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Motivation and Background

Cauchy problem of a system of hyperbolic-parabolic balance
laws:

wt + f (w)x = [B(w)wx ]x + r(w), x ∈ R, t ∈ R+, (1)

w(x , 0) = w0(x). (2)

w ∈ Rn — unknown density function (components are mass
density, momentum density, etc.)

f ∈ Rn — flux function

B ∈ Rn×n — viscosity matrix (viscosity, heat conduction, species
diffusion, etc.)

r ∈ Rn — external forces, relaxation, chemical reaction, etc.



Important facts:

I The flux function f satisfies an entropy condition so that the
corresponding inviscid form

wt + f (w)x = 0 (3)

is hyperbolic.

I The entropy condition is extended to include B and r in that
f ′, B and r ′ (restricted to the equilibrium manifold) are
symmetrizable simultaneously.

I B and r ′ are rank deficient.



Examples

Example 1. Polyatomic gas flows in both translational and
vibrational non-equilibrium (see [Clarke & McChesney, Vincenti
&Kruger]),

ρt + (ρu)x = 0,

(ρu)t + ((ρu2 + p)x = (µux)x ,

(ρE )t + (ρEu + pu)x = (µuux + κT1x + νρe2x)x ,

(ρe2)t + (ρe2u)x = (νρe2x)x + ρ
e∗2−e2

τ .

(4)

ρ — density u — velocity p — pressure

E = e +
1

2
u2 — total specific energy with e = e1 + e2

e2 — non-equilibrium vibrational energy

e1 — the rest of internal energy



Equ (4) is derived from Boltzmann equation. Dissipation
mechanisms are introduced to compensate the non-equilibrium in
the translational mode through Chapman-Enskog expansion:

µ — viscosity coefficient κ — thermal conductivity

ν — self-diffusion coefficient

On the other hand, the vibrational mode is singled out as the
non-equilibrium mode. In its relaxation,

e∗2 — the local equilibrium value of e2

τ — the relaxation time scale

Such a setup is based on the fact that the relaxations of
translational mode and of vibrational mode are in very different
time scales.



Two sets of thermal dynamic variables:

I “1” for the translational mode (and all other internal modes
that are in equilibrium)

I “2” for the vibrational mode

Two thermodynamic equations:

T1ds1 = de1 + pdv , v = 1/ρ,

T2ds2 = de2.

Equ (4) is a system of 4 equations for 4 unknowns (u and three
dynamic variables, two with index “1” and one with index “2”).

Equ (4) is an example of the general system (1).



Example 2. Two-temperature Navier-Stokes type model, which is
another model for polyatomic gas flows, proposed by Aoki et al
(Phys. Rev. E, 102 (2020), 023104)



ρt + (ρu)x = 0,

(ρu)t + (ρu2 + ρRT1)x = (µtrux)x ,

[ρ( 3+δ
2 RT + 1

2u
2)]t + [ρu( 3+δ

2 RT + RT1 + 1
2u

2)]x

= [κtr(
3+δ

2 Tx + T1x) + µtruux ]x ,

(ρT2)t + (ρuT2)x = 2
δR (κintT2x)x + θAc(T )ρ2(T − T2).

(5)

p = ρRT1, T =
3T1 + δT2

3 + δ

e =
3 + δ

2
RT =

3

2
RT1 +

δ

2
RT2 ≡ e1 + e2

δ ≥ 2 — the number of the internal degrees of freedom

θ ∈ (0, 1] — constant parameter Ac(T )ρ — the collision frequency



The system is derived from the polyatomic version of the
ellipsoidal-statistical model (a simplified kinetic model) rather than
the original Boltzmann equation.

The setup of (5) is different from that of (4). The translational
mode is separated from δ (at least two) relaxing internal modes.

However, (4) and (5) turn out to be very similar. Both are in the
form of (1), with some discrepancies in the formulation of
dissipation parameters.

A much simpler example than these two is a chemotaxis model,
which is 2x2.

These examples give us motivation to study (1).



