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A blast from the past. . .

My first introduction to the Bayesian community was speaking at the ICERM workshop
on Bayesian Nonparametrics in 2012 as a PhD student at Brown.
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Cancer cells have DNA mutations due to many processes

® Various processes cause mutations, such as environmental exposures and cellular
dysregulation.

® Each mutational process has been found to consistently produce each mutation type at
a relatively constant rate.
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Mutational signatures analysis

96)

Mutation channels (/

Non-negative matrix factorization (NMF) is used to recover these rates (referred to as
“mutational signatures”) and patient-specific exposures (Alexandrov et al., 2013).

For mutation type ¢ = 1,...,1 and patient j = 1,...,J, the usual model to let

K
Nij ~ Poisson E Tikekj
k=1

be the number of mutations observed, where 7, 0x; > 0 and Zl rik = L.
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Existing methods assume homogeneity across the genome

® Numerous mutational signatures have been discovered with the NMF approach,
opening up exciting new directions in cancer research and treatment.

® Existing methods implicitly assume that mutational process activity is homogeneous
across the genome.
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Heterogeneity of the genome

® However, the genome is highly heterogeneous. The structure and cellular processes of
the genome are affected by a range of features that are position-specific.

® Features such as GC content, methylation, DNA accessibility, and epigenetic
modifications like histones marks strongly affect genomic processes.
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Signature activity correlates with genomic features

® Mutational burden varies across the genome, and recent work has found that
mutational signature activity correlates with epigenetic marks (Otlu et al., 2023).

® However, Otlu et al. (2023) is based on post hoc correlation with epigenetic marks,
rather than modeling the joint effect of genomic features.
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Objective and Challenges

Objective

® A Bayesian framework that links genomic features with mutational signatures.
Challenges

® Position-specific modeling of mutational signature activity for each patient is needed.
® Copy number affects exposure in a patient-specific and position-specific manner.

® Selecting K, the rank of the factorization, is important to avoid over- or under-fitting.

e Computation is challenging since there are around 3 x 10° positions in the genome.
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Our contribution: Poisson process factorization (PPF)

® We introduce a new Bayesian modeling framework that incorporates:
@ a Poisson process model for spatial count data,

@ non-negative matrix factorization (NMF) of the intensity function, and

© log-linear model for the NMF weights.

® For mutational signatures analysis, this enables:
@ attribution of individual mutations to signatures,

@ improved accuracy of signature estimation, and

@ inference of the effect of genomic features on mutational signature activity,

¢ We develop computationally efficient estimation and posterior inference algorithms.
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Poisson process factorization (PPF)

® An inhomogeneous Poisson process Z on the real line is a completely random measure
defined via an intensity function A : [0,7) — Ry such that

Z(A) ~ Pmsson(fA dt) AcCl0,T).

Definition: Poisson process factorization
A Poisson process factorization model is a multivariate Poisson process (Z;;) where

the intensity functions X\;; : [0,7) = Ry fori=1,...,I, j=1,...,J factor as

K
” = g rik X ﬁkj(t), t e [O,T)
~—~ ——
=1 Mutational Position-specific
signatures exposures

° If T'=1 and ¥4, (t) = Ok, for all t € [0,T") and all 4, j, k, then this reduces to the usual
Poisson NMF model used in previous work.
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Log-linear model of position-specific exposures

® For each signature k and patient j, we model the position-specific exposures as
1
Dy (£) = 5 Oy e5(1) PIXO e 0,T).

¢ Baseline exposures: 6;; > 0 is the baseline exposure of patient j to signature k.
¢ Copy number: ¢;:[0,7) — R4 with ¢;(¢) = 2 under normal conditions.

° Genomic covariates: x(t) = (z1(t),...,zp(t))" € RP, with z,(t) denoting the value
of covariate £ at position ¢.

* Regression coefficients: 81, = (Bk1,...,Bkp) € RP.

