,+1}KK-1/2

‘ vk k = direction across clusters k and k'

(e, v)-invariant Markov kernel Pyg:

1. Sample a pair of clusters (k, k') € [K]?. i L z
2. Propose to move a single observation according to K = ° °

Vikk: e 7\/
3. Accept with usual Metropolis-Hastings ratio. k' ° oo

4. If rejected, flip vik:.
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Non-reversible sampler

1 (K-1)/2
Extended target: | #(c, v) = 7(c) (2) c € [K]", v = (Vi Jkek € {—1,+1}KKN/2

‘ vk k¢ = direction across clusters k and k’

(e, v)-invariant Markov kernel Pyg:

. Sample (k, k') € [K]? with probability 24211 (k < k')
2003 ik RIE
2. Set (k_.ky) = (k. K')L(Viw = +1) + (K, K)L(Viw = —1) E -
3. Sample i ~ Unif ({/' : ¢» = k_}) and set ¢; = k. withprob. « [ [e| [e| [ [eo| | |
ol ?V
[ BN J

: nk_(c) ) m(ci = ky | c,-)} ,
min ¢ 1, . k °
{ (nk+(C) +1 7T(C,‘ = k_ | C_,')
If reject, flip Vi
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Remarks
* Pyr is a mixture of lifted kernels with selection* probabilities p,:
Par(c.¢) = pe(k,K') Py (c.c)
k<k’

where P is the MH-lift with direction v .

~» multiple velocity components (Vi )x<k . At each rejection, flip only one of them.

4Here pe(k, k') = 7’7;(;(0,)::”1;(;,50)
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Remarks
* Pyr is a mixture of lifted kernels with selection* probabilities p,:

Pw(c.c') = > polk, K)PYD(c, )
k<k’

where P is the MH-lift with direction v .

~» multiple velocity components (Vi )x<k . At each rejection, flip only one of them.

¢ For mixture models, acceptance probability becomes

n_(€) m(ai=kilc) pYil Yoiscoici=ky) 1
= 1
ne (c) +1m(ci=ko|c_i)) p(Yi|Yoic_j,ci=k_) (1+0(n™)

likelihood ratio

~» proposal matches the prior to favour long excursions!

“Here pe(k, k') = 7’7;(;(0,)::”1;(;,50)
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Scaling limit

Again prior case | fp(y) = f(y)

ZE”) = (Xint1. Vinry) < time acceleration by O(n)
Theorem

{Zﬁ”)} ter, — {Zt}ter, weakly as n — oo, where {Z:}:cr, is an (ergodic) piecewise deterministic
Markov process

¢ No diffusive behaviour
® Pyr gives O(n) speedup relative to Py in prior case!
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Scaling limit

Again prior case | fp(y) = f(y)

ZE”) = (Xint1. Vinry) < time acceleration by O(n)
Theorem

{Zﬁ”)} ter, — {Zt}ter, weakly as n — oo, where {Z:}:cr, is an (ergodic) piecewise deterministic
Markov process

¢ No diffusive behaviour
® Pyr gives O(n) speedup relative to Py in prior case!

What about more general 7?
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Asymptotic variance comparisons

;
Var(g, P) := lim Var( Z ) for Xo ~ 7, Xey1|Xe ~ P(Xy, ")
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Asymptotic variance comparisons

;
Var(g, P) := lim Var( Z ) for Xo ~ 7, Xey1|Xe ~ P(Xy, ")

Theorem
Forevery w on[K]" and g : [K]" — R we have

| Var(g, Pxx) < 2(K — 1) Var(g, Puc) + (2K — 3) Var«(g) |

and‘ Var(g, Puc) < Var(g, PCD)‘

Puvc = marginal sampler; Pxr = non-reversible sampler; Pcp = conditional sampler
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Asymptotic variance comparisons

Theorem (Approximately)
Foreverywon[K]" and g : [K]" — R we have

| Var(g, Pe) < 2(K — 1) Var(g, Puo) |

e Cost(Puc) = O(K) and Cost(Pxr) = O(1) ~» little to loose by using Pur instead of Pyg
(typical feature of lifted schemes)
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Asymptotic variance comparisons

Theorem (Approximately)
Foreverymon[K]" and g : [K]" — R we have

| Var(g, Pxe) < 2(K — 1) Var(g, Pug) |, | Var(g, Puc) < Var(g, Peo) |

® Cost(Pyg) = O(K) and Cost(Pxr) = O(1) ~ little to loose by using Pyg instead of Pyg
(typical feature of lifted schemes)

® The conditional sampler is always less efficient than the marginal one.
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Asymptotic variance comparisons

Theorem (Approximately)
Foreverymon[K]" and g : [K]" — R we have

| Var(g, Pxe) < 2(K — 1) Var(g, Pug) |, | Var(g, Puc) < Var(g, Peo) |

® Cost(Pyg) = O(K) and Cost(Pxr) = O(1) ~ little to loose by using Pyg instead of Pyg
(typical feature of lifted schemes)

® The conditional sampler is always less efficient than the marginal one.
¢ Do we gain much when targeting mixture model posteriors?
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Bayesian discrete posteriors: does lifting help?

