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Bayesian mixture models

Yi | θ,w
i.i.d.∼

K∑
k=1

wk fθk (·) i = 1, . . . ,n θk
i.i.d.∼ pθ, w = (w1, . . . ,wK ) ∼ pw .

fθ = parametric family, K = number of components (finite or infinite)

• Very classical models. Applied in various fields in many variants1

• Building block of larger probabilistic models (e.g. hierarchical, temporal, . . . )
• Computationally challenging (i.e. algorithms slow for large n!)

1Blei et al., 2004; Marin et al., 2005, McLachlan et al., 2019
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Formulation with allocation variables

Introduce allocation variables c = (c1, . . . , cn) ∈ [K ]n . Assume K fixed for now!

Yi | c,θ,w
i.i.d.∼ fθci

(y), ci | θ,w
i.i.d.∼ Mult(w), θk

i.i.d.∼ p0, w ∼ pw
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Classical MCMC for (finite) mixture models
If pw = Dir(α) , with α = (α, . . . , α):

• Conditional sampler: updates c ∼ π(c|θ,w) and (θ,w) ∼ π(θ,w |c) with target

π(c,θ,w) ∝
K∏

k=1

wnk (c)+α−1
k

∏
i : ci=k

fθk (Yi)pθ(θk ) nk (c) =
n∑

i=1

1(ci = k)

• Marginal sampler: updates ci ∼ π(ci | c−i) for i ∈ [n] with target

π(c) ∝
K∏

k=1

Γ (α+ nk (c))
∫
Θ

∏
i : ci=k

fθk (Yi)pθ(θk ) dθk

• Similarly happens with K =∞ and pw the GEM distribution ⇒ Dirichlet process!
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Marginal (Gibbs) sampler

π(c)-reversible Markov kernel PMG on [K ]n

At each iteration:
1. Sample i ∼ Unif([n])
2. Update ci ∼ π(ci | c−i)

• Arguably among the most popular MCMC schemes for mixture models.
• Simple to implement.
• O(K ) cost per iteration.

How does it scale with n?
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Prior case: slow convergence

Consider the prior case: fθ(y) = f (y) ⇐ limiting case of weakly informative data.

Theorem (variation of Khare and Zou, 2009)
The L2-relaxation time of PMG is

trel =
n(n + Kα− 1)

Kα
≈ n2

• Related to Pólya urns and models in population genetics

• Implication: O(n2) required for convergence

• Intuition: random-walk behaviour⇒ see later!
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Posterior case: slow convergence
Consider data generated as

Yi
i.i.d.∼ 0.9N(y | 0.9,1) + 0.1N(y | −0.9,1) , i = 1, . . . ,n = 2000

and consider K = 2 and fθ(y) = N(y | θ,1) ⇐ “easy” problem.

• Traceplot of the size of the
largest cluster.

• Initialized uniformly at random.
• Thinning of size n = 2000.
• We expect to be close to 0.9 in

stationarity.
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Posterior case: our proposal
Consider data generated as

Yi
i.i.d.∼ 0.9N(y | 0.9,1) + 0.1N(y | −0.9,1) , i = 1, . . . ,n = 2000

and consider K = 2 and fθ(y) = N(y | θ,1) ⇐ “easy” problem.

• Traceplot of the size of the
largest cluster.

• Initialized uniformly at random.
• Thinning of size n = 2000.
• We expect to be close to 0.9 in

stationarity.
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Posterior case: our proposal (advanced)
Consider data generated as

Yi
i.i.d.∼ 0.9N(y | 0.9,1) + 0.1N(y | −0.9,1) , i = 1, . . . ,n = 2000

and consider K = 2 and fθ(y) = N(y | θ,1) ⇐ “easy” problem.

• Traceplot of the size of the
largest cluster.

• Initialized uniformly at random.
• Thinning of size n = 2000.
• We expect to be close to 0.9 in

stationarity.
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Goal of this talk

• The marginal sampler is provably and empirically slow under many scenarios of interest.
• Its issues when n is large have been known for a long time 2.
• PMG is arguably one of the most popular MCMC schemes for mixture models.

What’s next?
• Understanding why PMG is slow.
• Showing a random-walk behaviour of PMG when n is large.
• Exploit recent literature on non-reversible sampler to devise a simple and more efficient

MCMC scheme (scaling linearly with n in the prior case).

