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Motivation: Only Indirect Control



Prior beliefs about the

* Bayesian mixture modeling revolves around concerns about the clustering prior:
= What is the distribution of the number of clusters?
= |s this or that prior consistent for the number of clusters?
= Are we comfortable with the “rich get richer” property?
= How do we deal with all of these singleton clusters?

* In practice, we often have separate intuition about “how many” clusters there are
and “how imbalanced” the clusters are.

e Standard BNP priors entangle these two aspects through a small set of global
parameters.

= E.g, Pitman-Yor has only univariate concentration and discount parameters.
= Mixtures of finite mixtures (MFMs) allow a prior on the number of clusters, but size
profiles are still indirect.



> n_items <- 100

> concentration <- 1.0

> discount <- 0.1

>

:CRPPartition(n_items, concentration, discount)

:samplePartition(crp, 10000)
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> x[3, ]

> ip <- apply(x, 1, \(y) sort(tabulate(y)))

>



> concentration <- 1.0
> discount <- 0.1

>

:CRPPartition(n_items, concentration, discount)

:samplePartition(crp, 10000)

> crp <- pumpkin:
> X <- pumpkin:

> x[1, ]
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> x[3, 1

> ip <- apply(x, 1, \(y) sort(tabulate(y)))

> ip[[1]]

>



> discount <- 0.1

>

:CRPPartition(n_items, concentration, discount)

:samplePartition(crp, 10000)

> crp <- pumpkin:
> X <- pumpkin:

> x[1, ]

[1]1121121111212322111141121212112111122
[38] 1152112112441 111221212111111111111261

[75] 26121122111111166111111116

> x[2,
[1]

2
2
A

4 o4 1
12 3 10

1

7
4 915 12 10 9

210 3 4 3 7

1 3
4 312 12

6

5

3 4
11

1
1
2

2
4 10

4
5

]
1
3

9 13

110 2
3
4 3 4

7 7

5

4 3 4 3

[26]

[51] 14
[76]

3 7 7

2 10 12

1 3

9 4 1

7

3

[1J]1211113111411151111113311111116111113
[38] 1161111161411 111111111111171113111111

[75J11111111111111113111111111

> x[3, ]

>

> ip <- apply(x, 1, \(y) sort(tabulate(y)))

> ip[[1]]
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>

:CRPPartition(n_items, concentration, discount)

:samplePartition(crp, 10000)

> crp <- pumpkin:
> X <- pumpkin:

> x[1, ]
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> x[3, 1
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> ip <- apply(x, 1, \(y) sort(tabulate(y)))

> ip[[1]]

>
[1]
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> ip[[2]]



:CRPPartition(n_items, concentration, discount)

:samplePartition(crp, 10000)

> crp <- pumpkin:
> X <- pumpkin:

> x[1, ]
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>

> ip <- apply(x, 1, \(y) sort(tabulate(y)))
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:samplePartition(crp, 10000)

> X <- pumpkin:

> x[1, ]
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Pitman-Yo RP2 code

[7512612112211111116611111111686

> x[2, ]

[1] 2 2 1 3 4 5 6 2 7 8 9 2 1 3 210 3 4 3 7 1 4 4 1 2
[26] 3 4 111 4 3 4 3 5 7 7 4 31212 110 2 913 712 310 2
[51] 14 5 2 9 1 5 4 3 3 1 2 512 3 1 5 5 3 4 91512 10 9 4
[76] 3 410 7 9 4 1 1 3 21012 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]

[1]1211113111411151111113311111116111113
[38] 1161111161411 111111111111171113111111
[75]11111111111111113111111111

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 2 12 12 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]

[1] 1 1 1 2 3 686

>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)



Pitman-Yo RP2 code

> x[2, ]

[1] 12 2 1 3 4 5 6 2 7 8 9 2 1 3 210 3 4 3 7 1 4 4 1 2
[26] 3 4 111 4 3 4 3 5 7 7 4 31212 110 2 913 712 310 2
[51] 14 5 2 9 1 5 4 3 3 1 2 512 3 1 5 5 3 4 9151210 9 4
[76] 3 410 7 9 4 1 1 3 21012 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]

[1]1211113111411151111113311111116111113
[38] 1161111161411 111111111111171113111111
[75]11111111111111113111111111

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 2 12 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]

[1] 12 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.



Pitman-Yo RP2 code

[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 210 3 4 3 7 1 4 4 1 2
[26] 3 4 111 4 3 4 3 5 7 7 4 31212 110 2 913 7 12 3 10 2
[511 14 5 2 9 1 5 4 3 3 1 2 512 3 1 5 5 3 4 9151210 9 4
[76] 3 410 7 9 4 1 1 3 21012 3 7 7 & 3 4 1 7 3 3 3 7 2

> x[3, 1]

[111211113111411151111113311111116111113
[38]1161111161411111111111111171113111111
[75]11111111111111113111111111

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]

[1] 1 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))

> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000



Pitman-Yor
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[1]1211113111411151111113

[38] 1161111161411 111111111
[75]1111111111111111311111

>

> ip <- apply(x, 1, \(y) sort(tabulate(y))) .

