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Motivation: Only Indirect Control



Prior beliefs about the number of clusters and cluster imbalance

Bayesian mixture modeling revolves around concerns about the clustering prior:
What is the distribution of the number of clusters?
Is this or that prior consistent for the number of clusters?
Are we comfortable with the “rich get richer” property?
How do we deal with all of these singleton clusters?

In practice, we often have separate intuition about “how many” clusters there are
and “how imbalanced” the clusters are.
Standard BNP priors entangle these two aspects through a small set of global
parameters.

E.g., Pitman-Yor has only univariate concentration and discount parameters.
Mixtures of finite mixtures (MFMs) allow a prior on the number of clusters, but size
profiles are still indirect.
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Pitman-Yor / CRP2 code

> n_items <- 100
> concentration <- 1.0
> discount <- 0.1
>
> crp <- pumpkin::CRPPartition(n_items, concentration, discount)
> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
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Pitman-Yor / CRP2 code

> concentration <- 1.0
> discount <- 0.1
>
> crp <- pumpkin::CRPPartition(n_items, concentration, discount)
> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
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Pitman-Yor / CRP2 code

> discount <- 0.1
>
> crp <- pumpkin::CRPPartition(n_items, concentration, discount)
> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66

4



Pitman-Yor / CRP2 code

>
> crp <- pumpkin::CRPPartition(n_items, concentration, discount)
> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
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Pitman-Yor / CRP2 code

> crp <- pumpkin::CRPPartition(n_items, concentration, discount)
> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
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Pitman-Yor / CRP2 code

> x <- pumpkin::samplePartition(crp, 10000)
> x[1, ]

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
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Pitman-Yor / CRP2 code

> x[1, ]
[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2

[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
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Pitman-Yor / CRP2 code

[1] 1 1 2 1 1 2 1 1 1 1 2 1 2 3 2 2 1 1 1 1 4 1 1 2 1 2 1 2 1 1 2 1 1 1 1 2 2
[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
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Pitman-Yor / CRP2 code

[38] 1 1 5 2 1 1 2 1 1 2 4 4 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 6 1
[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))

4



Pitman-Yor / CRP2 code

[75] 2 6 1 2 1 1 2 2 1 1 1 1 1 1 1 6 6 1 1 1 1 1 1 1 1 6
> x[2, ]

[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2
[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)
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Pitman-Yor / CRP2 code

> x[2, ]
[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2

[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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Pitman-Yor / CRP2 code

[1] 1 2 1 3 4 5 6 2 7 8 9 2 1 3 2 10 3 4 3 7 1 4 4 1 2
[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000
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Pitman-Yor / CRP2 code
[26] 3 4 1 11 4 3 4 3 5 7 7 4 3 12 12 1 10 2 9 13 7 12 3 10 2
[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
Number of Clusters
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Pitman-Yor / CRP2 code

[51] 14 5 2 9 1 5 4 3 3 1 2 5 12 3 1 5 5 3 4 9 15 12 10 9 4
[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
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Pitman-Yor / CRP2 code

[76] 3 4 10 7 9 4 1 1 3 2 10 12 3 7 7 4 3 4 1 7 3 3 3 7 2
> x[3, ]

[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3
[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
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Pitman-Yor / CRP2 code

> x[3, ]
[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
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Pitman-Yor / CRP2 code

[1] 1 2 1 1 1 1 3 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 6 1 1 1 1 1 3
[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
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Pitman-Yor / CRP2 code

[38] 1 1 6 1 1 1 1 1 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 3 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
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Pitman-Yor / CRP2 code

[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)
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Pitman-Yor / CRP2 code

>
> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4



Pitman-Yor / CRP2 code

> ip <- apply(x, 1, \(y) sort(tabulate(y)))
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402
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Pitman-Yor / CRP2 code
> ip[[1]]
[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
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Pitman-Yor / CRP2 code

[1] 1 1 3 5 24 66
> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
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Pitman-Yor / CRP2 code

> ip[[2]]
[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
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Pitman-Yor / CRP2 code

[1] 1 1 1 1 1 1 6 6 6 7 10 11 13 15 20
> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
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Pitman-Yor / CRP2 code

