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A blast from the past. . .

My first introduction to the Bayesian community was speaking at the ICERM workshop
on Bayesian Nonparametrics in 2012 as a PhD student at Brown.
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Cancer cells have DNA mutations due to many processes

• Various processes cause mutations, such as environmental exposures and cellular
dysregulation.

• Each mutational process has been found to consistently produce each mutation type at
a relatively constant rate.
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Mutational signatures analysis

• Non-negative matrix factorization (NMF) is used to recover these rates (referred to as
“mutational signatures”) and patient-specific exposures (Alexandrov et al., 2013).

• For mutation type i = 1, . . . , I and patient j = 1, . . . , J , the usual model to let

Nij ∼ Poisson
( K∑

k=1

rikθkj

)
be the number of mutations observed, where rik, θkj ≥ 0 and

∑
i
rik = 1.
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Existing methods assume homogeneity across the genome

• Numerous mutational signatures have been discovered with the NMF approach,
opening up exciting new directions in cancer research and treatment.

• Existing methods implicitly assume that mutational process activity is homogeneous
across the genome.
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Heterogeneity of the genome

• However, the genome is highly heterogeneous. The structure and cellular processes of
the genome are affected by a range of features that are position-specific.

• Features such as GC content, methylation, DNA accessibility, and epigenetic
modifications like histones marks strongly affect genomic processes.

The human epigenome and the DNA topography

• Biologically, every cell has the same DNA!
• What truly di�erentiates cell activity and functions is the topography of the genome

(euchromatin vs heterochromatin) and epigenetic modifications (e.g. transcription factors).

Alessandro Zito (Harvard SPH & DFCI) Poisson process factorization BNP14@UCLA 4 / 14
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Signature activity correlates with genomic features

• Mutational burden varies across the genome, and recent work has found that
mutational signature activity correlates with epigenetic marks (Otlu et al., 2023).

• However, Otlu et al. (2023) is based on post hoc correlation with epigenetic marks,
rather than modeling the joint effect of genomic features.
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Objective and Challenges

Objective
• A Bayesian framework that links genomic features with mutational signatures.

Challenges
• Position-specific modeling of mutational signature activity for each patient is needed.

• Copy number affects exposure in a patient-specific and position-specific manner.

• Selecting K, the rank of the factorization, is important to avoid over- or under-fitting.

• Computation is challenging since there are around 3 × 109 positions in the genome.
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Our contribution: Poisson process factorization (PPF)

• We introduce a new Bayesian modeling framework that incorporates:
1 a Poisson process model for spatial count data,

2 non-negative matrix factorization (NMF) of the intensity function, and

3 log-linear model for the NMF weights.

• For mutational signatures analysis, this enables:
1 attribution of individual mutations to signatures,

2 improved accuracy of signature estimation, and

3 inference of the effect of genomic features on mutational signature activity,

• We develop computationally efficient estimation and posterior inference algorithms.
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Poisson process factorization (PPF)

• An inhomogeneous Poisson process Z on the real line is a completely random measure
defined via an intensity function λ : [0, T ) → R+ such that

Z(A) ∼ Poisson
( ∫

A
λ(t) dt

)
, A ⊂ [0, T ).

Definition: Poisson process factorization
A Poisson process factorization model is a multivariate Poisson process (Zij) where
the intensity functions λij : [0, T ) → R+ for i = 1, . . . , I, j = 1, . . . , J factor as

λij(t) =
K∑

k=1

rik︸︷︷︸
Mutational
signatures

× ϑkj(t),︸ ︷︷ ︸
Position-specific

exposures

t ∈ [0, T ).

• If T = 1 and ϑkj(t) = θkj for all t ∈ [0, T ) and all i, j, k, then this reduces to the usual
Poisson NMF model used in previous work.
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Log-linear model of position-specific exposures

• For each signature k and patient j, we model the position-specific exposures as

ϑkj(t) = 1
2 θkj cj(t) eβ⊤

k
x(t), t ∈ [0, T ).

• Baseline exposures: θkj ≥ 0 is the baseline exposure of patient j to signature k.

• Copy number: cj : [0, T ) → R+ with cj(t) = 2 under normal conditions.

• Genomic covariates: x(t) = (x1(t), . . . , xp(t))⊤ ∈ Rp, with xℓ(t) denoting the value
of covariate ℓ at position t.