> ip[[1]] 2
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> ip[[2]]

[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]

[1] 1 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))

> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
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> hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)



[51] 14 5 2 9 1 5 4 3 3 1 2 512 3
[76] 3 410 7 9 4 1 1 3 21012 3 7

> x[3, ]
[1]1211113111411151111113
[38]1161111161411111111111
[75]1111111111111111311111

>

> ip <- apply(x, 1, \(y) sort(tabulate(y)))

> ip[[1]]

[1] 1 1 3

> ip[[2]]
[11 1 1 1 1 1 1

> ip[[3]]

[1] 1 1 1 2 3 6 86

>

5 24 66

6 6 6 7 10 11 13 15 20

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 5.000 6.000 6.648 8.000 23.000
> hist(n_clusters, freq = FALSE, main = "”,
>

R ew
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Pitman-Yor / CRP2 code

[76] 3 410 7 9 4 1 1 3 21012 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1]1211113111411151111113311111116111113
[38]1161111161411111111111111171113111111
[75]11111111111111113111111111
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[17] 2 12 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 12 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
> hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

>
> entropy <- sapply(ip, \(s) {



Pitman-Yor / CRP2 code

> x[3, 1]
[1]1211113111411151111113311111116111113
[38] 1161111161411 111111111111171113111111
[75]11111111111111113111111111
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 2 12 12 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 12 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

entropy <- sapply(ip, \(s) {
p <- s / sum(s)



Pitman-Yor / CRP2 code

[1]1211113111411151111113311111116111113
[38] 1161111161411 111111111111171113111111
[753J11111111111111113111111111
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)

>
>
> entropy <- sapply(ip, \(s) {
.
+ -sum(p * log(p))



Pitman-Yor / CRP2 code

[38] 1161111161411 111111111111171113111111
[75]11111111111111113111111111
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 2466
> ip[[2]]

[1] 12 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 12 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max .

1.000 5.000 6.000 6.648 8.000 23.000

hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)
-sum(p * log(p))

>
>
> entropy <- sapply(ip, \(s) {
R
N
+ 1)



Pitman-Yor / CRP2 code

[75]11111111111111113111111111
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 2 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1T 12 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)
})—sum(p * log(p))

>
>
> entropy <- sapply(ip, \(s) {
5
o
N
> summary(entropy)



Pitman-Yor / CRP2 code

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
> hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p<-s / sum(s)
+ -sum(p * log(p))
+ 1)
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.



Pitman-Yor / CRP2 code

> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)

>
>
> entropy <- sapply(ip, \(s) {
R
+ -sum(p * log(p))

N

>

b
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.8123 1.1563 1.1231 1.4581 2.6402



Pitman-Yo RP2 code

> ip[[1]]
[1] 1 1 3 5 24 66

[1] 112 12 1 1 1 6 6 6 7 10 11 13 15 20 Eh
[1] 1 1 1 2 3 6 86

> n_clusters <- sapply(ip, \(s) length(s))

> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab

Density

0.2
1

p <- s / sum(s)
-sum(p * log(p))
b .
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
> plot(density(entropy), main = "”, xlab = "Cluster Entropy”)

T T T T T T
0.0 0.5 1.0 i3 20 215)

>
>
> entropy <- sapply(ip, \(s) {
.
.
.
>

Cluster Entropy



Pitman-Yor / CRP2 code

[1] 1 1 3 5 24 66
> ip[[2]]
[1] 2 12 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
> hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p<-s / sum(s)
+ -sum(p * log(p))
+ 1)
> summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max .

0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
> plot(density(entropy), main = "”, xlab = "Cluster Entropy”)
>



Pitman-Yor / CRP2 code

> ip[[2]]
[1] 2 12 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 686
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
> hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p<-s / sum(s)
+ -sum(p * log(p))
+ 1)
> summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
> plot(density(entropy), main = "”, xlab = "Cluster Entropy”)
>

> gc <- sapply(ip, \(s) {



Pitman-Yor / CRP2 code

[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]

[1] 1 1 1 2 3 686
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)
-sum(p * log(p))
D)
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max .
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
> plot(density(entropy), main = "”, xlab = "Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)

>
>
> entropy <- sapply(ip, \(s) {
o
N
o
>



Pitman-Yor / CRP2 code

> ip[[3]]
[1] 1 1 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

>
>
> entropy <- sapply(ip, \(s) {
+ p<-s / sum(s)
+ -sum(p * log(p))
+ 1)
> summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
plot(density(entropy), main = "”, xlab = "Cluster Entropy”)

gc <- sapply(ip, \(s) {
lorenzpartition::gini_coefficient(s)

b

+ + V V VvV



Pitman-Yor / CRP2 code

[1] 1 12 1 2 3 6 86
>

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)
-sum(p = log(p))
b
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
plot(density(entropy), main = "”, xlab = ”"Cluster Entropy”)

>
>
> entropy <- sapply(ip, \(s) {
R
.
.
>

lorenzpartition::gini_coefficient(s)
b

>
>
> gc <- sapply(ip, \(s) {
> summary(gc)



Pitman-Yor / CRP2 code

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)

>
>
> entropy <- sapply(ip, \(s) {
.
+ -sum(p * log(p))

.

>

b
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max .

0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
plot(density(entropy), main = "”, xlab = ”"Cluster Entropy”)

lorenzpartition::gini_coefficient(s)
b
summary(gc)
Min. 1st Qu. Median Mean 3rd Qu. Max.