> ip[[3]]
[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
+ })
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Pitman-Yor / CRP2 code

[1] 1 1 1 2 3 6 86
>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
+ })
> summary(gc)
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Pitman-Yor / CRP2 code

>
> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
+ })
> summary(gc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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Pitman-Yor / CRP2 code

> n_clusters <- sapply(ip, \(s) length(s))
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
+ })
> summary(gc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.5086 0.5913 0.5733 0.6575 0.8050
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Pitman-Yor / CRP2 code
> summary(n_clusters)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.648 8.000 23.000

> hist(n_clusters, freq = FALSE, main = ””, xlab = ”Number of Clusters”)
>
> entropy <- sapply(ip, \(s) {
+ p <- s / sum(s)
+ -sum(p * log(p))
+ })
> summary(entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8123 1.1563 1.1231 1.4581 2.6402

> plot(density(entropy), main = ””, xlab = ”Cluster Entropy”)
>
> gc <- sapply(ip, \(s) {
+ lorenzpartition::gini_coefficient(s)
+ })
> summary(gc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.5086 0.5913 0.5733 0.6575 0.8050

> plot(density(gc), main = ””, xlab = ”Gini Coefficient”)
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CRP heatmaps
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Lorenz curve: intuition for cluster sizes

Lorenz (1905) introduced his curve to
describe wealth concentration
among individuals in a population.
Our idea: Use it to parametrize
beliefs about relative cluster sizes.
Construction:

Order clusters, smallest to largest.
X-axis: cumulative fraction of
clusters. Y-axis: cumulative fraction
of items contained in those clusters.

The 45∘ line means equal sizes; more
bowed curve means more imbalance.
Twice the blue shaded area is the
Gini coefficient (Gini 1912).
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CRP2 with 𝑛 = 100 items and fixed concentration at 1.0

7



Desiderata for Our Partition Prior



Desiderata for our subjective prior on partitions

Interpretability: Direct specification of the distribution of:
Number of clusters... Whatever you want!
Relative cluster sizes... Through an elicited Lorenz curve!

Controllable variability: Concentrate sharply when strong beliefs are available,
but high variability otherwise.
Flexibility: Full support over all cluster size configurations.
Theoretically sound: Exchangeable at fixed 𝑛, with bias and stability bounds for
the induced mean profile.
Computability: Evaluation and sampling should be fast and stable for very large
numbers of items and clusters.
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Hierarchical Construction



Hierarchical construction

𝑘 ∼ 𝑝(𝑘), 𝑘 ∈ {1, … , 𝑛}
𝑥 ∣ 𝑘 ∼ 𝑝(𝑥 ∣ 𝑘), 𝑥 ∈ 𝒳𝑛,𝑘
𝜋 ∣ 𝑥 ∼ Unif(𝒫𝑛,𝑥 ), 𝜋 ∈ 𝒫𝑛,𝑥

Three-stage hierarchy: 𝑘 → 𝑥 → 𝜋 .
𝑘 is the number of clusters.
𝑥 is the sorted cluster-size profile.
Equivalently, 𝑥 is an integer partition of 𝑛 into 𝑘 parts.
𝜋 is the partition of [𝑛] with size profile 𝑥 .

𝑝(𝜋) = 𝑝(𝑘) 𝑝(𝑥 ∣ 𝑘) 1
|𝒫𝑛,𝑥 |

.

Depends on 𝜋 only through the multiset of cluster sizes.
Thus the induced distribution is exchangeable and admits a fixed-𝑛 EPPF.
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Connection to Casella et al. (2014)

Casella, Moreno, and Girón (2014) proposed:

𝑘 ∼ 𝑝(𝑘), 𝑥 ∣ 𝑘 ∝ 1 on 𝒳𝑛,𝑘 , 𝜋 ∣ 𝑥 ∼ Unif(𝒫𝑛,𝑥 ).