• Regression coefficients: βk = (βk1, . . . , βkp)⊤ ∈ Rp.

• Although genomic position t is technically discrete, we make a continuous
approximation by using t ∈ [0, T ) ⊂ R+ where T ≈ 3 × 109 nucleotides.
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Prior distributions

Under this model, the number of mutations of type i in region A for patient j is

Zij(A) | r, θ, β ∼ Poisson
( K∑

k=1

rikθkj

∫
A

1
2 cj(t) eβ⊤

k
x(t)dt

)
.

For the priors, we generalize the compressive NMF approach (Zito and Miller, 2024):

• Signatures: rk = (r1k, . . . , rIk) ∼ Dirichlet(α1k, . . . , αIk)

• Baseline exposures: θkj | µk ∼ Ga
(

a,
a

µk

∫ T

0

1
2cj(t) dt

)
• Relevance weights: µk ∼ InvGa(aJ + 1, εaJ)

• Regression coefficients: βk | σ2
k ∼ N(0, σ2

kIp), σ2
k ∼ InvGa(100, 1)

The compressive hyperprior on µk shrinks the weights of any unneeded factors to zero,
similarly to overfitted mixture models (Rousseau and Mengersen, 2011).
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Posterior of the model

• The likelihood of the intensity function λij for mutation type i, patient j, is

L(λij ; t1, . . . , tNij ) = exp
(

−
∫ T

0
λij(t) dt

) Nij∏
n=1

λij(tn)

where t1, · · · , tNij are the positions of mutations of type i (Daley and Vere-Jones, 2003).

Log-posterior of the Poisson process factorization (PPF) model

log π
(
r, θ, β, µ, σ2 ∣∣ {t1, . . . , tNij }ij

)
=

= −
∑

jk

θkj

∫ T

0

1
2 cj(t) eβ⊤

k
x(t)dt +

∑
ij

Nij∑
n=1

log
( K∑

k=1

rikθkj
1
2 cj(tn) eβ⊤

k
x(tn)

)
+ log π(r) π(θ | µ) π(µ) π(β | σ2) π(σ2) + const,

subject to
∑I

i=1 rik = 1 for all k = 1, . . . , K.

• We use maximum a posteriori (MAP) estimation and MCMC for Bayesian inference.
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Attribution of individual mutations to signatures

• For computation, we employ data augmentation with multinomial random variables

Wij(tn) =
(
Wij1(tn), . . . , WijK(tn)

)
∼ Mult

(
1; pij1(tn), . . . , pijK(tn)

)
,

where

pijk(tn) = P(Wijk(tn) = 1 | r, θ, β) = rikθkjeβ⊤
k

x(tn)∑K

s=1 risθsjeβ⊤
s x(tn)

.

• Conditional on W , this yields conjugate updates for all parameters except βk, for
which we use elliptical slice sampling.

• pijk(tn) is the probability that a mutation of type i at position tn in patient j was
generated by signature k, under the model.

• Unlike usual NMF, each mutation has its own signature assignment probabilities.

• The scientific and medical implication of this is that we can infer and quantify
uncertainty in the mechanism that generated each mutation.
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Analysis of ICGC breast adenocarcinoma cohort

• We analyze whole-genome sequencing data from 113 women with breast cancer from
the Breast-AdenoCA ICGC cohort.

• The data consist of 707,104 total mutations altogether, for which we have the genomic
location (e.g., chrX:77364730-77364827) and the mutation type (e.g., A[C>T]C).
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Clusters of patients

• Clustering the normalized baseline exposures yields interpretable groups of patients.
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Genomic covariates

• For these data, we have a range of genomic covariates that have previously reported
effects on mutation rate.Know effects of epigenetic markers on mutation rate
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Estimated signatures and coefficients
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Cluster 1 - Moderate Sig6 + Sig7   
(Methylation and Oxidative damages)

34 samples 12 samples

Mutational signatures Relevance 
weights

Regression coefficients

• Sig5 (SBS3) HRD/BRCA: Covariates have varying effects on mutation rate.
• Sig6 (SBS1) Aging, CpG sites: Accurate recovery aided by methylation covariate.
• Replication timing: Late timing ⇒ high rate for Sigs 4, 6, 7 (APOBEC, CpG, ROS).