>
>
> gc <- sapply(ip, \(s) {
.
>



Pitman-Yor / CRP2 code

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
hist(n_clusters, freq = FALSE, main = "”, xlab = "Number of Clusters”)

p <- s / sum(s)
-sum(p * log(p))
b
summary(entropy)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 ©0.8123 1.1563 1.1231 1.4581 2.6402

>
>
> entropy <- sapply(ip, \(s) {
R
N
.
>

> plot(density(entropy), main = "”, xlab = "Cluster Entropy”)
>

> gc <- sapply(ip, \(s) {

+ lorenzpartition::gini_coefficient(s)

+ 1)

> summary(gc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.5086 0.5913 0.5733 0.6575 0.8050



Pitman-Yor / CRP2 code

> summary(n_clusters)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = "”, xlab

>

> entropy <- sapply(ip, \(s) { @9
+ p<-s / sum(s)

+ -sum(p * log(p))

+ 1) -
> summary(entropy) g 7

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = "”, xlab = "Clust

>

> gc <- sapply(ip, \(s) {

+ lorenzpartition::gini_coefficient(s)

“ 1) =

2 Summary( gc) 0.‘0 0.‘2 0‘.4 0‘.6 UiS

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.5086 0.5913 0.5733 0.6575 0.8050
> plot(density(gc), main = """, xlab = "Gini Coefficient”)

Gini Coefficient



CRP heatmaps
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Lorenz curve: intuition for cluster sizes

 Lorenz (1905) introduced his curve to
describe wealth concentration
among individuals in a population.

e Our idea: Use it to parametrize
beliefs about relative cluster sizes.
e Construction:
= Order clusters, smallest to largest.
= X-axis: cumulative fraction of
clusters. Y-axis: cumulative fraction
of items contained in those clusters.
* The 45° line means equal sizes; more
bowed curve means more imbalance.

e Twice the blue shaded area is the
Gini coefficient (Gini 1912).
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CRP2 with n = 100 items and fixed concentration at 1.0

o
S 4
4 Number of items: 100
N
@ g — Concentration: 1.00
2 Discount: 0.000
>
O = Expected number of clusters: 5.19
g oS Std. dev. number of clusters: 1.88
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Desiderata for Our Partition Prior



Desiderata for our subjective prior on partitions

* Interpretability: Direct specification of the distribution of:

= Number of clusters... Whatever you want!
= Relative cluster sizes... Through an elicited Lorenz curve!

 Controllable variability: Concentrate sharply when strong beliefs are available,
but high variability otherwise.

* Flexibility: Full support over all cluster size configurations.

* Theoretically sound: Exchangeable at fixed n, with bias and stability bounds for
the induced mean profile.

e Computability: Evaluation and sampling should be fast and stable for very large
numbers of items and clusters.



Hierarchical Construction




Hierarchical construction

k ~ pli), kel
x|k~ plx|k), x € Lnk
7| x ~ Unif(%, ), wePy

* Three-stage hierarchy: k > x — .
e k is the number of clusters.

e x is the sorted cluster-size profile.
Equivalently, x is an integer partition of n into k parts.

 x is the partition of [n] with size profile x.

p(m) = p(k) plx | k) —

[Pl

* Depends on x only through the multiset of cluster sizes.
e Thus the induced distribution is exchangeable and admits a fixed-n EPPF.



Connection to Casella et al. (2014)

* Casella, Moreno, and Giron (2014) proposed:
k ~ p(k), x| kolon 2y, 7| x ~ Unif(#,4).

* They emphasize objective choices for p(k), e.g., truncated Poisson with
Jeffreys/intrinsic prior on rate parameter.

* Our differences: Keep the uniform allocation over &%, , but replace the uniform
x | k with Lorenz-IP and encourage subjective p(k).

e Result: Direct control of size profiles (and tail behavior) while staying
exchangeable at fixed n.



Hierarchical cons ion in R code

> set.seed(sum(utf8ToInt(”Brown”)))
>
> n_items <- 1000 =
> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = "red”) .
> g S
> # §
> # First sample :
> # 5 ©
> £
> ## Sample number of clusters from the CRP § s J
> (n_clusters <- rcrpk(1, n_items, concentration ¢ ©
[1] 9 E
> S 8 d
> ## Sample integer partition given the number of
> (int_part <- rlorenzip(1, n_items, curve, 0.01,

[11] [72] [13] [74] [15] [16] [77] [18] [19] g’

[1,] 1 35 61 130 143 152 158 160 160 ‘ ‘ ‘ ‘ ‘ ‘

0.0 0.2 0.4 0.6 0.8 1.0
>

> ## Uniformly sample set partition given the int
> partition <- sample(rep(seq_along(int_part), int_part))

Cumulative Proportion of Total Number of Clusters



Hierarchical construction in R code

n_items <- 1000
curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
plot(curve, lwd = 8, col = "red”)

# First sample
#

## Sample number of clusters from the CRP
(n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

>
>
>
>
>
> #
>
>
>
>
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)



Hierarchical construction in R code

n_items <- 1000
curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
plot(curve, lwd = 8, col = "red”)

>
>

>

>

> #

> # First sample
> #

>

>

>

## Sample number of clusters from the CRP
(n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[11 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6]1 [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000



Hierarchical construction in R code

> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = "red”)

>

> #

> # First sample

> #

>

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1]1 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,3] [,4) [,5] [,6] [,7]1 [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)



Hierarchical construction in R code

> plot(curve, lwd = 8, col = "red”)