They emphasize objective choices for 𝑝(𝑘), e.g., truncated Poisson with
Jeffreys/intrinsic prior on rate parameter.
Our differences: Keep the uniform allocation over 𝒫𝑛,𝑥 but replace the uniform
𝑥 ∣ 𝑘 with Lorenz-IP and encourage subjective 𝑝(𝑘).
Result: Direct control of size profiles (and tail behavior) while staying
exchangeable at fixed 𝑛.
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Hierarchical construction in R code
> set.seed(sum(utf8ToInt(”Brown”)))
>
> n_items <- 1000
> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = ”red”)
>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Proportion of Total Number of Clusters

C
um

ul
at

iv
e 

P
ro

po
rt

io
n 

of
 C

lu
st

er
 S

iz
es

11



Hierarchical construction in R code

>
> n_items <- 1000
> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = ”red”)
>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
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Hierarchical construction in R code

> n_items <- 1000
> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = ”red”)
>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
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Hierarchical construction in R code

> curve <- lorenz_ispline(c(4, 6, 25, 30, 35))
> plot(curve, lwd = 8, col = ”red”)
>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
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Hierarchical construction in R code

> plot(curve, lwd = 8, col = ”red”)
>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
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Hierarchical construction in R code

>
> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
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Hierarchical construction in R code

> #
> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
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Hierarchical construction in R code

> # First sample
> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
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Hierarchical construction in R code

> #
>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
> # Second sample
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Hierarchical construction in R code

>
> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
> # Second sample
> #
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Hierarchical construction in R code

> ## Sample number of clusters from the CRP
> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
> # Second sample
> #
> #
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Hierarchical construction in R code

> (n_clusters <- rcrpk(1, n_items, concentration = 1.0, discount = 0.0))
[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
> # Second sample
> #
> #
> ## Sample number of clusters from the CRP
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Hierarchical construction in R code

[1] 9
>
> ## Sample integer partition given the number of clusters from LorenzIP distribution
> (int_part <- rlorenzip(1, n_items, curve, 0.01, n_clusters = n_clusters))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 35 61 130 143 152 158 160 160
>
> ## Uniformly sample set partition given the integer partition
> partition <- sample(rep(seq_along(int_part), int_part))
> length(partition)
[1] 1000
> tabulate(partition)
[1] 1 35 61 130 143 152 158 160 160
>
>
> #
> # Second sample
> #
> #
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[1] 4 24 148 191 206 208 219

11



Hierarchical construction

𝑘 ∼ 𝑝(𝑘), 𝑘 ∈ {1, … , 𝑛}
𝑥 ∣ 𝑘 ∼ 𝑝(𝑥 ∣ 𝑘), 𝑥 ∈ 𝒳𝑛,𝑘
𝜋 ∣ 𝑥 ∼ Unif(𝒫𝑛,𝑥 ), 𝜋 ∈ 𝒫𝑛,𝑥

Three-stage hierarchy: 𝑘 → 𝑥 → 𝜋 .
𝑘 is the number of clusters.
𝑥 is the sorted cluster-size profile.
Equivalently, 𝑥 is an integer partition of 𝑛 into 𝑘 parts.
𝜋 is the partition of [𝑛] with size profile 𝑥 .

𝑝(𝜋) = 𝑝(𝑘) 𝑝(𝑥 ∣ 𝑘) 1
|𝒫𝑛,𝑥 |

.

Depends on 𝜋 only through the multiset of cluster sizes.
Thus the induced distribution is exchangeable and admits a fixed-𝑛 EPPF.
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Space of set partitions with a fixed size profile

𝒫𝑛,𝑥 ≡ { 𝜋 ∈ 𝒫𝑛 ∶ |𝜋| = 𝑘 and 𝑥𝜋 = 𝑥 }.

𝒫𝑛 is the set of partitions of [𝑛] and 𝑥𝜋 is the sorted cluster-size vector.
𝒫4,(2,2) = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}}.
𝒫4,(1,3) = {{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}}, {{4}, {1, 2, 3}}}.
𝒫4,(4) = {{{1, 2, 3, 4}}} and 𝒫4,(1,1,1,1) = {{{1}, {2}, {3}, {4}}}.
Uniform allocation over 𝒫𝑛,𝑥 yields exchangeability at fixed 𝑛.
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𝑘 ∼ 𝑝(𝑘), 𝑘 ∈ {1, … , 𝑛}
𝑥 ∣ 𝑘 ∼ 𝑝(𝑥 ∣ 𝑘), 𝑥 ∈ 𝒳𝑛,𝑘
𝜋 ∣ 𝑥 ∼ Unif(𝒫𝑛,𝑥 ), 𝜋 ∈ 𝒫𝑛,𝑥