® Although genomic position ¢t is technically discrete, we make a continuous
approximation by using ¢t € [0,7) C Ry where T'~ 3 x 10° nucleotides.
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Prior distributions

Under this model, the number of mutations of type ¢ in region A for patient j is

K
Zij(A) | 0,8 ~ Poisson(Zrikij/ %cj(t) eﬂ;x(t)dt>,
A

k=1

For the priors, we generalize the compressive NMF approach (Zito and Miller, 2024):

© Signatures: r& = (T1k,...,71x) ~ Dirichlet(a1g, . . ., o)
a (M1

¢ Baseline exposures: Okj | pe ~ Gal a, —/ —c;(t)dt
Kk Jo 2

® Relevance weights: ur ~ InvGa(aJ + 1, ealJ)

® Regression coefficients: Bk | 07 ~N(0,021,), o} ~ InvGa(100,1)

The compressive hyperprior on p shrinks the weights of any unneeded factors to zero,
similarly to overfitted mixture models (Rousseau and Mengersen, 2011).
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Posterior of the model

® The likelihood of the intensity function A;; for mutation type 4, patient j, is

T Nij
E()\ij;th...,t]vij)Iexp(—/ )\ij(t)dt) H)\ij(tn)
0 n=1

where 1, ,ty,; are the positions of mutations of type i (Daley and Vere-Jones, 2003).

Log-posterior of the Poisson process factorization (PPF) model

logﬂ-(raeaﬁ7”v 02 | {t17' i thJ}U) =

T
x 1 T x(tn
I—Zkekj/o 5¢i(t)e P (t)dt-l-ZZlOg<ZTik9kj§Cj(tn)eﬂk “ )>
J

iy n=1
+log n(r) (6 | ) () (8 | o%) (o) + const,
subject to Zle rap=1forallk=1,... K.

® We use maximum a posteriori (MAP) estimation and MCMC for Bayesian inference.
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Attribution of individual mutations to signatures

® For computation, we employ data augmentation with multinomial random variables

Wij(tn) = (Wijl(tn), Cey Win(tn)) ~ Mult(l; pijl(tn)7 . ,pin(tn)),

where -

) B x(tn)
rikOg e’k
Pijk(tn) = P(Wigk(tn) = 1[7,0,8) = =5 Tote )"

Zs:l Tisesjeﬂs x(tn)

® Conditional on W, this yields conjugate updates for all parameters except By, for
which we use elliptical slice sampling.

® pijk(tn) is the probability that a mutation of type ¢ at position ¢, in patient j was
generated by signature k, under the model.

® Unlike usual NMF, each mutation has its own signature assignment probabilities.

® The scientific and medical implication of this is that we can infer and quantify
uncertainty in the mechanism that generated each mutation.
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Analysis of ICGC breast adenocarcinoma cohort

® We analyze whole-genome sequencing data from 113 women with breast cancer from
the Breast-AdenoCA |ICGC cohort.

® The data consist of 707,104 total mutations altogether, for which we have the genomic
location (e.g., chrX:77364730-77364827) and the mutation type (e.g., A[C>T]C).
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Clusters of patients

® Clustering the normalized baseline exposures yields interpretable groups of patients.
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Genomic covariates

® For these data, we have a range of genomic covariates that have previously reported
effects on mutation rate.

COVARIATE ~ ASSAY DESCRIPTION AND ROLE MUTATIONS ~ REFERENCE

Nucleosome MNase-seq Degree to which DNA is wrapped around nucleosomes; Periodic Pich et al. (2018)

occupancy higher values indicate packed chromatin. patterns

H3K27ac Histone ChIP-seq Marker of active enhancers and promoters; associated with A Schuster-Bockler and
gene activation. Lehner (2012)

H3K4mel Histone ChIP-seq Marks poised and active enhancers; enriched at regulatory N Hodgkinson et al.
elements. (2012)

H3K4me3 Histone ChIP-seq Marks active promoters; associated with transcription initi- N Hodgkinson et al.
ation. (2012)

H3K9me3 Histone ChIP-seq Marker of constitutive heterochromatin; gene silenc- P Schuster-Bockler and
ing/repression. Lehner (2012)

H3K27me3  Histone ChIP-seq Repressive mark, associated with Polycomb-mediated gene A Schuster-Bockler and
silencing. Lehner (2012)

H3K36me3  Histone ChIP-seq Marker of transcriptional elongation within gene bodies. R Li et al. (2013)

CTCF TF ChIP-seq Insulator protein, key architectural TF regulating chromatin 2 Katainen et al. (2015)
looping and gene expression.