>

> #

> # First sample

> #

>

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[11 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 (,21 [,31 [,41 [,51 [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160



Hierarchical construction in R code

>
> #

> # First sample

> #

>

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))

[1] 9
>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,41 [,51 [,61 [,71 [,8]1 [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>



Hierarchical construction in R code

#
# First sample
#

## Sample number of clusters from the CRP

(n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[11 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution

> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4) [,5] [,6]1 [,7]1 [,8] [,9]

1,1 1 35 61 130 143 152 158 160 160

>

> ## Uniformly sample set partition given the integer partition

> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>



Hierarchical construction in R code

> # First sample

> #

>

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution

> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 35 61 130 143 152 158 160 160

>

> ## Uniformly sample set partition given the integer partition

> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>

> #



Hierarchical construction in R code

> #

>

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>

> #
> # Second sample



Hierarchical construction in R code

>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1l, n_items, concentration = 1.0, discount = 0.0))
[11 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,3] [,4] [,5] [,6] [,7]1 [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>
> #
> # Second sample
> #



Hierarchical construction in R code

> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[11 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 (,21 [,31 [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

Second sample

VvV V V VvV Vv
HH R R



Hierarchical construction in R code

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))

[,11 [,21 [,31 [,41 [,51 [,61 [,71 [,8]1 [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>
>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP



Hierarchical construction in R code

[11 9

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution

> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6]1 [,7]1 [,8] [,9]

[1,] 1 35 61 130 143 152 158 160 160

>

> ## Uniformly sample set partition given the integer partition

> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))



Hierarchical construction in R code

>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,3] [,4] [,5] [,6]1 [,7]1 [,8] [,9]
1,1 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>
> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 7



Hierarchical construction in R code

> ## Sample integer partition given the number of clusters from LorenzIP distribution

> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,41 [,51 [,61 [,7]1 [,8]1 [,9]

[1,] 1 35 61 130 143 152 158 160 160

>

> ## Uniformly sample set partition given the integer partition

> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1l, n_items, concentration = 1.0, discount = 0.0))
[1] 7

>



Hierarchical construction in R code

> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,41 [,51 [,61 [,71 [,8] [,9]

[1,] 1 35 61 130 143 152 158 160 160

>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))

[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution



Hierarchical construction in R code

(,11 [,21 [,31 [,41 (,5]1 [,61(,7]1[,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>
> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))



Hierarchical construction in R code

[1,] 1 35 61 130 143 152 158 160 160
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>
> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))

[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))

(,11 [,21 [,31 [,41 [,51 [,6] [,71]



Hierarchical construction in R code

>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>

#

# Second sample

#

#

## Sample number of clusters from the CRP

(n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))

[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution

> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,4] [,5] [,6] [,7]

[1,] 4 24 148 191 206 208 219

V V.V VYV VYV



Hierarchical construction in R code

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>
> #
> # Second sample
> #
> #
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 7
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,41 [,51 [,61 [,71]
[1,] 4 24 148 191 206 208 219
>



Hierarchical construction in R code

> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160

>

>
> #
> # Second sample
> #
> #
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1l, n_items, concentration = 1.0, discount = 0.0))
(11 7
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
[,11 [,21 [,31 [,41 [,51 [,61 [,7]
[1,] 4 24 148 191 206 208 219
>
> ## Uniformly sample set partition given the integer partition



Hierarchical construction in R code

> length(partition)

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160
>

>
> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[11 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,51 [,6] [,7]
[1,1 4 24 148 191 206 208 219
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))



Hierarchical construction in R code

[1] 1000

> tabulate(partition)

[1] 1 35 61 130 143 152 158 160 160
>

>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1l, n_items, concentration = 1.0, discount = 0.0))
[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,3] [,4] [,5] [,6] [,7]
[1,] 4 24 148 191 206 208 219
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)



Hierarchical construction in R code

> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>

>
> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5]1 [,6] [,7]
[1,] 4 24 148 191 206 208 219
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000



Hierarchical construction in R code

[1] 1 35 61 130 143 152 158 160 160

>
>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1]1 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,3] [,4] [,5] [,6] [,7]
[1,] 4 24 148 191 206 208 219
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)



Hierarchical construction in R code

>
>

> #

> # Second sample

> #

> #

> ## Sample number of clusters from the CRP

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 7

>

> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1l, n_items, curve, 0.01, n_clusters = n_clusters))
(,11 [,21 [,31 [,4] [,5] [,6] [,7]
[1,] 4 24 148 191 206 208 219
>

> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

> length(partition)

[1] 1000

> tabulate(partition)

[1] 4 24 148 191 206 208 219



Hierarchical construction

k ~ pli), kel
x|k~ plx|k), x € Lnk
7| x ~ Unif(%, ), wePy

* Three-stage hierarchy: k > x — .
e k is the number of clusters.

e x is the sorted cluster-size profile.
Equivalently, x is an integer partition of n into k parts.

 x is the partition of [n] with size profile x.

p(m) = p(k) plx | k) —

[Pl

* Depends on x only through the multiset of cluster sizes.
e Thus the induced distribution is exchangeable and admits a fixed-n EPPF.

12



Space of set partitions with a fixed size profile

%’xz{ne,@n: |7r|:kandx,,=x}.