¢ Data often makes Bayesian posteriors with discrete parameters® sharply concentrated and
non-smooth
~ large ‘discrete gradients’ speed-up reversible samplers® while reducing excursion lengths
for lifted MCMC’

5e.g. variable selection, stochastic block model, graphical models
6Yang et al., 2016; Zhou et al., 2022; Zhou and Chang, 2023, ...
7different from, e.g., successful applications of lifting to Statistical Physics models
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Bayesian discrete posteriors: does lifting help?

¢ Data often makes Bayesian posteriors with discrete parameters® sharply concentrated and
non-smooth
~ large ‘discrete gradients’ speed-up reversible samplers® while reducing excursion lengths
for lifted MCMC’
* By contrast, mixture models have statistical features that are well-suited to lifted samplers,
e.g.:
1. Lack of posterior concentration

2. Flatness in the tails
3. Overfitted regimes

5e.g. variable selection, stochastic block model, graphical models
6Yang et al., 2016; Zhou et al., 2022; Zhou and Chang, 2023, ...
7different from, e.g., successful applications of lifting to Statistical Physics models
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration for c: for data (Yi, ..., Y,) generated from mixture with true
parameters (6%, w*):8
(0, W) — S wx) a@SN— o0

7(€) » de« nor w(c) » dcr @S N—o00
Intuition: only one observation per ‘parameter’ ¢;

Contrast with Bayesian variable selection, stochastic block model, graphical models, where
concentration in discrete model space occurs.

8with convergence to (o=, w+) In an appropriate sense, see e.g. Nguyen (2013); Guha et al. (2021)
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration
2. Flatness in the tails: for random ¢ ~ Unif([K]")

ng(c) w(ci=kK|c_i)

_ —1/2
)+ 1=kl o)

~+ vanishing ‘discrete gradients’ in tails
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration

. Flatness in the tails
. Overfitted or misspecified regimes: mixture models often used in overfitted (i.e. K* ‘true’
components with K* < Kj; left figure) and misspecified (right figure) regimes

~+ weakly identifiable and strongly overlapping clusters with

p(Yi| Y_i,c_j ¢ =ky)
p(Yi| Y_i,c_j,ci=k-)

~ 1
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Numerics: set-up

e Parametric family: 1d Gaussian mixture model

f@(y):N(y|971)a pO(e):N(9|071)

e Data: generate n = 1000 data points from mixture with K* components. Fit mixture with K
components
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Numerics: set-up

e Parametric family: 1d Gaussian mixture model
fo(y) = N(y 16,1), po(0)=N(610,1)

e Data: generate n = 1000 data points from mixture with K* components. Fit mixture with K
components
e Compare Py and Pxr through prior-posterior check:
- Generate random datasets Y from the model distribution p(Y)
- Sample from posterior 7(c) := p(c|Y) with MCMC
- If chains reach convergence we should recover the prior distribution p(c)
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Left: final proportions of the first two components after 100 x n iterations = Dirichlet(1,1,1)

Firstcase: K=K*=3,a =1

Right: evolution over time with thinning of size n. Gray = Pyg, Black = Pyr

Marginal
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Secondcase: K=K*=3,a=0.1
Left: final proportions of the first two components after 100 x n iterations = Dirichlet(0.1,0.1,0.1)
Right: evolution over time with thinning of size n. Gray = Pyg, Black = Pyxr
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Dirichlet process mixtures

yi|pi-,i;9' Pfa(-) i=1,....n P ~ DP(a, Pp).

DP(«, Py) = Dirichlet process, o = concentration parameter, Py = baseline distribution.

9Ruggiero and Walker (2009)
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Dirichlet process mixtures

Yi| P= Ph()

i=1

PR

)

n

DP(«, Py) = Dirichlet process, o = concentration parameter, Py = baseline distribution.

Similar situation as before!

P ~ DP(a, P).

* The marginal sampler is even more popular (and often slow to converge).
e The prior case still admits a scaling limit with O(n?) scaling factor®.
e Wright-Fisher process — Fleming-Viot process.