Three-stage hierarchy: 𝑘 → 𝑥 → 𝜋 .
𝑘 is the number of clusters.
𝑥 is the sorted cluster-size profile.
Equivalently, 𝑥 is an integer partition of 𝑛 into 𝑘 parts.
𝜋 is the partition of [𝑛] with size profile 𝑥 .

𝑝(𝜋) = 𝑝(𝑘) 𝑝(𝑥 ∣ 𝑘) 1
|𝒫𝑛,𝑥 |

.

Depends on 𝜋 only through the multiset of cluster sizes.
Thus the induced distribution is exchangeable and admits a fixed-𝑛 EPPF.
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Integer partition space

𝒳𝑛,𝑘 ≡ { 𝑥 ∈ ℤ𝑘 ∶ 1 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑘 ,
𝑘
∑
𝑗=1

𝑥𝑗 = 𝑛 }.

Each 𝑥 is a nondecreasing vector of cluster sizes.
𝒳7,2 = {(1, 6), (2, 5), (3, 4)}.
𝒳8,4 = {(1, 1, 1, 5), (1, 1, 2, 4), (1, 1, 3, 3), (1, 2, 2, 3), (2, 2, 2, 2)}.
𝒳5,1 = {(5)} and 𝒳5,5 = {(1, 1, 1, 1, 1)}.
𝒳10,3 = {(1, 1, 8), (1, 2, 7), (1, 3, 6), (1, 4, 5), (2, 2, 6), (2, 3, 5), (2, 4, 4), (3, 3, 4)}.
A key contribution is the Lorenz-IP distribution, which indexes a distribution on
𝒳𝑛,𝑘 by a Lorenz curve and a concentration curve.
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Lorenz Integer Partition (Lorenz-IP) Distribution



From a Lorenz curve to target cluster sizes for fixed 𝑘

After sampling 𝑘, it is fixed and we work on
𝒳𝑛,𝑘 (ordered size profiles).
Choose a Lorenz curve ℒ(𝑢) on 𝑢 ∈ [0, 1].
Discretize at 𝑢𝑗 = 𝑗/𝑘:

𝜔𝑗 = ℒ(𝑢𝑗) − ℒ(𝑢𝑗−1), 𝑗 = 1, … , 𝑘.

𝜔 = (𝜔1, … , 𝜔𝑘) sums to 1 and encodes
target relative cluster sizes.
We aim for 𝔼[𝑋𝑗]/𝑛 ≈ 𝜔𝑗 .
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Sequential construction given 𝑘 and 𝜔
Build sizes from smallest to largest such that: 1. ordering is automatic and 2. the
sum-to-𝑛 constraint is automatic.
Start with 𝑋1 on {1, 2, … , ⌊𝑛/𝑘⌋} and mean 𝜇1 = 𝑛𝜔1.

Given 𝑋1, draw 𝑋2 on
𝐿2 = 𝑋1, 𝑈2 = ⌊𝑛 − 𝑋1

𝑘 − 1 ⌋ ,
with mean 𝜇2 set by the Lorenz target.
In general, after drawing 𝑋1∶𝑖−1, the feasible interval for 𝑋𝑖 is

𝐿𝑖 = 𝑋𝑖−1, 𝑈𝑖 = ⌊
𝑛 − ∑𝑗<𝑖 𝑋𝑗
𝑘 − 𝑖 + 1 ⌋ .

Draw 𝑋𝑖 from a bounded-support kernel on {𝐿𝑖, … , 𝑈𝑖} with mean 𝜇𝑖.

Determining 𝜇𝑖 and choosing the mean-parameterized bounded-support kernel are
the linchpins of the method.