* %, is the set of partitions of [n] and x, is the sorted cluster-size vector.
* ey =1{H{1253,4) {{1.35{2,4}, {1.4}.{2,3}}}

* Zan ={{1h{23,4 {25{1.3,4)) {33{1.2,4)} {4}{1.23}}}

* A =1{{1.2,3, 4 and %11 = {1} {23 {3}, {4}

* Uniform allocation over &, yields exchangeability at fixed n.

13



Hierarchical construction

k ~ pli), kel
x|k~ plx|k), x € Lnk
7| x ~ Unif(%, ), wePy

* Three-stage hierarchy: k > x — .
e k is the number of clusters.

e x is the sorted cluster-size profile.
Equivalently, x is an integer partition of n into k parts.

 x is the partition of [n] with size profile x.

p(m) = p(k) plx | k) —

[Pl

* Depends on x only through the multiset of cluster sizes.
e Thus the induced distribution is exchangeable and admits a fixed-n EPPF.



Integer partition space

k
— k . —
fl"n’k={x€Z 1< x < < ij—n}.
J=1

* Each x is a nondecreasing vector of cluster sizes.

72 =1{(1,6),(2,5),(3,4)}

* X34 =1(1,1,1,5),(1,1,2,4),(1,1,3,3),(1,2,2,3),(2,2,2,2)}.

51 ={0B)}and X55 ={(1,1,1,1,1)}.

Z103 =1(1,1,8),(1,2,7),(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4)}.

e A key contribution is the Lorenz-IP distribution, which indexes a distribution on
Ik by a Lorenz curve and a concentration curve.

15



Lorenz Integer Partition (Lorenz-IP) Distribution




From a Lorenz curve to target cluster sizes for fixed

* After sampling k, it is fixed and we work on
L, (ordered size profiles).

e Choose a Lorenz curve & (u) onu € [0,1].
* Discretize at u; = j/k:

a)j = .fZ’(uJ) — g(uj_l), ] = 1, ,k

* w=(wq,...,0) SUums to 1and encodes
target relative cluster sizes.

* We aim for E[X;]/n = w;.

Cumulative Proportion of Cluster Sizes

1.00

0.50

0.25

0.00

Perfect

Inequality

0.00 0.20 0.40 0.60 0.80

Cumulative Proportion of Total Number of Clusters



Sequential construction given k and »

* Build sizes from smallest to largest such that: 1. ordering is automatic and 2. the
sum-to-n constraint is automatic.
e Start with X; on {1,2,...,|n/k|} and mean p; = nw;.



Sequential construction given k and »

* Build sizes from smallest to largest such that: 1. ordering is automatic and 2. the
sum-to-n constraint is automatic.

e Start with X; on {1,2,...,|n/k|} and mean p; = nw;.

* Given Xj, draw X, on

L2 = Xl, U2 =

n— Xl J
k—11
with mean p, set by the Lorenz target.



Sequential construction given k and »

* Build sizes from smallest to largest such that: 1. ordering is automatic and 2. the
sum-to-n constraint is automatic.

e Start with X; on {1,2,...,|n/k|} and mean p; = nw;.

* Given Xj, draw X, on

L2 = Xl, U2 =

n—XlJ

k—11
with mean p, set by the Lorenz target.

* In general, after drawing X;.;_;, the feasible interval for X; is

”_Zj<in

Li=X_, U=

* Draw X; from a bounded-support kernel on {L;,...,U} with mean ;.
= Determining y; and choosing the mean-parameterized bounded-support kernel are
the linchpins of the method.

* Set X; =n— Y, X;.



Obtain ;; from «, and the realized bounds L, and U,

* Interpolation coefficient and conditional mean:

W — Wi

e i = L; + 1(U; — Ly).
(®) — wi—q
where >
1-Y .
_ J<t ™)
WO = T

is the remaining-average share from the Lorenz target.
* Note: x; is computed once and can be used many times.

* Intuition: ; places the conditional mean between the smallest and largest feasible
sizes.

e With a mean-parameterized kernel, E[X; | X;.;_1] = j4; by iterated expectations,
E[X;] = E[y], so marginal means follow the target (up to rounding in U;).

* x; =~ 0 keeps X; near L; (more imbalance); x; ~ 1 pushes toward U; (more balanced).



Base kernel: mean + concentration

* At each step we need a distribution on {L;, ..., U} with mean g,
* A concentration parameter y; controls how tightly X; concentrates around ;.

» Next: two concrete kernels (exponential-like vs power-law) and the theory that
guarantees feasibility, support, and bias bounds.



Two concrete kernels

TiDaL TaDPoLe
(truncated discrete Laplace) (truncated discrete power law)
4 —(1+ay)
_ _ U-L
P | Mop) < exp( g e = M) P | Moy, @) o (x - M|+ ) ,
x€{L,...,U}L el .U}

e Exponential-like tails on [L,U]. . . .
P LL.U] e Heavier tails — useful for extreme size

e Closed-form normalizer and moments. profiles — controlled by a.
* Mean calibration via a one-dimensional * Normalizers and moments via standard
solve for M. special-function evaluations (Hurwitz
zeta).

e Mean calibration via a one-dimensional
solve for M.

20



Prior elicitation workflow

1. Choose p(k) to encode beliefs about the number of clusters.

2. Choose a target Lorenz curve.

3. Choose tail behavior: TiDaL (exponential) vs TaDPoLe (power-law).
4. Choose concentrations y;.,_; to control tightness.