A. F. and Zanella, G. (2026+) A fast non-reversible sampler for Bayesian finite mixture models.
Under review.

2Celeux et al. (2000)
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Insight: scaling limit

{c(t)}t Markov chain on [K ]n with kernel PMG

Consider prior case: fθ(y) = f (y) . Define

Xt,k (c) =
nk
(
c(t)
)

n
=

multiplicity of component k at iteration t
n

By symmetry of π(c) across i ∈ [n], convergence of c(t) fully determined3 by the Markov chain

X t = (Xt,1, . . . ,Xt,K ) t = 0,1,2, . . .

3Deinitializing Markov chain using the terminology of Roberts and Rosenthal (2001)
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Insight: scaling limit

Expected change after one iteration:

E [Xt+1,k − xk | X t = x ] =
1
n

[
(1− xk )

α+ nxk

Kα+ n − 1
− xk

Kα− α+ n(1− xk )

Kα+ n − 1

]

=
2
n2

[α
2
− Kα

xk

2
+ o(1)

]

• We expect O(n2) iterations are needed for O(1) distance.
• Intuition: the two probabilities cancel!
• This can be made more rigorous.
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Insight: scaling limit

Let Z (n)
t = X ⌈n2t⌉ ⇐ time acceleration by O(n2).

Theorem
{Z (n)

t }t∈R+ → {Z t}t∈R+ weakly as n→∞, where {Z t}t∈R+ is a diffusion process with generator

Lg(x) =
K∑

k=1

α(1− Kxk )
∂

∂xk
g(x) +

K∑
k,k ′=1

xk (δkk ′ − xk ′)
∂2

∂xk∂xk ′
g(x),

• Wright-Fisher process = diffusion on the unit simplex
• Diffusive behaviour at the level of cluster sizes.
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Insight: scaling limit

Main reason underlying diffusive behaviour:

P

(
Xt+1,k − xk = +

1
n
| X t = x

)
≈ xk (1− xk ) ≈ P

(
Xt+1,k − xk = −1

n
| X t = x

)
.

• Almost equally likely to move along the two directions.
• The chain moves back and forth a lot!
• Reasonable that this happens also a posteriori (in weakly informative cases).
• How to solve this?
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A simple example: problem
Chain in Diaconis et al. (2000).

1 2 3 n-1 n

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2 1/2

• Reversible chain with n states.
• O(n2) iterations are needed to converge⇒ similar to our case!
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A simple example: solution

1,+ 2,+ 3,+ n-1,+ n,+

1,- 2,- 3,- n-1,- n,-

1 - 1/n 1 - 1/n 1 - 1/n
1/n

1 - 1/n 1 - 1/n 1 - 1/n
1/n

1/n 1-1/n 1/n1/n 1/n1/n 1/n1/n 1-1/n 1/n

• Non-reversible (lifted) chain⇒ we add a direction!
• O(n) iterations are needed to converge⇒ fast!
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Non-reversible sampler (informal)

Extended target: π̃(c, v) = π(c)
(

1
2

)K (K−1)/2

c ∈ [K ]n, v = (vk,k ′)k<k ′ ∈ {−1,+1}K (K−1)/2

vk,k ′ = direction across clusters k and k ′

π̃(c, v)-invariant Markov kernel PNR:

1. Sample a pair of clusters (k , k ′) ∈ [K ]2.
2. Propose to move a single observation according to

vkk ′ .
3. Accept with usual Metropolis-Hastings ratio.
4. If rejected, flip vkk ′ .
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1
2
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c ∈ [K ]n, v = (vk,k ′)k<k ′ ∈ {−1,+1}K (K−1)/2

vk,k ′ = direction across clusters k and k ′

π̃(c, v)-invariant Markov kernel PNR:

1. Sample (k , k ′) ∈ [K ]2 with probability nk (c)+nk′ (c)
2(K−1)n 1(k < k ′)

2. Set (k−, k+) = (k , k ′)1(vk,k ′ = +1) + (k ′, k)1(vk,k ′ = −1)
3. Sample i ∼ Unif ({i ′ : ci′ = k−}) and set ci = k+ with prob.

min

{
1,
(

nk−(c)
nk+(c) + 1

)
π(ci = k+ | c−i)

π(ci = k− | c−i)

}
.

If reject, flip vkk ′
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Remarks

• PNR is a mixture of lifted kernels with selection4 probabilities pc :

PNR(c, c′) =
∑
k<k ′

pc(k , k ′)P(lift)
kk ′ (c, c′)

where P(lift)
kk ′ is the MH-lift with direction vkk ′ .