Set 𝑋𝑘 = 𝑛 − ∑𝑗<𝑘 𝑋𝑗 .
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Obtain 𝜇𝑖 from 𝜅𝑖 and the realized bounds 𝐿𝑖 and 𝑈𝑖
Interpolation coefficient and conditional mean:

𝜅𝑖 =
𝜔𝑖 − 𝜔𝑖−1
̄𝑢𝑖(𝜔) − 𝜔𝑖−1

, 𝜇𝑖 = 𝐿𝑖 + 𝜅𝑖(𝑈𝑖 − 𝐿𝑖).

where
̄𝑢𝑖(𝜔) =

1 − ∑𝑗<𝑖 𝜔𝑗
𝑘 − 𝑖 + 1 .

is the remaining-average share from the Lorenz target.
Note: 𝜅𝑖 is computed once and can be used many times.
Intuition: 𝜅𝑖 places the conditional mean between the smallest and largest feasible
sizes.
With a mean-parameterized kernel, 𝔼[𝑋𝑖 ∣ 𝑋1∶𝑖−1] = 𝜇𝑖; by iterated expectations,
𝔼[𝑋𝑖] = 𝔼[𝜇𝑖], so marginal means follow the target (up to rounding in 𝑈𝑖).
𝜅𝑖 ≈ 0 keeps 𝑋𝑖 near 𝐿𝑖 (more imbalance); 𝜅𝑖 ≈ 1 pushes toward 𝑈𝑖 (more balanced).
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Base kernel: mean + concentration

At each step we need a distribution on {𝐿𝑖, … , 𝑈𝑖} with mean 𝜇𝑖.
A concentration parameter 𝛾𝑖 controls how tightly 𝑋𝑖 concentrates around 𝜇𝑖.
Next: two concrete kernels (exponential-like vs power-law) and the theory that
guarantees feasibility, support, and bias bounds.
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Two concrete kernels

TiDaL
(truncated discrete Laplace)

𝑝[𝐿,𝑈 ](𝑥 ∣ 𝑀, 𝛾 ) ∝ exp(− 𝛾
𝑈 − 𝐿 |𝑥 − 𝑀|) ,

𝑥 ∈ {𝐿, … , 𝑈 }.

Exponential-like tails on [𝐿, 𝑈 ].
Closed-form normalizer and moments.
Mean calibration via a one-dimensional
solve for 𝑀 .

TaDPoLe
(truncated discrete power law)

𝑝[𝐿,𝑈 ](𝑥 ∣ 𝑀, 𝛾 , 𝛼) ∝ (|𝑥 − 𝑀| + 𝑈 − 𝐿
𝛾 )

−(1+𝛼𝛾)
,

𝑥 ∈ {𝐿, … , 𝑈 }.

Heavier tails — useful for extreme size
profiles — controlled by 𝛼 .
Normalizers and moments via standard
special-function evaluations (Hurwitz
zeta).
Mean calibration via a one-dimensional
solve for 𝑀 .
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Prior elicitation workflow

1. Choose 𝑝(𝑘) to encode beliefs about the number of clusters.
2. Choose a target Lorenz curve.
3. Choose tail behavior: TiDaL (exponential) vs TaDPoLe (power-law).
4. Choose concentrations 𝛾1∶𝑘−1 to control tightness.
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Theory



Base Kernel Properties 1-3

Property (Existence region)
For each [𝐿, 𝑈 ] and 𝛾 > 0, there is a feasible-mean intervalℳ[𝐿,𝑈 ](𝛾 ) ⊆ [𝐿, 𝑈 ] such that the base
kernel 𝑝[𝐿,𝑈 ](𝑧 | 𝜇, 𝛾 ) exists iff 𝜇 ∈ ℳ[𝐿,𝑈 ](𝛾 ). When 𝐿 = 𝑈 , we takeℳ[𝐿,𝑈 ](𝛾 ) = {𝐿}.

Property (Mean parameterization)
For any (𝜇, 𝛾 ) for which the base kernel exists, it has expected value 𝔼[𝑍] equal to 𝜇.

Property (Full support)
For any (𝜇, 𝛾 ) in which the base kernel exists, it has full support on {𝐿, … , 𝑈 }, i.e., ℙ(𝑍 = 𝑧) > 0 for
all 𝑧 ∈ {𝐿, … , 𝑈 }.