Hyperbolic-parabolic balance laws

One space dimension

wt + f (w)x = [B(w)wx ]x + r(w), x ∈ R, t ∈ R+, (1)

Multi space dimensions

wt +
m∑
j=1

fj(w)xj =
m∑

j ,k=1

[
Bjk(w)wxk

]
xj

+ r(w) (6)

x = (x1, . . . , xm)t ∈ Rm, t ∈ R+



Hyperbolic-parabolic conservation laws

One-D: wt + f (w)x = [B(w)wx ]x

Multi-D: wt +
m∑
j=1

fj(w)xj =
m∑

j ,k=1

[
Bjk(w)wxk

]
xj

(7)

Hyperbolic balance laws

One-D: wt + f (w)x = r(w)

Multi-D: wt +
m∑
j=1

fj(w)xj = r(w) (8)



Cauchy problems near equilibrium states in the space
C ([0,∞);Hs(Rm)) ∩ C 1([0,∞);Hs−1(Rm)) (s > m

2 + 1)
I hyperbolic-parabolic conservation laws:

wt +
m∑
j=1

fj(w)xj =
m∑

j ,k=1

[
Bjk(w)wxk

]
xj

(7)

– Early works on isentropic gas flows (Nash, Itaya,
Kazhikhov-Shelukhin)

– Navier-Stokes equations via energy method
(Matsumura-Nishida)

– Complete theory for the general system ( Kawashima for
structural conditions and Kawashima-Shizuta for KS
condition). The theory includes global existence of unique
solution and L2 time decay rates to a constant state.

– For one space dimension, Green’s function of the linearization
in the physical space, pointwise (in x and t) asymptotic
behavior, and hence Lp (1 ≤ p ≤ ∞) asymptotic behavior (Z,
Liu-Z)

– For two and three space dimensions, Green’s function of the
linearized Navier-Stokes equations in the physical space
(Wang, Lin and others)



I hyperbolic balance laws:

wt +
m∑
j=1

fj(w)xj = r(w) (8)

– Early works on 2× 2 systems (Nishida, Liu)
– Structural conditions for global existence and L2 time decay

rates (Chen-Levermore-Liu, Hanouzet-Natalini, Yong,
Kawashima-Yong, Xu-Kawashima, Z)

– Green’s function in one space dimension (Z,
Bianchini-Hanouzet-Natalini)

– Pointwise asymptotic behavior in one space dimension (Z,
Z-chen)

– Green’s function for thermal non-equilibrium flows in three
space dimensions (Z)



I hyperbolic-parabolic balance laws:

wt +
m∑
j=1

fj(w)xj =
m∑

j ,k=1

[
Bjk(w)wxk

]
xj

+ r(w) (6)

– Structural conditions for global existence and L2 time decay
rates (Z)

– Asymptotic behavior in multi-space dimensions (Z)
– Green’s function in one space dimension (Z, the topic of this

talk)
– Pointwise asymptotic behavior in one space dimension (to be

done)
– Green’s function in multi-space dimensions for specific physical

examples (open)



Green’s function for the Linear System

We consider the linearized system of (1) around a constant
equilibrium state w̄ , with r(w̄) = 0. It reads

wt + Awx = Bwxx + Lw , (9)

where
A = f ′(w̄), B = B(w̄), L = r ′(w̄).

The challenge is the intertwining of the matrices A, B and L.
These matrices together with their coupling determine various
parameters in the leading terms of the Green’s function. The
parameters are to be found employing ideas from Kato’s
perturbation theory (Perturbation theory for linear operators, 2nd
edn., Springer, New York (1976)) and from Chapman-Enskog
expansions.



wt + Awx = Bwxx + Lw (9)

w ∈ Rn A,B, L ∈ Rn×n

Structural Conditions:

(i) There exists a symmetric, positive definite matrix A0, such
that A0A is symmetric, A0B is symmetric, semi-positive
definite, and A0L is symmetric, semi-negative definite.

(ii) There are n1 conservation laws in (9). That is, there is a
partition n = n1 + n2, n1, n2 ≥ 0, such that

L =

(
0n1×n1 0n1×n2

L21 L22

)
, (10)

where L21 ∈ Rn2×n1 and L22 ∈ Rn2×n2 is nonsingular (if
n2 > 0).

(iii) (Kawashima-Shizuta condition) Let N1 be the null space of B
and N2 be the null space of L. Then N1 ∩ N2 contains no
eigenvectors of A.



The Green’s function for the Cauchy problem of (9) is the solution
matrix G (x , t) that satisfies{

Gt + AGx = BGxx + LG ,

G (x , 0) = δ(x)I ,
(11)

where δ is the Dirac δ-function, and I is the n × n identity.