21



Theory




Base Kernel Properties 1-3

Property (Existence region)

For each [L,U] and y > 0, there is a feasible-mean interval ./, ;;(y) < [L,U] such that the base
kernel pi (2| . y) exists iff p € M (y). When L = U, we takRe M, 1(y) = {L}.

Property (Mean parameterization)

For any (u,y) for which the base kernel exists, it has expected value E[Z] equal to p.

Property (Full support)

For any (u,y) in which the base Rernel exists, it has full support on {L,...,U}, i.e., P(Z = z) > 0 for
allzelL,...,U}

22



Base Kernel Properties 4-6

Property (Interior feasibility with uniform threshold)

For every n € (0,1/2], there exists a finite uniform feasibility threshold y:.,s(n) such that whenever
W :=U-L>1and p€[L+nW, U —nW], the base kernel exists for all y > yreas(n).

Property (Eventual feasibility)

Fix [L,U] with L <U and any p € (L,U). There exists a finite y,(L,U, p) such that u € ./, ;,,(y) for all
Y > YO(Ls U’ /1)

Property (Two-point concentration)

Fix [L,U] with L <U and any p € (L,U), ar]d fix any y,(L,U, p) such that p € A1 111(y) for all
Y 2 vo(L,U, p). For every ¢ € (0,1) there exists y*(e; L,U, p) > y,(L,U, p) such that for
Z ~ Basey (. y) and ally > y*(e; L,U, p),

P(Z € {lp).[ul}) > 1-e. (1)

When p € Z, the set {|u], [} is the singleton {u}. N



Target mean profile and feasibility

e Technical conditions used in the theory:

1- Y o _
(Uj_1<a)j<—k_j+l 5 ]:1,...,k—1,
1 <nw; < lEJ

k

e Herew, :=0andj=1,....,k—1.

* These keep the sequential construction feasible.

* In the theory, we assume n > 2k so that [n/k| > 2.

* In the software, we are robust to violations of what’s needed for the theory.

24



Feasibility guard for the base kernel

1i = max{y, vreas(m}: 7 = min{x;, 1 —x}.

* Ensures the kernel exists for the chosen mean.
* If baseline y; is already large enough, the guard is inactive.

25



Definition (Lorenz-IP)

Definition (Lorenz-IP)

— EK””‘ forj=1,..,k—1and

1 < nw; < |n/k], baseline concentration parameters Yisooes Vet > 0 and (for TaDPoLe) shape
parameters a;, ..., @_; > 0, the Lorenz-IP distribution is the joint distribution of X = (X, ..., X})
produced by the following sequential algorithm:

Given (n, k,w) with strictly interior target means w;_; < w; <

1. Draw X, ~ Basey;, i (. 71), With L, = 1, U, = |n/k], and y; = nw,.

Z] 1Y
k—i+1

2. Fori=2,....,k—1,setL;, = X, andUi:[ J then draw

X; ~ Base[Li,Ui](u,»(Xlzifl), )7;)

3. SetX, :=n—Y, X

When the base kernel is TaDPoLe, each draw uses its coordinate-specific shape parameter a;.



Valid distribution with full support and ability to concentrate

Proposition (Well-definedness)

Under the base-kernel properties and the strict interior target-mean conditions on w,
the Lorenz-IP algorithm indeed defines a valid distribution on 2, almost surely.

Theorem (Full support)

The Lorenz-IP distribution has full support on &, : every nondecreasing integer
partition receives positive probability.

Theorem (Any integer partition can be made dominant)

Assume n > 2k. For any x € X, and ¢ € (0, 1), there exist target means o with
1=) i )i . .
]E]fi’lw forj=1,...,k—1and 1 < nw; < |n/k|, and concentrations yi, ..., yr_1

such that the Lorenz-IP distribution satisfies P(X = x) > 1 —«.

a)j_l < CO] <

27



Mean accuracy guarantee

Theorem (Uniform O(1/n) bias)

Under mean-parameterized base kernels (so E[Z] = i) and strictly interior target means

1= @ : .
wj— < w; < T‘ijlfow =1,....,k—1with1 < nw; <|n/k|,
E[X] Cr(x
maXx LA Wj < k( ),
1<j<k| n n

where Ci(x) depends only on k and k = (x4, ..., kx—1). Thus, for fixed (k, ), Lorenz-IP
marginal means converge uniformly to » at rate O(1/n).

* Bias arises only from integer rounding in the sequential upper bounds.

* A deterministic recursion bounds cumulative rounding error, yielding C.(x) and the
O(1/n) rate.



Stability to target perturbations

Corollary (Lipschitz stability)

If two target vectors w and w’ both satisfy w;_; < w; < 1;3?:"" forj=1,..,k—1with the
same (n, k), the corresponding Lorenz-IP mean profiles differ by at most

lw — ’|; + 2Cmax/n, Where Cayx IS the larger of the two bias constants.

* Small changes in the target Lorenz curve induce small changes in mean size
profiles.

* Elicitation is robust: near-by targets yield near-by priors, especially for larger n.
* Provides a simple sensitivity bound for tuning w.



Exchangeability




Fixed-n focus vs. projective consistency

e Kingman paintbox consistency is not imposed by design.
* We treat n as fixed and elicit priors directly on %,.
* This yields direct control over k and the size profile at the observed sample size.