22



Base Kernel Properties 4-6

Property (Interior feasibility with uniform threshold)
For every 𝜂 ∈ (0, 1/2], there exists a finite uniform feasibility threshold 𝛾feas(𝜂) such that whenever
𝑊 ∶= 𝑈 − 𝐿 ≥ 1 and 𝜇 ∈ [𝐿 + 𝜂𝑊 , 𝑈 − 𝜂𝑊 ], the base kernel exists for all 𝛾 ≥ 𝛾feas(𝜂).

Property (Eventual feasibility)
Fix [𝐿, 𝑈 ] with 𝐿 < 𝑈 and any 𝜇 ∈ (𝐿, 𝑈 ). There exists a finite 𝛾0(𝐿, 𝑈 , 𝜇) such that 𝜇 ∈ ℳ[𝐿,𝑈 ](𝛾 ) for all
𝛾 ≥ 𝛾0(𝐿, 𝑈 , 𝜇).

Property (Two-point concentration)
Fix [𝐿, 𝑈 ] with 𝐿 < 𝑈 and any 𝜇 ∈ (𝐿, 𝑈 ), and fix any 𝛾0(𝐿, 𝑈 , 𝜇) such that 𝜇 ∈ ℳ[𝐿,𝑈 ](𝛾 ) for all
𝛾 ≥ 𝛾0(𝐿, 𝑈 , 𝜇). For every 𝜀 ∈ (0, 1) there exists 𝛾 ⋆(𝜀; 𝐿, 𝑈 , 𝜇) ≥ 𝛾0(𝐿, 𝑈 , 𝜇) such that for
𝑍 ∼ Base[𝐿,𝑈 ](𝜇, 𝛾 ) and all 𝛾 ≥ 𝛾 ⋆(𝜀; 𝐿, 𝑈 , 𝜇),

ℙ(𝑍 ∈ {⌊𝜇⌋ , ⌈𝜇⌉}) ≥ 1 − 𝜀. (1)

When 𝜇 ∈ ℤ, the set {⌊𝜇⌋ , ⌈𝜇⌉} is the singleton {𝜇}. 23



Target mean profile and feasibility

Technical conditions used in the theory:

𝜔𝑗−1 < 𝜔𝑗 <
1 − ∑𝑖<𝑗 𝜔𝑖
𝑘 − 𝑗 + 1 , 𝑗 = 1, … , 𝑘 − 1,

1 < 𝑛𝜔1 < ⌊𝑛𝑘 ⌋ ,

Here 𝜔0 ∶= 0 and 𝑗 = 1, … , 𝑘 − 1.
These keep the sequential construction feasible.
In the theory, we assume 𝑛 ≥ 2𝑘 so that ⌊𝑛/𝑘⌋ ≥ 2.
In the software, we are robust to violations of what’s needed for the theory.
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Feasibility guard for the base kernel

̃𝛾𝑖 = max{𝛾𝑖, 𝛾feas(𝜂𝑖)}, 𝜂𝑖 = min{𝜅𝑖, 1 − 𝜅𝑖}.

Ensures the kernel exists for the chosen mean.
If baseline 𝛾𝑖 is already large enough, the guard is inactive.
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Definition (Lorenz-IP)

Definition (Lorenz-IP)
Given (𝑛, 𝑘, 𝜔) with strictly interior target means 𝜔𝑗−1 < 𝜔𝑗 < 1−∑𝑖<𝑗 𝜔𝑖

𝑘−𝑗+1 for 𝑗 = 1, … , 𝑘 − 1 and
1 < 𝑛𝜔1 < ⌊𝑛/𝑘⌋, baseline concentration parameters 𝛾1, … , 𝛾𝑘−1 > 0, and (for TaDPoLe) shape
parameters 𝛼1, … , 𝛼𝑘−1 > 0, the Lorenz-IP distribution is the joint distribution of 𝑋 = (𝑋1, … , 𝑋𝑘)
produced by the following sequential algorithm:
1. Draw 𝑋1 ∼ Base[𝐿1 ,𝑈1](𝜇1, ̃𝛾1), with 𝐿1 = 1, 𝑈1 = ⌊𝑛/𝑘⌋, and 𝜇1 = 𝑛𝜔1.

