
State Redistribution For

Embedded Boundary Methods

Ann Almgren

Lawrence Berkeley National Laboratory

September 7, 2024



References

• Berger, Giuliani, A state redistribution algorithm for finite volume

schemes on cut cell meshes, JCP, 2021.

• Giuliani, Almgren, Bell, Berger, Henry de Frahan, Rangarajan,

A weighted state redistribution algorithm for embedded boundary grids,

JCP, 2022.

• Berger, Giuliani, A new provably stable weighted state redistribution

algorithm, 2024.

• Barrio Sanchez, Almgren, Bell, Henry de Frahan, Zhang, A new

re-redistribution scheme for weighted state redistribution with adaptive

mesh refinement, JCP, 2024.



Motivation

We often want to simulate fluid flow in a

non-rectangular geometry.

CYCLONE

FUEL REACTOR

LOOP SEAL

Chemical looping reactor (courtesy of NETL)

In some cases our focus is on the behavior of

the fluid near the boundary.

In some cases our focus is on the interaction

of the fluid and solid with models for how

both evolve.

But in some cases our focus is on what is

happening in the regions of the fluid away

from the walls – the purpose of the geometry

here is to force the fluid in certain directions,

and often specifically to generate mixing.



There are trade-offs in any design choice

https://ceed.exascaleproject.org/vis/

Unstructured:

• Can fit the mesh to any geometry – much more generality

• No loss of accuracy at domain boundaries

• More “book-keeping” for connectivity information, etc

• Geometry generation becomes time-consuming

Structured:

• Easier to write discretizations

• Simple data access patterns

• Extra order of accuracy due to cancellation of error

• What about the complex geometry?

In the chemical looping reactor, we solve fluid equations on a mesh, and also advect

(and react) particles within the flow.

First design choice: structured vs unstructured mesh.

AMReX: Emmanuel Motheau



Logically rectangular != physically rectangular

https://commons.wikimedia.org/wiki

Structured but body-fitted splits pros and cons of

structured vs unstructured:

• Can fit (simple) non-rectangular boundaries

while still having known connectivity

• Finer in certain regions (mesh refinement)

• Harder to maintain accuracy

http://www.cfoo.co.za/simocean/modelsroms.php



Why Is Uniform Cell Size Good?

Numerical Analysis 101:

We might use a centered difference as an approximation for a gradient at i,

Note we only get second-order accuracy if we use constant cell spacing or sufficiently

smooth mesh.

i+2i+1ii-1



Representing geometry in a structured mesh

In most of the domain, the

structured mesh looks completely

uniform, which

• makes it easier to write

discretizations

• has simple data access patterns

• has extra order of accuracy due

to cancellation of error

We can represent complex

geometries by intersecting the

solid body with the uniform mesh

to generate “cut cells”

Here the colors represent the

“volume fraction”, i.e. the fraction

of each cell that is “in the fluid”



There is a problem though …

Note – this color bar from the previous picture tells

us that some of the grid cells have volume fraction

less than 0.00002

A cell with volume fraction of .00005 could have

area fractions of 1 (in x) and 0.00005 (in y)

Or the fluid region could be a triangle with area

fractions of 0.01 (in x) and 0.01 (in y)



We have to address the small cell problem

Consider

discretized with an explicit finite volume scheme

If we write the divergence as an integral around the

boundary of the cut cell and assume no flux through the

wall, we see that

Imagine we are transporting a scalar along the interface with uniform speed 1, and

let = 1 and = 0.5 using the advective CFL condition based on the full cell size



Several solutions have been proposed

There is a long history of solutions to the small cell problem.

One popular approach is cell merging – in this case we simply “eliminate” small cells

Cell merging algorithms tend to be based on heuristics that can be non-trivial to

implement, and may not always work for complicated geometries



Another often-used approach is flux redistribution

With flux redistribution, we redefine how much of the update is allowed

to go into the small cell. Flux redistribution satisfies:

• stability

• conservation

Flux redistribution also has several drawbacks:

• Even for linear scalar advection, it can introduce new maxima and minima

• For more complicated flows, flux redistribution can cause the algorithm to fail



A new alternative is state redistribution

This was first introduced by Marsha Berger and Andrew Giuiliani in 2021

• stability

• conservation

But state redistribution often works where flux redistribution fails.

State redistribution also gives us



So what exactly is state redistribution?

• Like flux redistribution, state redistribution is a “post-processing” step, i.e. it

occurs after we have created a conservative but unstable update to the solution.

• While flux redistribution operates on the update to the solution, state redistribution

works on the solution itself

Imagine that we have updated the solution to define as an approximation to

We first introduce the concept of “neighborhoods”. Below we consider four cells and

the neighborhoods of each.



First we need to understand “neighborhoods”

In (a), we define the neighborhood of (i+1,j-1) to include itself and (i+1,j).

In (b), we define the neighborhood of (i,j-1) to include itself and (i,j).

In (c), we define the neighborhood of (i,j) to include only itself

In (d), we define the neighborhood of (i+1,j-1) to include (i,j).

We now ask how many neighborhoods (total!) each cell is in and call this

(i+1,j-1) is in only one nbhd – itself

(i,j-1) is in only one nbhd – itself

(i+1,j) is in two nbhds – that of itself plus that of (i+1,j-1)

(i,j) is in three nbhds – that of itself plus that of (i,j-1) plus that of (i+1,j)



State Redistribution vs Cell Merging

This resembles cell merging in that we are creating neighborhoods in order to “merge”

small cells with larger ones

This differs from cell merging in that each cell can be in more than one neighborhood –

one can think of this as overlapping neighborhoods

For stability we create neighborhoods such that the total (unweighted) volume of the

nbhd is at least half of the volume of a regular cell. But note that the volume of a cell

such as (i,j) can “count” towards the volume of more than one neighborhood.