⇝ multiple velocity components (vkk ′)k<k ′ . At each rejection, flip only one of them.

• For mixture models, acceptance probability becomes

nk−(c)
nk+(c) + 1

π(ci = k+ | c−i)

π(ci = k− | c−i)
=

p(Yi | Y−i , c−i , ci = k+)
p(Yi | Y−i , c−i , ci = k−)︸ ︷︷ ︸

likelihood ratio

(
1 + O(n−1)

)

⇝ proposal matches the prior to favour long excursions!

4Here pc(k , k ′) =
nk (c)+nk′ (c)

2(K−1)n
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Scaling limit

Again prior case fθ(y) = f (y)

Z (n)
t =

(
X ⌈nt⌉,V ⌈nt⌉

)
⇐ time acceleration by O(n)

Theorem
{Z (n)

t }t∈R+ → {Z t}t∈R+ weakly as n→∞, where {Z t}t∈R+ is an (ergodic) piecewise deterministic
Markov process

• No diffusive behaviour
• PNR gives O(n) speedup relative to PMG in prior case!

What about more general π?
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Asymptotic variance comparisons

Var(g,P) := lim
T→∞

Var

(
1√
T

T∑
t=1

g(Xt)

)
for X0 ∼ π , Xt+1|Xt ∼ P(Xt , ·)

Theorem
For every π on [K ]n and g : [K ]n → R we have

Var(g,PNR) ≤ 2(K − 1)Var(g,PMG) + (2K − 3)Varπ(g)

and Var(g,PMG) ≤ Var(g,PCD)

PMG = marginal sampler; PNR = non-reversible sampler; PCD = conditional sampler
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Asymptotic variance comparisons

Theorem (Approximately)
For every π on [K ]n and g : [K ]n → R we have

Var(g,PNR) ≤ 2(K − 1)Var(g,PMG)

• Cost(PMG) = O(K ) and Cost(PNR) = O(1)⇝ little to loose by using PNR instead of PMG
(typical feature of lifted schemes)
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• Cost(PMG) = O(K ) and Cost(PNR) = O(1)⇝ little to loose by using PNR instead of PMG
(typical feature of lifted schemes)

• The conditional sampler is always less efficient than the marginal one.

• Do we gain much when targeting mixture model posteriors?
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Bayesian discrete posteriors: does lifting help?

• Data often makes Bayesian posteriors with discrete parameters5 sharply concentrated and
non-smooth
⇝ large ‘discrete gradients’ speed-up reversible samplers6 while reducing excursion lengths
for lifted MCMC7

• By contrast, mixture models have statistical features that are well-suited to lifted samplers,
e.g.:

1. Lack of posterior concentration
2. Flatness in the tails
3. Overfitted regimes

5e.g. variable selection, stochastic block model, graphical models
6Yang et al., 2016; Zhou et al., 2022; Zhou and Chang, 2023, . . .
7different from, e.g., successful applications of lifting to Statistical Physics models
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration for c: for data (Y1, . . . ,Yn) generated from mixture with true
parameters (θ∗,w∗):8

π(θ,w)→ δ(θ∗,w∗) as n→∞

π(c) ↛ δc∗ nor π(ci) ↛ δc∗
i

as n→∞

Intuition: only one observation per ‘parameter’ ci

Contrast with Bayesian variable selection, stochastic block model, graphical models, where
concentration in discrete model space occurs.

8with convergence to δ(θ∗,w∗) in an appropriate sense, see e.g. Nguyen (2013); Guha et al. (2021)
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration
2. Flatness in the tails: for random c ∼ Unif([K ]n)

nk (c)
nk ′(c) + 1

π(ci = k ′ | c−i)

π(ci = k | c−i)
= 1 + O(n−1/2)

⇝ vanishing ‘discrete gradients’ in tails
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Posterior case: statistical features of mixture model

1. Lack of posterior concentration
2. Flatness in the tails
3. Overfitted or misspecified regimes: mixture models often used in overfitted (i.e. K ∗ ‘true’

components with K ∗ < K ; left figure) and misspecified (right figure) regimes

⇝ weakly identifiable and strongly overlapping clusters with

p(Yi | Y−i , c−i , ci = k+)
p(Yi | Y−i , c−i , ci = k−)