9Ruggiero and Walker (2009)
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Dirichlet process mixtures

The non-reversible sampler works as before! At each iteration:
1. Select a pair of clusters (k, k') + allowing to select a new one.
2. Propose a move according to the direction v .
3. If rejected, flip vi .
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Dirichlet process mixtures

The non-reversible sampler works as before! At each iteration:
1. Select a pair of clusters (k, k') + allowing to select a new one.
2. Propose a move according to the direction v .
3. If rejected, flip vi .

Not discussed in this talk:
e Adjusting the non-reversible sampler to the space of partitions is not triviall
* We need to allow creation and elimination of clusters.
® The selection probabilities must be chosen to preserve ergodicity.
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Numerics: set-up

e Parametric family: 1d Gaussian mixture model

* Data: generate n = 1000 data points from the associated Dirichlet Process Mixture model.
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Numerics: set-up

e Parametric family: 1d Gaussian mixture model

* Data: generate n = 1000 data points from the associated Dirichlet Process Mixture model.

e Compare Py and Pxr through prior-posterior check:
- Generate random datasets Y from the model distribution p(Y)
- Sample from posterior 7(c) := p(c|Y) with MCMC
- If chains reach convergence we should recover the prior distribution.
- We focus on the distribution of the largest cluster.
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the prior distribution.

Right: evolution over time with thinning of size n. Gray = Pyg, Black = Pyr

Marginal

Dirichlet process mixtures with a = 0.1
Left: histogram of the proportion of the largest cluster after 100 x n iterations, compared with
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Practical takeaways

When should lifting help for mixture model samplers?
e Components not well-separated
e During convergence phase
* Overfitted case with K > K*
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Practical takeaways

When should lifting help for mixture model samplers?
e Components not well-separated
e During convergence phase
¢ Overfitted case with K > K*
Expect less improvement when
e Components are well-separated, K = K* and closer to convergence
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Limitations (of methodology)

e For lifting to work well, need to engineer directions with acceptance ~ 1
~+ not easy to do in general!

e Example: if K = K* = 2 and components well-separated obtain

Marginal Non reversible
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Can we improve?
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Informed versions

e Combining lifting with informed proposals'® leads to MH acceptance~1
~ allows to preserve momentum!

Marginal Non reversible Informed non reversible
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10Zanella (2020), Power and Goldman (2019), Gagnon and Maire (2024)
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NB: here informed version only needed to increase acceptance and preserve momentum!

Reversible Non-reversible

Uninformed
07 08 09 10
L A

06

1.0 0.5

Informed
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T
[ 50 100 150 0 50 100 150
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NB: here informed version only needed to increase acceptance and preserve momentum!

Reversible Non-reversible
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Issue: in general O(n) cost per iteration. Can we do something cheaper?
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Cheaper informed versions

¢ Sample random neighborhood of size m and use informed proposal therein'"
* Moderate m (e.g. m = 50 with n = 2000) can be enough to make « ~ 1 ~~ favourable trade-off

Non reversible Informed non reversible Cheaper version (m=50)
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"similar to random neighborhood approach of Liang et al (2022) or informed multiple-try of Gagnon et al (2023)
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Limitations (of theory)

We have
* non-deterioration results for any target
® O(n) speedup in prior case

We miss
e quantify speedup in posterior case?
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Limitations (of theory)

We have
* non-deterioration results for any target
® O(n) speedup in prior case
We miss
e quantify speedup in posterior case?
Current approach: scaling limits with data
~» no exchangeability across i € [n] ~~ measure-valued diffusion limit

Filippo Ascolani (Duke University) Non-reversible MCMC for mixture models January 14, 2026 40/41



Conclusions

Summary:
e Standard reversible algorithms for mixture models can be slow
e We introduce a non-reversible version (simple to implement, no extra cost)
® Theoretically: never slower, O(n) speed-up in prior case
e Empirically: large speed-ups in posterior case
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Conclusions

Summary:
e Standard reversible algorithms for mixture models can be slow
e We introduce a non-reversible version (simple to implement, no extra cost)
® Theoretically: never slower, O(n) speed-up in prior case
e Empirically: large speed-ups in posterior case

Many open problems:
¢ Theory for posterior case?
* More robust approaches to preserve momentum in general discrete spaces?
e Comparison with Split-and-Merge schemes?
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Conclusions

Summary:
e Standard reversible algorithms for mixture models can be slow
e We introduce a non-reversible version (simple to implement, no extra cost)
® Theoretically: never slower, O(n) speed-up in prior case
e Empirically: large speed-ups in posterior case

Many open problems:
¢ Theory for posterior case?
* More robust approaches to preserve momentum in general discrete spaces?
e Comparison with Split-and-Merge schemes?

Thanks for listening!
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