2. For 𝑖 = 2, … , 𝑘 − 1, set 𝐿𝑖 = 𝑋𝑖−1 and 𝑈𝑖 = ⌊ 𝑛−∑
𝑖−1
𝑗=1 𝑋𝑗

𝑘−𝑖+1 ⌋, then draw

𝑋𝑖 ∼ Base[𝐿𝑖 ,𝑈𝑖](𝜇𝑖(𝑋1∶𝑖−1), ̃𝛾𝑖).

3. Set 𝑋𝑘 ∶= 𝑛 − ∑𝑘−1
𝑗=1 𝑋𝑗 .

When the base kernel is TaDPoLe, each draw uses its coordinate-specific shape parameter 𝛼𝑖.
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Valid distribution with full support and ability to concentrate

Proposition (Well-definedness)
Under the base-kernel properties and the strict interior target-mean conditions on 𝜔,
the Lorenz-IP algorithm indeed defines a valid distribution on 𝒳𝑛,𝑘 almost surely.

Theorem (Full support)
The Lorenz-IP distribution has full support on 𝒳𝑛,𝑘 : every nondecreasing integer
partition receives positive probability.

Theorem (Any integer partition can be made dominant)
Assume 𝑛 ≥ 2𝑘. For any 𝑥 ∈ 𝒳𝑛,𝑘 and 𝜀 ∈ (0, 1), there exist target means 𝜔 with
𝜔𝑗−1 < 𝜔𝑗 < 1−∑𝑖<𝑗 𝜔𝑖

𝑘−𝑗+1 for 𝑗 = 1, … , 𝑘 − 1 and 1 < 𝑛𝜔1 < ⌊𝑛/𝑘⌋, and concentrations 𝛾1, … , 𝛾𝑘−1
such that the Lorenz-IP distribution satisfies ℙ(𝑋 = 𝑥) ≥ 1 − 𝜀.
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Mean accuracy guarantee

Theorem (Uniform 𝑂(1/𝑛) bias)
Under mean-parameterized base kernels (so 𝔼[𝑍] = 𝜇) and strictly interior target means
𝜔𝑗−1 < 𝜔𝑗 < 1−∑𝑖<𝑗 𝜔𝑖

𝑘−𝑗+1 for 𝑗 = 1, … , 𝑘 − 1 with 1 < 𝑛𝜔1 < ⌊𝑛/𝑘⌋,

max
1≤𝑗≤𝑘 |

𝔼[𝑋𝑗]
𝑛 − 𝜔𝑗 | ≤

𝐶𝑘(𝜅)
𝑛 ,

where 𝐶𝑘(𝜅) depends only on 𝑘 and 𝜅 = (𝜅1, … , 𝜅𝑘−1). Thus, for fixed (𝑘, 𝜔), Lorenz-IP
marginal means converge uniformly to 𝜔 at rate 𝑂(1/𝑛).

Bias arises only from integer rounding in the sequential upper bounds.
A deterministic recursion bounds cumulative rounding error, yielding 𝐶𝑘(𝜅) and the
𝑂(1/𝑛) rate.
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Stability to target perturbations

Corollary (Lipschitz stability)
If two target vectors 𝜔 and 𝜔′ both satisfy 𝜔𝑗−1 < 𝜔𝑗 < 1−∑𝑖<𝑗 𝜔𝑖

𝑘−𝑗+1 for 𝑗 = 1, … , 𝑘 − 1 with the
same (𝑛, 𝑘), the corresponding Lorenz-IP mean profiles differ by at most
‖𝜔 − 𝜔′‖1 + 2𝐶max/𝑛, where 𝐶max is the larger of the two bias constants.