≈ 1
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Numerics: set-up

• Parametric family: 1d Gaussian mixture model

fθ(y) = N(y | θ,1), p0(θ) = N(θ | 0,1)

• Data: generate n = 1000 data points from mixture with K ∗ components. Fit mixture with K
components

• Compare PMG and PNR through prior-posterior check:
- Generate random datasets Y from the model distribution p(Y )
- Sample from posterior π(c) := p(c|Y ) with MCMC
- If chains reach convergence we should recover the prior distribution p(c)
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First case: K = K ∗ = 3, α = 1
Left: final proportions of the first two components after 100× n iterations⇒ Dirichlet(1,1,1)
Right: evolution over time with thinning of size n. Gray = PMG, Black = PNR
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Second case: K = K ∗ = 3, α = 0.1
Left: final proportions of the first two components after 100× n iterations⇒ Dirichlet(0.1,0.1,0.1)
Right: evolution over time with thinning of size n. Gray = PMG, Black = PNR
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Dirichlet process mixtures

Yi | P
i.i.d.∼ Pfθ(·) i = 1, . . . ,n P ∼ DP(α,P0).

DP(α,P0) = Dirichlet process, α = concentration parameter, P0 = baseline distribution.

Similar situation as before!
• The marginal sampler is even more popular (and often slow to converge).
• The prior case still admits a scaling limit with O(n2) scaling factor9.
• Wright-Fisher process→ Fleming-Viot process.

9Ruggiero and Walker (2009)
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Dirichlet process mixtures

The non-reversible sampler works as before! At each iteration:
1. Select a pair of clusters (k , k ′)← allowing to select a new one.
2. Propose a move according to the direction vk,k ′ .
3. If rejected, flip vk,k ′ .

Not discussed in this talk:
• Adjusting the non-reversible sampler to the space of partitions is not trivial!
• We need to allow creation and elimination of clusters.
• The selection probabilities must be chosen to preserve ergodicity.
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Numerics: set-up

• Parametric family: 1d Gaussian mixture model

fθ(y) = N(y | θ,1), P0(θ) = N(θ | 0,1)

• Data: generate n = 1000 data points from the associated Dirichlet Process Mixture model.

• Compare PMG and PNR through prior-posterior check:
- Generate random datasets Y from the model distribution p(Y )
- Sample from posterior π(c) := p(c|Y ) with MCMC
- If chains reach convergence we should recover the prior distribution.
- We focus on the distribution of the largest cluster.
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Dirichlet process mixtures with α = 0.1
Left: histogram of the proportion of the largest cluster after 100× n iterations, compared with
the prior distribution.
Right: evolution over time with thinning of size n. Gray = PMG, Black = PNR
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Practical takeaways

When should lifting help for mixture model samplers?
• Components not well-separated
• During convergence phase
• Overfitted case with K > K ∗

Expect less improvement when
• Components are well-separated, K = K ∗ and closer to convergence
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Limitations (of methodology)
• For lifting to work well, need to engineer directions with acceptance ≈ 1
⇝ not easy to do in general!

• Example: if K = K ∗ = 2 and components well-separated obtain
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Informed versions
• Combining lifting with informed proposals10 leads to MH acceptance≈1
⇝ allows to preserve momentum!
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10Zanella (2020), Power and Goldman (2019), Gagnon and Maire (2024)
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NB: here informed version only needed to increase acceptance and preserve momentum!

Issue: in general O(n) cost per iteration. Can we do something cheaper?
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Cheaper informed versions
• Sample random neighborhood of size m and use informed proposal therein11

• Moderate m (e.g. m = 50 with n = 2000) can be enough to make α ≈ 1⇝ favourable trade-off
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11similar to random neighborhood approach of Liang et al (2022) or informed multiple-try of Gagnon et al (2023)
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Limitations (of theory)

We have
• non-deterioration results for any target
• O(n) speedup in prior case

We miss
• quantify speedup in posterior case?

Current approach: scaling limits with data
⇝ no exchangeability across i ∈ [n]⇝ measure-valued diffusion limit
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Conclusions

Summary:
• Standard reversible algorithms for mixture models can be slow
• We introduce a non-reversible version (simple to implement, no extra cost)
• Theoretically: never slower, O(n) speed-up in prior case
• Empirically: large speed-ups in posterior case

Many open problems:
• Theory for posterior case?
• More robust approaches to preserve momentum in general discrete spaces?
• Comparison with Split-and-Merge schemes?

Thanks for listening!
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