We create an intermediate solution

To apply state redistribution, we first compute

Here is the (possibly unstable) solution that we got after applying our standard

update formula using divergence of fluxes.

Here is the set of (r,s) that are in the neighborhood of (i,j)

is the volume fraction of cell (r,s) ;

is the weighted volume fraction of nbhd (i,j)

is the number of neighborhoods that cell (r,s) is in



For example,

So, for example



Understanding

In the limit where the volume of (i+1,j-1) is

very small relative to that of (i+1,j), we see

that this formula essentially sets the value of

in the small cell (i+1,j-1) equal to the value in

the larger cell (i+1,j)



Understanding

For full cells such as (i,j), there is only one

cell in the neighborhood of (i,j) and that is

cell (i,j) itself, so for full cells,



Once we have the solution in neighborhoods…

Once we have , a single value for each neighborhood associate with cell (i,j), we can

construct slopes within each neighborhood, and use those to define a bilinear function

that gives us the value of the intermediate solution at each centroid within the

neighborhood.

We construct the slopes using a least squares approach applied to the field of all

nearby neighborhoods.

We call this where (x,y) are assumed to lie in the neighborhood of (i,j)

Now to reconstruct the final solution, we define

where is the set of neighborhoods that include cell (i,j) *

is the location of the centroid of cell (i,j)

*not the cells in the nbhd of (i,j)



We can define the final solution…

To update cell (i+1,j-1) below, we note that it was only in its own neighborhood, so

this becomes simply



Another example …

To update cell (i,j) below, we must sum over all the neighborhoods cell (i,j) is in, i.e.



Another way to look at it

Another way is to express the algorithm is in matrix form.

Once we know what neighborhoods we want to use, we can define matrix A by

Then

And if we set slopes = 0,



Matrix form

We consider a new problem with “central merging” in addition to “normal merging”

Then the matrix can be written



Matrix form helps us generalize SRD

As long as the sum along each column of A is 1, state redistribution is guaranteed to be

conservative.

As long as we maintain conservation, we can think about using different weightings to

improve the algorithm.

We define this generalized approach as “weighted state redistribution,” which is

introduced in paper by Guiliani, Almgren, Bell, Berger, de Frahan and Rangarajan in

2022.



Weighted state redistribution

In the original implementation of SRD, a cell is defined as “needing merging” if it’s

volume fraction is < 0.5. This results in a sharp change in behavior between a cell

with volume fraction slightly greater than 0.5 to slightly less than 0.5

An alternative is to only merge just enough to create neighborhood volumes slightly

greater than 0.5 -- we call this “weighted state redistribution”



Matrix form gives us an easy way to express this

The columns of the weighted matrix still sum to 1conservation



SRD eliminates over/under-shoot

In this example of linear advection of a passive scalar along a slanted wall,

flux redistribution (FRD) shows undershoots and overshoots, while state

redistribution (SRD) does not.



Weighted SRD reduces error and

is less sensitive to choice of neighborhood

Supersonic vortex test problem in 27x27 domain.



Generalizations include

• Solutions updated with more than just advective terms – this works with diffusive

updates and pretty much any time the solution needs “regularization”

• SRD was introduced for 2D compressible flow but has been extended to

– 3D

– compressible and incompressible,

– Euler and Navier-Stokes,

– reacting and non-reacting, and

– multiphase flow (solid particles in gas)

• There are still more options to explore with respect to how we choose the weights

(talk to Marsha!)



Acoustic scattering in a trefoil geometry

Isobars after acoustic scattering propagates through a trefoil cavity

• Third order finite volume

• RK3-SSP in time

• Monotone weighted SRD

Simulation and visualization by Andrew Guiliani



3-D Low Mach Number Combustion Example

Animation courtesy of the Pele Combustion Team, which is supported under DOE ASCR’s Exascale Computing Program.

Simulation carried out using PeleLMeX on the Crusher machine at ORNL by L. Esclapez, N. Wimer, J. Rood, and M. Henry

de Frahan. Visualization by N. Brunhart-Lupo.



We have generalized SRD to allow changes in

refinement level at the EB interface

• When the fluid-solid interface crosses the coarse-fine boundary of an AMR

simulation, we need to do “re-redistribution.”

Top row: adaptively refined (to resolution of finest EB in bottom row, but 4x faster)

Middle row: everywhere coarser EB

Bottom row: everywhere finest EB



Work in progress includes moving EB

The machinery of SRD can be used to support a moving EB algorithm, in which cells

become covered and uncovered – we can use the SRD merging concept to fill in cells

which change volume and become uncovered due to the motion of the body



Thank you!

2D and 3D implementations of SRD are available at :

https://github.com/AMReX-Codes/AMReX-Hydro

• Berger, Giuliani , A state redistribution algorithm

for finite volume schemes on cut cell meshes,

JCP, 2021.

• Giuliani, Almgren, Bell, Berger, Henry de

Frahan, Rangarajan,

A weighted state redistribution algorithm for

embedded boundary grids, JCP, 2022.

• Berger, Giuliani , A new provably stable weighted

state redistribution algorithm, 2024.

• Barrio Sanchez, Almgren, Bell, Henry de Frahan,

Zhang, A new re-redistribution scheme for

weighted state redistribution with adaptive

mesh refinement, JCP, 2024.