Small changes in the target Lorenz curve induce small changes in mean size
profiles.
Elicitation is robust: near-by targets yield near-by priors, especially for larger 𝑛.
Provides a simple sensitivity bound for tuning 𝜔.
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Exchangeability



Fixed-𝑛 focus vs. projective consistency

Kingman paintbox consistency is not imposed by design.
We treat 𝑛 as fixed and elicit priors directly on 𝒫𝑛.
This yields direct control over 𝑘 and the size profile at the observed sample size.
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Computation



Computation at a glance

Sequential evaluation and sampling: one bounded-support pmf per coordinate.
Base kernels have closed-form normalizers and exact sampling schemes.
Complexity is 𝑂(𝑘) per draw of 𝑥 ; uniform allocation uses a standard partition
representation.
MCMC updates can reuse familiar item-allocation moves (collapsed or
uncollapsed).
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Benchmarks

> options(width = 120)
>
> partition <- c(4, 14, 32, 50)
> curve <- lorenz_ispline(partition)
>
> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
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>
> partition <- c(4, 14, 32, 50)
> curve <- lorenz_ispline(partition)
>
> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
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Benchmarks

> partition <- c(4, 14, 32, 50)
> curve <- lorenz_ispline(partition)
>
> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
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> curve <- lorenz_ispline(partition)
>
> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
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>
> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
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> microbenchmark(times = 1000,
+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
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+ ”k = 4, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
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+ ”k = 4, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds
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+ ”k = 4, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds

expr min lq mean median uq max neval

32



Benchmarks

+ ”k = 4, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 4),
+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 8, n = 100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000

32



Benchmarks

+ ”k = 4, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 4)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 8, n = 100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000

k = 8, n = 1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
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+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000

k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000
k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000

k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000
k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000

>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 8, n = 100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000

k = 8, n = 1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
k = 8, n = 10,000 107.503 111.2700 113.3332 112.3415 114.0800 286.470 1000
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Unit: microseconds
expr min lq mean median uq max neval

k = 4, n = 100 93.406 97.2935 99.37528 97.935 99.0770 976.681 1000
k = 4, n = 1,000 95.530 98.0450 99.48815 98.691 100.0130 201.079 1000

k = 4, n = 10,000 96.792 99.2920 101.08566 100.229 101.8170 121.298 1000
k = 4, n = 100,000 100.309 157.3060 189.89491 205.322 207.1605 778.948 1000

k = 4, n = 1,000,000 101.712 206.1390 201.11273 207.726 209.3095 1613.340 1000
>
> microbenchmark(times = 1000,
+ ”k = 8, n = 100” = rlorenzip(1, 100, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000” = rlorenzip(1, 1000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 10,000” = rlorenzip(1, 10000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 100,000” = rlorenzip(1, 100000, curve, 0.1, n_clus = 8),
+ ”k = 8, n = 1,000,000” = rlorenzip(1, 1000000, curve, 0.1, n_clus = 8)
+ )
Unit: microseconds

expr min lq mean median uq max neval
k = 8, n = 100 98.044 109.0350 110.6104 109.8170 111.0295 198.454 1000

k = 8, n = 1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
k = 8, n = 10,000 107.503 111.2700 113.3332 112.3415 114.0800 286.470 1000

k = 8, n = 100,000 163.719 269.1170 276.4181 273.0200 278.6550 1920.910 1000
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k = 8, n = 1,000 103.485 109.4515 110.9147 110.1730 111.5350 181.432 1000
k = 8, n = 10,000 107.503 111.2700 113.3332 112.3415 114.0800 286.470 1000

k = 8, n = 100,000 163.719 269.1170 276.4181 273.0200 278.6550 1920.910 1000
k = 8, n = 1,000,000 220.175 368.6900 380.5347 377.3510 420.7930 1991.483 1000
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Conclusion and open questions

Control: Separate priors on 𝑘 and relative cluster sizes; can concentrate on any
𝑥 ∈ 𝒳𝑛,𝑘 .
Tools: Lorenz-IP plus TiDaL/TaDPoLe give bounded discrete kernels with tunable
tails.
Fixed-𝑛 tradeoff : No marginal invariance; priors are tailored to the observed 𝑛.
Beyond clustering: Lorenz-IP as a prior for other integer-partition problems.
Open questions:

Posterior consistency for 𝑘 under suitable conditions?
Should the Lorenz curve depend on 𝑛 or 𝑘?
The Lorenz curve is cumulative, like a CDF; is there a density-style summary that
reveals subtle differences?
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