Notation for a heat kernel:

H(x , t;λ, µ) ≡ 1√
4πµt

e−
(x−λt)2

4µt , (12)

where µ > 0 and λ are constants.



Theorem
Under the structural conditions, for x ∈ R and t > 0, the Green’s
function G of the Cauchy problem of (9) satisfies

G (x , t) =
m∑
j=1

H(x , t;λ
(r)
j , µj)Pj

+ O(1)(t + 1)−
1
2

m∑
j=1

H(x , t;λ
(r)
j ,C )

+
m′∑
j=1

e−βj tδ(x − αj t)Qj .

(13)

Here m and m′ are nonnegative integers; λ
(r)
j and µj > 0,

1 ≤ j ≤ m, are constants; αj and βj > 0, 1 ≤ j ≤ m′, are
constants; Pj , 1 ≤ j ≤ m, and Qj(t), 1 ≤ j ≤ m′ are constant
projections; , C > 0 is a constant. The parameters are determined
from the coefficient matrices A,B and L through the procedure
below and have explicit formulation.



To simplify the formulation of parameters we introduce new
variables according to (ii) of the structural conditions. Let

w =

(
w1

w2

)
, w1 ∈ Rn1 , w2 ∈ Rn2 ;

w̃ =

(
w1

L21w1 + L22w2

)
≡
(
w̃1

w̃2

)
.

(14)

The corresponding Jacobian matrices are

w̃w =

(
In1×n1 0n1×n2

L21 L22

)
,

ww̃ = w̃−1
w =

(
In1×n1 0n1×n2

−L−1
22 L21 L−1

22

)
.

(15)



The equation for w̃ is

w̃t + Ãw̃x = B̃w̃xx + L̃w̃ , (16)

where
Ã = w̃wAww̃ , B̃ = w̃wBww̃ , L̃ = w̃wLww̃ . (17)

One can verify that Ã, B̃ and L̃ satisfy the structural conditions,
while

L̃ =

(
0n1×n1 0n1×n2

0n2×n1 L22

)
.

Since the Green’s functions for (9) and for (16) are related by

G̃ (x , t) = w̃wG (x , t)ww̃ ,

we formulate parameters for G̃ (x , t) instead.



Thus,
wt + Awx = Bwxx + Lw (9)

under Structural Conditions:

(i) ...

(ii′)
L = diag(0n1×n1 , L22),

where L22 ∈ Rn2×n2 is invertible.

(iii) ...

Let

A =

(
A11 A12

A21 A22

)
,

where A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 .



Let
A(r) = A11 ∈ Rn1×n1 , (18)

which is the part of A related to the reduced system (the
equilibrium system).

Procedure to find parameters
Step 1. All eigenvalues of A(r) are real. Assume they are simple,

λ
(r)
1 < λ

(r)
2 < · · · < λ

(r)
n1 .

These are λ
(r)
j in (13), and m = n1 therein. Let the left

eigenvector (row vector) and right eigenvector of A(r)

corresponding to λ
(r)
j be l

(r)
j and r

(r)
j , respectively,

A(r)r
(r)
j = λ

(r)
j r

(r)
j , l

(r)
j A(r) = λ

(r)
j l

(r)
j , 1 ≤ j ≤ n1,

l
(r)
i r

(r)
j = δij , 1 ≤ i , j ≤ n1.

Then corresponding to each λ
(r)
j , Pj in (13) is given by

Pj = diag
(
r

(r)
j l

(r)
j , 0n2×n2

)
, 1 ≤ j ≤ n1. (19)



Step 2. L has spectral decomposition

L =
s∑

j=1

−σjQj , (20)

with σj > 0, 1 ≤ j ≤ s. Here each −σj is a negative eigenvalue of
L, with the corresponding eigen-projection Qj . Let Q0 be the
eigen-projection corresponding to the eigenvalue zero,

Q0 = I −
s∑

j=1

Qj = diag(In1×n1 , 0n2×n2). (21)

Define

S =
s∑

j=1

1

σj
Qj . (22)

Then −S is the value at zero of the reduced resolvent of L with
respect to the eigenvalue zero. One can show that

S = diag(0n1×n1 ,S22), (23)

where S22 is symmetric, positive definite.



Now for each heat kernel in the first term of (13), corresponding

to λ
(r)
j we have

µj = (l
(r)
j , 01×n2)(ASA + B)

(
r

(r)
j

0n2×1

)
, 1 ≤ j ≤ n1. (24)

One can show µj > 0, 1 ≤ j ≤ n1.