30



Computation




Computation at a glance

e Sequential evaluation and sampling: one bounded-support pmf per coordinate.
* Base kernels have closed-form normalizers and exact sampling schemes.

e Complexity is O(k) per draw of x; uniform allocation uses a standard partition
representation.

MCMC updates can reuse familiar item-allocation moves (collapsed or
uncollapsed).

31



hma

> options(width = 120)
>
> partition <- c(4, 14, 32, 50)
> curve <- lorenz_ispline(partition)
>
> microbenchmark(times = 1000,
+ "k = 4, n = 100" = rloren21p(1 100, curve, 0.1, n_clus = 4),
+ "k = 4, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
-
)
Unit: microseconds
expr min 1lq mean median uq max neval
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
k =4, n= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>

> microbenchmark(times = 1000,
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hma

partition <- c(4, 14, 32, 50)
curve <- lorenz_ispline(partition)

microbenchmark(times = 1000,

"k = 4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),

"k 1,000” = rlorenzip(1l, 1000, curve, 0.1, n_clus = 4),

"k 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 4),
100,000” = rlorenzip(1l, 100000, curve, 0.1, n_clus = 4),
1,000,000” = rlorenzip(1l, 1000000, curve, 0.1, n_clus = 4)

’

EalE S lE S
i n

+ + + + + V.V V V.V

jum R e e

’
’
’

o
)
Unit: microseconds

expr min 1q mean median uq max neval
= 4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

4

> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
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Benchma

> partition <- c(4, 14, 32, 50)
> curve <- lorenz_ispline(partition)
>

> microbenchmark(times = 1000,
+ "k = 4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ "k = 4, n = 1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ "k = 4, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k =4, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = &)
-

)
Unit: microseconds

expr min 1q mean median uq max neval

=4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
4, n =1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

microbenchmark(times = 1000,
"k = 8, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
"k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),

+ + VvV Vv
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Benchma

> curve <- lorenz_ispline(partition)

>

> microbenchmark(times = 1000,

+ "k =4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),

+ "k = 4, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),

+ "k = 4, n = 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 4),

+ "k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),

+ "k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )

Unit: microseconds

expr min 1q mean median uq max neval

4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
= 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000

k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>

> microbenchmark(times = 1000,

+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),

+ "k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),

+ "k =8, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
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hma

>
> microbenchmark(times = 1000,
+ "k = 4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ "k =4, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ "k = 4, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k =4, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = &)
o
)
Unit: microseconds
expr min 1q mean median uq max
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298
k =4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340
>
> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ "k = 8, n = 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 8),
+ "k =8, n=100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),

neval
1000
1000
1000
1000
1000
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Benchma

> microbenchmark(times = 1000,

+ "k = 4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ "k = 4, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ "k =4, n =10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000"” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k =4, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
-

)
Unit: microseconds

expr min 1q mean median uq max neval

n x

=4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
4, n =1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
=4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

~

~

microbenchmark(times = 1000,
"k = 8, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),

+ + 4+ + + V V

8
"k =8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
"k = 8, n =10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
"k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
"k = 8, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
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+ "k = 4, n = 100" = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ "k = 4, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 1,000,000” = rlorenzip(1l, 1000000, curve, 0.1, n_clus = 4)
-
)
Unit: microseconds
expr min 1q mean median uq max neval
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
k =4, n= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>
> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ "k =8, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ "k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
-
)
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Unit:

"k = 4, n =1,000” = rlorenzip(1l, 1000, curve, 0.1, n_clus = 4),
"k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus
"k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
"k = 4, n = 1,000,000"” = rlorenzip(1, 1000000, curve, 0.1, n_clus = &)
)
microseconds
expr min 1q mean median uq max
k =4, n =100 93.406 97.2935 .37528 97.935 99.0770 .681
k =4, n=1,000 95.530 98.0450 .48815 98.691 100.0130 .079
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 .298
k =4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 .948
=4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 .340
microbenchmark(times = 1000,
"k = 8, n = 100" = rloren21p(1 100, curve, 0.1, n_clus = 8),
"k =8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
"k = 8, n = 10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus
"k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
"k = 8, n=1,000,000" = rlorenzip(1l, 1000000, curve, 0.1, n_clus = 8)

)

nit: microseconds

neval

1000
1000
1000
1000
1000



hma

+ "k = 4, n = 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k = 4, n = 1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
-
)
Unit: microseconds
expr min 1lq mean median uq max neval
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000

k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k =4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000

k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>
> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ "k =8, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ "k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+

)

Unit: microseconds
expr min 1q mean  median uq max neval

32



976.
201.
121.
778.
1613.

8),

8),

4)

max
681
079
298
948
340

8)

+ "k = 4, n = 100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ "k =4, n=1,000,000" = rlorenzip(1l, 1000000, curve, 0.1, n_clus =
-
)
Unit: microseconds
expr min 1q mean median uq
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170
k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095
>
> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus =
+ "k = 8, n =10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus
+ "k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ "k = 8, n =1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus =
-
)
Unit: microseconds

expr

min

1q

mean

median
k =8, n =100 98.044 109.0350 110.6104 109.8170 111.0295

uq

198.

max
454

neval
1000
1000
1000
1000
1000

neval
1000
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+ "k =4, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = &)

o
)
Unit: microseconds
expr min 1q mean median uq max neval
k =4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
k =4, n=1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000

k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000

=4, n =
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>
> microbenchmark(times = 1000,
+ "k =8, n =100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ "k = 8, n = 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 8),
+ "k =8, n=100,000" = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
-
)
Unit: microseconds
expr min 1q mean  median uq max neval
100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000

n x

:8’n:
8, n=1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
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: microseconds

expr
100

= 1
k = 4, n

"k = 8, n =
"|<
"I(
"I( =
"I< =

?