Replication ~ Repli-seq Timing of DNA replication during S-phase of a cell; reflects /* (later) Supek and Lehner

timing chromatin state and genome organization. N (early)  (2015)

Methylation WGBS Level of DNA methylation; regulates gene expression and _ at CpGs Bird (1980)
silencing.

GC content — Proportion of G and C nucleotides a region; influences DNA N Makova and Hardison

stability and nucleosome positioning.

(2015)

Jeffrey W. Miller (Harvard)

Poisson process factorization

ICERM Nonparametric Bayes workshop 1



Estimated signatures and coefficients

Regression coefﬁcients
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Mutational channel

* Sigh (SBS3) HRD/BRCA: Covariates have varying effects on mutation rate.

* Sigb (SBS1) Aging, CpG sites: Accurate recovery aided by methylation covariate.

¢ Replication timing: Late timing = high rate for Sigs 4, 6, 7 (APOBEC, CpG, ROS).
Early timing = increased rate for Sig9, opposite of previous finding.

® H3K9me3, H3K27me3 (Heterochromatin, gene suppression): Increased rates,
especially Sig7 (SBS13) ROS. H3K36me3: Decreased rates, especially Sigs 5, 6, 7.
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Supervised analysis with known signatures: lllustration of varying exposures

Mutation type A[C>A]C in patient DO220823
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® Poisson process factorization (PPF) provides a framework for joint modeling of
mutational signatures, position-specific exposures, and genomic covariates.

® We compute the MAP estimate using a computationally tractable majorization-
minimization algorithm and use Gibbs sampling for posterior inference.

® The model provides insight into patient-specific information for precision treatment as
well as general patterns of cancer biology.

® We envision that the PPF model will be useful in many other applications beyond
cancer genomics.
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Maximum a posteriori (MAP) estimation

© Signatures: For k,, update each probability r;; in signature k as

i , Ok P x(tn)

1

Tik < E o Tik < Tik( + Z Z eﬂ;rx(tn) ) ’
4 5

i ik Tzs

¢ Baseline exposures: For j, k, update each 0} as

a—1 HEk rine” et )
Ok + O, +
kj kj ( On; fT x(t) Z Z nsesjeﬂs x(tn)
0 K3

5(8)(a + pe®

© Regression coefficients: For k = 1,..., K, update B <+ Br — H,: gk, where

T 1 T 1
—E 0kj/ 5cj(t)eﬁk *Ox(t)x(t) T dt — — 1,
- 0
J

k
B x(tn)
T kek] k 1
- 9kj/ 56 (e ePr xOx(t) dt + : x(tn) — —5 B-
; 0 ZJ ; PO ris0sj s x(tn) Tk
¢ Relevance weights and variances: For each k, update
} oY 0k [ Sej(tydt +ead 52 . BiBr/2+do
LA 2aJ + 1 ’ p/2+co+1"
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Gibbs sampler for posterior inference

¢ Latent attributions: For each i,j, and n =1,..., N;;, sample

rigbp ePr x(n)

(Wij(tn) | 7,0,8) ~ Mlﬂt(h Pij1(tn), ... 7pin(tn)), Pijk(tn) = —% - .
Dy TisOsjePs x(tn)

© Signatures: Let M, = Z z W”k(tn) be the number of mutations of type ¢ assigned
to signature k, and sample

(r | W, ,0) ~ Dir(qu + Mg, arp + MIk)-

¢ Baseline exposures: Let Sy; = Z Z & ij (tn) be the number of mutations in patient j
assigned to signature k, and sample

(O | W.5,r) ~ Gaat Sig. [ 3es(0) (o + 500t ).
© Regression coefficients: Perform elliptical slice sampling on

T T
7(Br|0, W, 0?) o exp (— Z]. Ok fo Lej(t) ePrxWdt 4 Zi].n Wijk(tn)ﬂ;—x(tn))N(ﬂk; 0,021p).

® Relevance weights and variances: Sample

By B
(1)0) ~ InvGa(ao +aJ, bp + azj O fOT %q(t)dt), (02]8) ~ InvGa.(co + =, do+ —— k k )
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