Step 3. B has distinct eigenvalues

0 = σ′0 < σ′1 < · · · < σ′s′ ,

with corresponding eigen-projections Q ′0,Q
′
1, . . . ,Q

′
s′ , and hence B

has spectral decomposition

B =
s′∑
j=1

σ′jQ
′
j . (25)

Now we form a matrix Q ′0AQ
′
0, which is diagonalizable. Next, we

have its spectral decomposition in the range of Q ′0,

Q ′0AQ
′
0 =

s′′∑
k=1

αkQk ,

s′′∑
k=1

Qk = Q ′0. (26)

The distinct eigenvalues αk are those appearing in the third term
of (13).



Step 4. Related to (25) we define a matrix

S ′ =
s′∑
j=1

1

σ′j
Q ′j , (27)

which is the value at zero of the reduced resolvent of B with
respect to the eigenvalue zero. Then for each Qk associated with a
distinct αk in (26) we form a matrix Qk(AS ′A− L)Qk and find its
spectral decomposition in the range of Qk ,

Qk(AS ′A− L)Qk =

sk∑
k ′=1

βkk ′Qkk ′ ,

sk∑
k ′=1

Qkk ′ = Qk . (28)

One can show that all βkk ′ are positive. Now we collect all distinct
pairs (αk , βkk ′), 1 ≤ k ≤ s ′′, 1 ≤ k ′ ≤ sk . The total number of
those pairs is m′ in the third term of (13), with (αk , βkk ′) being
(αj , βj) and Qkk ′ being Qj therein.



Example 3. We linearize the polyatomic gas flow model in
Example 1 around a constant equilibrium state w̄ = (ρ̄, 0, ρ̄ē, ρ̄ē2)t

to have
w̃t + Aw̃x = Bw̃xx + Lw̃ (9)

where w̃ = w − w̄ ,

w =


ρ
ρu
ρE
ρe2

 A =


0 1 0 0

−v2pv − vpe1e1 0 vpe1 −vpe1

0 e + vp 0 0
0 e2 0 0


w̄

B =


0 0 0 0
0 µv 0 0

−κv(vT1v + T1e1e1)− νe2 0 κvT1e1 −κvT1e1 + ν
−νe2 0 0 ν


w̄



L =


0
0
0
1

[∇w

(
ρ
e∗2 − e2

τ

)]
w̄

We can verify those matrices satisfy our structural conditions. We
further change variables to make entries of L zero except the one
in (4,4) location. The change of variables only affects the
formulation of projections but not heat kernels or δ-functions.

I The reduced matrix A(r) is 3× 3 and have 3 eigenvalues,

λ
(r)
− = −c̄ λ

(r)
0 = 0 λ

(r)
+ = c̄

where c̄ is the equilibrium sound speed taken at w̄ . These are
the direction of the three heat kernels.



I We can formulate the projections associated with the heat
kernels as well.

I The diffusion coefficients for the heat kernels are

µ0 = −pv (v ,T1)v2T1e1 [κv + νe ′2(T1)]/(ac̄2)
∣∣∣
w̄
> 0

µ± = v2p2
e1
T1[τ c̄2e ′2(T1) + κv + νe ′2(T1)]/(2a2c̄2) +

1

2
µv
∣∣∣
w̄
> 0

with
a = e ′2(T1)T1e1 + 1

∣∣∣
w̄

I The singular part is an exponentially decaying δ-function
along the particle path,

epv (v ,T1)vt/µδ(x)Q ′0.



I One can set some dissipation parameters as zero while
Kawashima-Shizuta condition still holds. In those cases we
have more δ-functions.

“κ > 0, µ > 0, ν = 0” or “ν > 0, µ > 0, κ = 0”: two
δ-functions along the particle path.

κ > 0, ν > 0 and µ = 0: two δ-functions along opposite
directions.

κ > 0 and µ = ν = 0: three δ-functions, one along the particle
path and two along opposite directions.

ν > 0 and κ = µ = 0: three δ-functions, one along the particle
path and two along opposite directions. In this case, the
opposite directions are frozen acoustic directions.

ν = κ = µ = 0: inviscid case; hyperbolic system;
Kawashima-Shizuta condition fails; four δ-functions, two along
the frozen acoustic directions and two along the particle path
with one does not decay in time.



Thank You