+ + + + + V V

C 0o 0o oo
5 3 35S

’
’
1

+ )
Unit: microseconds

expr

~

8, n =
, No=
n =

I
oo 1

k
k =8,

microbenchmark(times
100” = rlorenzip(1, 100, curve, 0.1,
1,000” = rlorenzip(1l, 1000, curve, 0.1, n_clus = 8),
10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus
= 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),

1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)

min
93.406
95.530
96.792
100.309
101.712

= 1000,

min

97

157

1q

Y2085
98.
99.
.3060
206.

0450
2920

1390

lq

99
99
101
189

mean

.37528
. 48815
.08566
.89491
201.

11273

mean

median
97.935
98.691
100.229
205.322
207.726

median

100.
101.
207.
209.

n_clus

uq
.0770
0130
8170
1605
3095

= 8),

uq

100 98.044 109.0350 110.6104 109.8170 111.0295
1,000 103.485 109.4515 110.9147 110.1730 111.5350
10,000 107.503 111.2700 113.3332 112.3415 114.0800

max
976.681
201.079
121.298
778.948
1613.340

= 8)r

max
198.454
181.432
286.470

neval
1000
1000
1000
1000
1000

neval
1000
1000
1000
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Unit: microseconds

expr min 1lq mean median uq max neval
n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
= 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,

+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),

+ "k = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),

+ "k 10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus = 8),
n

N

n

u

n n
0 0 o o

’

"k 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
"k = = 1,000,000” = rlorenzip(1l, 1000000, curve, 0.1, n_clus = 8)

ju e Jen S

?
)
nit: microseconds
expr min 1q mean  median uq max neval
n = 100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000
= 1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
k =8, n=10,000 107.503 111.2700 113.3332 112.3415 114.0800 286.470 1000
k =8, n = 100,000 163.719 269.1170 276.4181 273.0200 278.6550 1920.910 1000
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+ + + + + + V V

Unit:

k

microbenchmark(times

)

k

= 4, 1,000,000

"I( -
nk
"I(
nk
"I(

y N=

’

0o 00 00 0o o

5 3 35 S

’
?
’

microseconds
expr
n = 100
= 1,000
10,000
= 100,000
1,000,000

8

n x

= 0,
8, n
8, n =

=8, n
= 8’ n =

~

k =

~

= 1000,

100" = rlorenzip(1l, 100, curve, 0.1,
1,000” = rlorenzip(1l, 1000, curve, 0.1, n_clus = 8),
10,000” = rlorenzip(1l, 10000, curve, 0.1, n_clus
100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)

98.
103.
107.
163.
220.

min
. 406
.530
.792
.309
.712

min
044
485
503
719
175

97

157

109.
109.
111.
269.
368.

1q

.2935
98.
99.
.3060
206.

0450
2920

1390

lg
0350
4515
2700
1170
6900

110
110
113
276
380

mean

.37528
. 48815
.08566
.89491
.11273

mean

.6104
.9147
.3332
L4181
.5347

median
.935
.691
.229
205.322
207.726

median
109.8170
110.1730
112.3415
273.0200
377.3510

n_clus

111.
111.
114.
278.
420.

uq

.0770
100.
101.
207.
209.

0130
8170
1605
3095

8),

uq
0295
5350
0800
6550
7930

976.
201
121.
778.
1613.

8),

198.
181
286.
1920.
1991.

max
681

.079

298
948
340

max
454

.432

470
910
483

neval
1000
1000
1000
1000
1000

neval
1000
1000
1000
1000
1000
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= 4, n =100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k =4, n=10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k =4, n= 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k =4, n=1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>
> microbenchmark(times = 1000,
+ "k =8, n=100" = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ "k = 8, n=1,000" = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ "k =8, n=10,000" = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ "k = 8, n = 100,000” = rlorenzip(1l, 100000, curve, 0.1, n_clus = 8),
+ "k =8, n=1,000,000" = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
-
)
Unit: microseconds
expr min 1q mean  median uq max neval
8

n x

=8, n =100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000
8, n = 1,000 163.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
k =8, n=10,000 107.503 111.2700 113.3332 112.3415 114.0800 286.470 1000
8, n = 100,000 163.719 269.1170 276.4181 273.0200 278.6550 1920.910 1000

= 1,000,000 220.175 368.6900 380.5347 377.3510 420.7930 1991.483 1000

~

~

= 0,
k =8, n

>
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Conclusion and Open Questions




Conclusion and open questions

* Control: Separate priors on k and relative cluster sizes; can concentrate on any
X € Sl”n,k.
* Tools: Lorenz-IP plus TiDaL/TaDPoLe give bounded discrete kernels with tunable
tails.
* Fixed-n tradeoff: No marginal invariance; priors are tailored to the observed n.
 Beyond clustering: Lorenz-IP as a prior for other integer-partition problems.
e Open questions:
= Posterior consistency for k under suitable conditions?
= Should the Lorenz curve depend on n or k?

= The Lorenz curve is cumulative, like a CDF; is there a density-style summary that
reveals subtle differences?
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