Early timing ⇒ increased rate for Sig9, opposite of previous finding.
• H3K9me3, H3K27me3 (Heterochromatin, gene suppression): Increased rates,

especially Sig7 (SBS13) ROS. H3K36me3: Decreased rates, especially Sigs 5, 6, 7.
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Supervised analysis with known signatures: Illustration of varying exposures
Intensity from SBS3 and SBS8

Higher intensity from SBS3
early replication

Late replication leads to 
high activity of SBS8
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Summary

• Poisson process factorization (PPF) provides a framework for joint modeling of
mutational signatures, position-specific exposures, and genomic covariates.

• We compute the MAP estimate using a computationally tractable majorization-
minimization algorithm and use Gibbs sampling for posterior inference.

• The model provides insight into patient-specific information for precision treatment as
well as general patterns of cancer biology.

• We envision that the PPF model will be useful in many other applications beyond
cancer genomics.
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Maximum a posteriori (MAP) estimation

• Signatures: For k, i, update each probability rik in signature k as

rik ←
r′

ik∑
i

r′
ik

r′
ik ← rik

(
αik − 1

rik
+

∑
j

Nij∑
n=1

θkjeβ⊤
k

x(tn)∑K

s=1 risθsjeβ⊤
s x(tn)

)
.

• Baseline exposures: For j, k, update each θkj as

θkj ← θkj

(
a− 1
θkj

+
µk∫ T

0
1
2 cj(t)(a + µkeβ⊤

k
x(t))dt

∑
i

Nij∑
n=1

rikeβ⊤
k

x(tn)∑K

s=1 risθsjeβ⊤
s x(tn)

)
.

• Regression coefficients: For k = 1, . . . , K, update βk ← βk −H−1
k

gk, where

Hk = −
∑

j

θkj

∫ T

0

1
2

cj(t)eβ⊤
k

x(t)x(t)x(t)⊤ dt−
1

σ2
k

Ip,

gk = −
∑

j

θkj

∫ T

0

1
2

cj(t)eβ⊤
k

x(t)x(t) dt +
∑
i,j

Nij∑
n=1

rikθkjeβ⊤
k

x(tn)∑K

s=1 risθsjeβ⊤
s x(tn)

x(tn)−
1

σ2
k

βk.

• Relevance weights and variances: For each k, update

µk ←
a

∑
j

θkj

∫ T

0
1
2 cj(t) dt + εaJ

2aJ + 1
, σ2

k ←
β⊤

k βk/2 + d0

p/2 + c0 + 1
.
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Gibbs sampler for posterior inference

• Latent attributions: For each i, j, and n = 1, . . . , Nij , sample

(Wij(tn) | r, θ, β) ∼ Mult
(

1; pij1(tn), . . . , pijK(tn)
)

, pijk(tn) =
rikθkjeβ⊤

k
x(tn)∑K

s=1 risθsjeβ⊤
s x(tn)

.

• Signatures: Let Mik =
∑

j

∑Nij

n=1 Wijk(tn) be the number of mutations of type i assigned
to signature k, and sample

(rk |W, β, θ) ∼ Dir
(

α1k + M1k, . . . , αIk + MIk

)
.

• Baseline exposures: Let Skj =
∑

i

∑Nij

n=1 Wijk(tn) be the number of mutations in patient j

assigned to signature k, and sample

(θkj |W, β, r) ∼ Ga
(

a + Skj ,
∫ T

0
1
2 cj(t)

(
a/µk + eβ⊤

k
x(t)

)
dt

)
.

• Regression coefficients: Perform elliptical slice sampling on

π(βk|θ, W, σ2) ∝ exp
(
−

∑
j

θkj

∫ T

0
1
2 cj(t) eβ⊤

k
x(t)dt +

∑
ijn

Wijk(tn)β⊤
k x(tn)

)
N(βk; 0, σ2

kIp).

• Relevance weights and variances: Sample

(µk|θ) ∼ InvGa
(

a0 + aJ, b0 + a
∑

j
θkj

∫ T

0
1
2 cj(t)dt

)
, (σ2

k|β) ∼ InvGa
(

c0 +
p

2
, d0 +

β⊤
k βk

2
)

.
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